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Abstract ─ Most reported metamaterials are designed 

empirically by parameter sweep, which is time-consuming 

and ineffective. We propose an optimization method of 

designing metamaterial absorbers based on an improved 

adaptive genetic algorithm (IAGA), with the aim to get 

wideband absorption. Firstly, an IAGA optimization 

model is presented, of which the crossover probability is 

adaptively adjusted by introducing a nonlinear function, 

and the mutation probability is adaptively adjusted using 

complementary idea. Then, a wideband triple-layer 

metamaterial absorber in THz region is designed and 

optimized using IAGA, getting about 40.4% increasing 

of relative bandwidth compared with the results of 

reference [19]. A further comparison between IAGA  

and standard genetic algorithm (SGA) indicates that the 

IAGA is an effective method in improving convergence 

speed and stability, and can be used to optimize structure 

parameters of metamaterial absorbers with desired 

characteristics. 

 

Index Terms ─ Absorber, adaptive genetic algorithm, 

metamaterial, optimization. 
 

I. INTRODUCTION 
In recent years, metamaterials have been 

investigated extensively by researchers all over the 

world. Metamaterials are artificially synthesized periodic 

structures with lattice constant that is much smaller than 

the wavelength of the incident electromagnetic wave, 

thus can be considered as effectively homogeneous 

media [1]. The effective parameters (ε(ω) and μ(ω)) can 

be tuned and controlled by the design of the resonance 

structure of unit cell. Thus, metamaterials can achieve 

many interesting and exotic electromagnetic properties 

or phenomena, and can apply to absorbers, frequency 

selective surfaces (FSS), gradient meta-surfaces, 

electromagnetic band gap structures(EBG) and artificial 

magnetic conductors(AMC) [1-8], etc. In 2008, the 

concept of prefect metamaterial absorber was proposed 

by Landy et al. [5], of which the perfect absorption 

mainly arises from locally enhanced fields because of  

the strong electromagnetic resonance. The electric and 

magnetic responses can be tuned independently so as the 

impedance matches to that of free space by varying the 

geometry of metamaterial absorbers. 

However, most reported metamaterial unit cells are 

obtained empirically based on intuition, experience or a 

large number of simulation, which is time-consuming, 

ineffective and expensive [1-3,5,7]. Usually, in the design 

process of a new device, optimization methods play 

important roles in assisting the designer to find the best 

solution efficiently. These methods vary in the design 

variables on which they performed. There are three main 

categories of methods. The first one is the parameter 

optimization method, which uses design parameters to 

get a solution whose geometry has been pre-defined by 

the designer; The second one is the shape optimization 

method, which changes the boundary between each sub-

domain whose topology is defined by the designer; The 

third one is the topology optimization method, which 

uses parameters to describe material distribution inside a 

design space. All the above optimization methods are 

built on mature optimization algorithms such as genetic 

algorithm (GA), particle swarm optimization algorithm 

(PSO), and ant colony algorithm (ACA). GA is one of 

the earliest algorithms which applied to the optimization 

design of metamaterials [4-14]. In GA, the biology 

evolutionary steps are simulated by taking biological 

evolution process as the background, and the concepts  

of propagation, hybridization, variation, competition and 

selection are introduced. As GA uses a lot of evaluations 

during the process of optimization, many studies are 

aimed to decrease the time cost [15-16]. Dealing with the 

shortcomings of slow convergence speed and easily 

premature of GA, Srinivas put forward adaptive genetic 

algorithm (AGA) whose crossover and mutation 

probability can automatically change according to the 

fitness [17]. However, when AGA is used to solve 
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practical metamaterial optimization problems [18], the 

optimization process may be interrupted unexpectedly or 

even failed to achieve optimal results. 

In this paper, we propose a metamaterial absorber 

design method based on an improved adaptive genetic 

algorithm (IAGA) technique, with the aim to wideband 

high-efficiency absorption. Firstly, an IAGA optimization 

model for wideband absorption is proposed. Then the 

effectiveness of the new technique is evidenced by a 

design example using IAGA and the comparison between 

IAGA and SGA. 
 

II. IMPROVED ADAPTIVE GENETIC 

ALGORITHM 

A. Adaptive genetic algorithm 

AGA can adjust crossover and mutation probability 

adaptively based on individual fitness in the evolutionary 

process to improve the convergence. The crossover and 

the mutation probability, cP   and mP   are calculated as 

follows [17]: 
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where 
maxf  and 

avgf  are respectively the largest and the 

average fitness of the current population, f  is the fitness  

of individual being selected to participate in crossover,  

'f  the fitness of individual being selected to participate in 

mutation, and 1k , 2k , 3k , 4k  the constants between 0 and 

1, which are based on experience and practical problem 

[17]. 

