
A Novel Herringbone Circularly Polarized Quasi Lumped Antenna Array 
 

 
3 OthmanMohamadariff and , 1 Alahmadi Abdullah, 2 Khaled Issa, 1 QasaymehYazeed  

 

Department of Electrical Engineering1  

Majmmah University, Al-Majmmah, 11952, Kingdom Saudi Arabia 

*y.qasaymeh@mu.edu.sa, a.alahmadi@mu.edu.sa 

 

Society (RFTONICS)-s for the eTIC in Radio Frequency and Photonic-KACST 2 

Electrical Engineering Department, King Saud University, Riyadh, Kingdom Saudi Arabia 

kissa@ksu.edu.sa 

 

, Faculty of EngineeringDepartment of Electrical Engineering3  

University of Malaya, Kuala Lumpur, 50603, Malaysia 

mohamadariff@um.edu.my 

 

 

Abstract ─ Herein, a series herringbone fed traveling 

wave quasi-lumped circularly polarized antenna array is 

presented. The proposed quasi-element antenna comprises 

a narrow strip inductor parallel to the interdigital 

capacitor. The inductor was placed at the center finger 

and shorted across the interdigital capacitor with pad 

capacitors connected at both ends of the structure. 

Circular polarization was achieved by feeding the quasi 

elements at the corners with a 90° phase difference along 

a travelling wave microstrip feed line. The proposed 

quasi-lumped element antenna has the potential to 

realize significant size reductions, and it will ultimately 

be lightweight, small volume, and inexpensive. The 

antenna characteristics of the array antenna, including 

return loss and radiation patterns, were characterized. 

The size of the antenna structure was 21 mm × 38 mm, 

allowing for potential use in wireless communication 

systems that use the 5 GHz ISM band. 
 

Index Terms ─ Array, circularly polarization, gain, 

herring fed, quasi lumped, radiation pattern, return loss. 
 

I. INTRODUCTION 
In modern communication systems, circularly 

polarized (CP) antennas are favored over linearly 

polarized (LP) antennas owing to their flexibility in terms 

of steering angle between the transmitting and receiving 

antenna [1]. CP antennas are more suitable for several 

applications including mobile and fixed satellite systems, 

remote control, telemetry, wireless communication, and 

radar systems in which the multi-path fading, absorption, 

and reflectivity are major concerns [1–5]. 

Over the past two decades, researchers have 

developed several CP antennas designs that suffer from 

narrow axial ratio bandwidth for lower frequency ranges 

[1–6]. To enhance the CP radiation, different shapes  

of patches and slots were prepared, including L-shaped 

[3] and lightning-shaped slots [5], and the insertion of 

inverted and stepped L- or T-shaped strips was reported 

[6,7]. In [7–10], different phase feeding topologies 

featuring seven quarter-wave transformers in circular  

[3] and circular arc-shaped patterns [8]. An overall 

improvement of the CP array performance can be 

achieved using the sequential rotation phase feeding 

method. A sequential rotation feed network is typically 

designed using different power divider circuits. 

Furthermore, multi-band and single antenna topologies 

have been reported to enhance bandwidth [11–13]. 

To date, many feeding techniques have been 

reported for achieving improved CP properties in 

microstrip antenna arrays. For instance, series feed [14], 

parallel feed [15], and sequential rotation feed [16] 

techniques have been developed. Parallel and corporate 

feeds have advantages in terms of excitation networks 

for printed antenna arrays and exhibit design flexibility 

and facile formation of two-dimensional arrays [15]. 

However, these methods have some drawbacks during 

prototyping, including unbalanced pattern and mutual 

coupling effects between the elements and feed network. 

The series feed topology represents a more concise 

network because it requires shorter transmission lengths 

and less junctions, resulting in lower insertion loss. 

However, it experiences narrow bandwidth and inherent 

phase differences caused by the differences in feed line 

lengths [17]. 

The purpose of this article is to acquire a circular 

polarization and to reduce array size. The circular 

polarization produced will use the herringbone feeding 

technique and the quasi-lumped elements used to reduce 

array size. 
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Section 2.1 shows the configuration of a single 

radiating element. The array used for the herringbone 

feeding technique is presented in Section 2.2. In Section 

3, the S11 and radiation pattern results are presented. 

 

II. SINGLE ELEMENT ANTENNA 

GEOMETRY 
By definition, lumped elements are much smaller 

than their respective wavelengths. Thus, microstrip 

shorts and stubs with physical lengths of less than a 

quarter-wavelength at the operating frequency are 

required for approximate microwave operation of 

lumped elements in microstrip structures and are referred 

to as quasi-lumped. A schematic of the quasi-lumped 

element resonator is shown in Fig. 1. Whilst, the 

equivalent lumped circuit is shown in Fig. 2. The 

proposed resonator antenna consists of a narrow straight 

strip inductor in parallel with an interdigital capacitor 

[18]. 

 

 
(a) 

 
(b) 

 

Fig. 1. The proposed resonator antenna: (a) the allocation 

of equivalent lumped elements, and (b) the parameters 

used to calculate the equivalent lumped elements. 
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Fig. 2. Equivalent circuit of the proposed antenna. 

 

The equation used to determine the resonant 

frequency of the proposed antenna has been previously 

reported [19,20,21]: 

 

  p1 p2 p1 p2

1
f=

2π L C C (C +C ) +C 
  

. (1) 

From Equation (1), the resonance frequency is 

determined by the equivalent lumped elements 𝐿,  𝐶𝑝1
, 

𝐶𝑝2
 and 𝐶. These lumped elements were calculated by 

solving Equations (2) to (6) in an iterative manner using 

Matlab®. 

The inductor 𝐿 is a single, narrow and straight 

conductor positioned at the center. The inductance can 

be calculated by Equation (2): 

 -9 L L
L

L L

2I W
L=200×10 I ln 0.50049

W +h 3I

  
   

  
. (2) 

Where ℎ is the substrate thickness.  

The interdigital capacitor, 𝐶, is a multi-finger 

periodic structure and the capacitance arises across a 

narrow gap between the conductors. These gaps are very 

long and can be folded to reduce the area and form a 

lumped element. The equation used to determine the series 

capacitance of the interdigitated structure is Equation 

(3): 

  r
0 L

ε +1
C=ε N-Δ C

2

 
    

 
. (3) 

Where,  

   N is the fingers number, 

     is the correction factor  eff0.5 w -w ,   

 
3

effw 1.5 10  , w is the finger width.  

The length of interdigital finger 𝐶𝐿 is calculated by 

Equation (4). Whilst, the width of the whole structure is 

calculated by Equation (5): 

 
L L eI =C +g , (4) 

 
L

/

Lw=2 I +I . (5) 

The parasitic capacitors 𝐶𝑝1
 and 𝐶𝑝2

 connected at 

both ends of the structure, act as capacitors to ground. By 

adjusting the parasitic capacitors, the resonant frequency 
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of the resonator can be tuned. Equation to determine pad 

capacitances is given in Equation (6): 

      

eff

P
2 2

eff eff eff

-3

2.85ε