In practical optimization design of metamaterials, 

standard adaptive genetic algorithm (SAGA) may cease 

unexpectedly or fail to achieve convergence solution. By 

analysis, we find that SAGA is prone to be interrupted 

during the process of evolution under improper setting  

of crossover and mutation probability. Specifically, the 

main problems are as follows. 

(1) In the initial evolution stage of SAGA, the initial 

individual fitness may have a little difference, 

 avg maxf f f  , (2) 

so the standard deviation of fitness of current population 

can be expressed as: 
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where N is the current population size. In this situation, the 

adaptive crossover and the adaptive mutation probability 

cannot be calculated by Eq. (1) since arithmetic error. 

This may lead to abnormal interruption of the computing 

process and divergence of the algorithm.  

(2) Theoretically, in the late evolution stage of  

SAGA, the algorithm gradually converges to the optimal 

solution,  

 lim bestN
f f


 , (4)  

such trend is what we expect. However, in the actual 

convergence process, there will be the same problem as 

what was mentioned in case (1). In this case, the algorithm 

get stagnated or even interrupted, which makes it converge 

fast to a local optimum. 

(3) From the schema theorem of GA, the low order, 

short length, and high fitness mode can generate a global 

optimal solution ultimately with the genetic operators 

[11]. As the algorithm evolution proceeds, various 

individual similarity increases. However, the mutation 

operator is still in working, which will create new 

individuals of a higher order, resulting in oscillation 

problem.  

To solve the above problems of using SAGA in 

metamaterial optimization design, we propose an IAGA 

as described in the next section. 

 
B. Improved adaptive genetic algorithm 

To deal with the divergence problem of SAGA, the 

elite preservation strategy is employed. This strategy 

preserves the elite individual from each previous 

generation to the next generation. Meanwhile, a duplicate 

of elite individual participates in crossover and mutation 

operation, which ensures the integrity of the elite 

individual. Based on this strategy, we propose a new 

adaptive method in which adaptive adjustment will occur 

in the process of making a new generation. The improved 

method includes two aspects: Firstly, we employ a 

nonlinear adjustment function, exponential function, to 

adjust crossover and mutation probability adaptively in 

real-time, which can solve the divergence problem in  

the early evolution stage. Secondly, we adjust mutation 

probability adaptively based on complementary idea, 

which reduces the order of populations, increase the 

search space of the algorithm, and solve convergence 

oscillation problem in the late evolutionary stage. 

 
1) Exponential adjustment function  

Exponential adjustment function (Eq. (5)) is a 

variation of the standard exponential function, where 

constants   and   are adjustment factor used to adjust 

the decline rate of the function; G is the generation number 

of GA: 
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Graphically, as shown in Fig. 1, at the initial stage, 

h(G) is almost invariant; whereas with increasing G,  

h(G) decreases gradually, which can be used to adjust  

the crossover and the mutation probability, to improve  

the convergence stability of the algorithm. The constant 

  controls the spread and shrink of h(G). The greater  , 

the faster declines of h(G). The constant   controls the  
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shift of h(G), and h(G) right shifts with increasing  .  

 

 

 

Fig. 1. The exponential adjustment function h(G). 

 

Introducing the exponential adjustment function, the 

crossover probability cP  of IAGA can be expressed as:  

1 0

0

2

*

( ) ( ( ) ( 1))1
[ ] , ( ) ( 1)

1 (( )/ ) ( ) ( )

, ( ) ( 1)

*
*

max avg

avg avg
max avg

avg avg

k k f G f G
k f G f G

exp G f G f G

c
k f G f G

P
  

  
  

  

 




 


, (6) 

where ( )avgf G   and ( )maxf G   are respectively, the mean 

fitness and the largest fitness of all individuals in 

generation G; the constants 0k  , 
1k  , and 

2k   control the 

range of adaptive crossover probability within the scope 

of 0 1 2[ ( )* , ( )* ]h G k h G k k . It should be noted that, Eq. (6) 

is coincident with Eq. (1) in a particular case: ( ) 0h G   

and 
0 0k  . As scale factor, such an adjustment function 

can increase the overall coordination in the evolutionary 

process of SAGA, and adaptively decrease the crossover 

and mutation probability, reducing the probability of 

convergence oscillation problem in the late evolution 

stage. 

Equation (6) indicates that in the initial stage of 

evolutionary algorithm, the effect of exponential 

adjustment function h(G) on cP  is small, so the adaptive 

range of cP  is 0 1[ , ]k k . With G increasing, h(G) decreases 

gradually and decrease crossover probability slightly in 

a nonlinear manner. In this paper, the parameters are 

fixed at 0 1 20.5, 0.8k k k     as the experience value in 

which the GA works well for most of practical problems, 

and thus the adaptive crossover probability range is 

[0.5,0.8]. 

 

2) Adaptive adjustment strategy based on the 

complementary idea 

Adaptive adjustment of mutation operator is 

implemented with complementary idea. SGA mutation 

operator is based on a fixed number of individuals. But 

this is different from the real ecological environment,  

of which mutation number is stochastic. We adaptively 

adjust the number of mutation individuals to simulate  

the stochastic mutation operation of the real ecological 

environment, according to complementary idea. The 

specific steps are as follows. 

(1) Use the elite preservation strategy to determine 

nEliteKids, which means the number of preservation 

individuals. This principle allows the best individuals 

from the current generation to carry over to the next.  

(2) Use Eq. (6) to calculate crossover probability and 

then determine the number of crossover individuals: 

 [ * ]cnXoverKids P populationsize . (7) 

(3) Determine the number of mutation individuals in 

accordance with the complementary idea:  

nMutateKids populationsize nXoverKids nEliteKids   , 

 (8) 

where populationsize is the population size that denotes 

the number of individuals in current generation. 

According to schema theorem of GA, we analyze the 

convergence characteristic [11, 22] of IAGA. Suppose  

the crossover probability range is 0 1[ ( ) * , ]minh G k k , where 

( )minh G  is the minimum value of exponential adjustment 

function. The adaptive mutation probability can be 

estimated with complementary idea according to Eq. (7) 

and Eq. (8):  

 1m c

nMutateKids nEliteKids
P P

populationsize populationsize
    . (9) 

Equation (9) indicates that the range of mP   is 

1 0min[1 ,1 ( ) ]
nEliteKids nEliteKids

k h G k
populationsize populationsize

      and 

mP   will increase with decreasing .cP   According to 

theoretical analysis based on the genetic algorithm schema 

theorem, the changes of mP   versus cP   will reduce the 

populations order and accelerate the convergence speed. 

From the analysis in section 2.2, we can get that the 

IAGA can adaptively adjust the crossover and mutation 

probabilities. The mutation probability increases with 

decreasing crossover probability, which helps to reduce 

the populations order, create new structures, and extend 

the algorithm search space; on the other hand, the 

mutation probability can be adaptively reduced when the 

crossover probability increases, thereby improving the 

convergence speed and stability. Particularly, in the late 

stage of IAGA, not only the crossover and mutation 

probability can be ensured properly, but also low order 

individual can be effectively avoided, leading to a better 

stability of the algorithm at the convergence value since 

the adjustment function h(G).  
 

III. OPTIMIZATION DESIGN OF 

WIDEBAND METAMATERIAL 

ABSORBERS 

A. Initial design 

A polarization insensitive and wide-band THz  
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metamaterial absorber is selected as the optimizing 

object, with the goal of achieving the maximum 

absorption bandwidth. The metamaterial absorber 

structure in Ref. [19] is shown in Fig. 2. The metamaterial 

absorber consists of two metallic pattern layers separated 

by a FR4 substrate. The metallic parts are copper with 

frequency independent conductivity 7=5.8 10 S/m   and 

thickness 0.017 .ft m  The geometry parameters are 

denoted by a, b, c, u, n, w, h. 
 

 

 

Fig. 2. The absorber unit cell structure in Ref. [19] and 

the geometry parameters. 
 

1) Calculation of the absorption 

The absorption can be calculated using:  

 ( ) 1 ( ) ( )A R T     , (10) 

where ( )A  , ( )R  , and ( )T   are the absorption, 

reflectivity, and transmissivity, respectively. 

This metamaterial absorber can be modeled as a 

two-port network. Electromagnetic waves are incident  

in port 1 and exit through port 2. The reflectivity and 

transmissivity can be calculated by S-parameters of 
11S  

and 
21S : 

 
2

11( )R S  , (11) 

 
2

21( )T S  . (12) 
 

2) The fitness function  

The metamaterial absorber optimization design is  

a multi-objective optimization problem [20,21], so the 

working band, the bandwidth and the absorption should 

be considered synchronously in calculating the fitness 

function. In the simulation frequency range ,min maxF F  

(where maxF  and minF  are the upper and lower limit 

frequencies), the optimization goal is to make the 

absorption bandwidth as wide as possible and meanwhile 

the absorption meets a certain minimum requirement. 

Considering these two optimization goals, we set the 

absorption not less than 80%, and the fitness function is: 

 11
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i
i
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F

f
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


, (13) 

where iF  is the frequency interval distance which the 

absorption is not less than 80% continually. Equation 

(13) indicates that, the wider bandwidth, the smaller 

fitness value we will get, supposing the absorption is  

more than 80%.  
 

3) The structure and algorithm parameters and their 

constraints  

To ensure getting the reasonable structure, we employ 

an inequality to constraint the geometric parameters, as 

follows:  
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Population size is generally in 20-40 preferably. In 

this paper, the population size is fixed at 20 as the 

minimum size in which the GA works well for most  

of practical problems, and its size makes it possible to 

perform faster computation, and the maximum generation 

is 30. The initial individual parameters assume the 

parameters in Ref. [19] and the rest initial individuals are 

created randomly to satisfy the constraint conditions.  
 

B. Numerical simulation  

The VBA interfaces provided by commercial 

electromagnetic simulation software CST and MATLAB 

are employed to establish an interactive simulation 

system [9, 20, 21]. Joint simulation flow chart with 

IAGA is shown in Fig. 3. The calculation configurations, 

in CST, are as follows: periodic boundary conditions, 

2μm near-field distance, frequency-domain solver, and 

the frequency range 3.5 – 6THz. 
 

 

 

Fig. 3. Joint simulation flow chart. 
 

C. Comparison and discussion 

1) Optimization results  

After 30 generations of evolution, the steady optimal 

individual results are obtained, as shown in Table 1 and 

Fig. 4. 
 

Table1: Metamaterial absorber structure parameters 

Parameters/μm a b c u n w h 

Before 9.75 9.00 12.10 8.25 1.00 0.25 5.00 

After 8.63 7.40 12.93 5.50 4.98 0.16 5.25 
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Fig. 4. The results of IAGA: (a) the best fitness value 

(cross mark) and the average fitness value (triangle 

mark) of each generation; (b) the best individual obtained 

from final optimization results; (c) the mean distance of 

all individuals in each generation (Hamming distance); 

(d) the optimum fitness value, the worst fitness value  

and average fitness value of each generation; (e) each 

individual fitness value of the current generation; (f) 

offspring quantity of the initial population. 

 

2) Comparison with reference 

As shown in Fig. 5, after the optimization, both the 

two resonances move to a higher position, due to the 

overall reduced size (Table 1). Compare to the results of 

Ref. [19], the absorption bandwidth increases, resulting 

in that the bandwidth with absorption more than 80% are 

increased from the original 0.805 THz to 1.604 THz with 

the relative bandwidth increasing of 40.4% [24]. These 

results demonstrate the feasibility of IAGA.  

 

 

 

Fig. 5. (a) The S-parameter and (b) the absorption of 

before and after optimization. 

 

3) Comparison between IAGA and SGA 

Adopting the same structure as that of above 

metamaterial absorber, a real-coded SGA is employed  

to make a comparison with IAGA. Shown as Fig. 6, the 

IAGA optimal fitness value is less than SGA, which 

proves that the former algorithm has better global search 

capability. It is also found that the convergence speed of 

IAGA is much higher. 

 

 

 

Fig. 6. Average fitness value and best fitness value of 

IAGA and SGA. 

 

IV. CONCLUSION 
An optimization method of designing metamaterial 

absorbers based on an improved adaptive genetic 

algorithm (IAGA) is proposed and is verified by example 

of THz metamaterial absorber. Firstly, a nonlinear self-

adjustment function is employed to adjust crossover and 

mutation probability in real-time, which can solve the 

possible oscillation problem in the middle/late stage  

and the divergence problem in the early stage of SAGA. 

Secondly, mutation operator with the complementary 

idea is adjusted to decrease the population order and to 

create the new structure for population, improving the 

algorithm search space, convergence speed and stability. 

Lastly, the feasibility of the IAGA is verified by making 

comparisons with SGA, proving that the IAGA owns 

advantages of easy mobility, large search space, fast 

convergence speed and less design time. However, the 

IAGA has disadvantage of depending on the adjustment 

parameters and there is no experiment of the THz 

metamaterial absorber since experimental condition 

limitation, which is our next research direction. This 

method can also be extended to multi-object optimization 

problems such as the design of left-handed metamaterials, 

frequency selective surfaces, transmission line (TL) 

metamaterials, etc. 
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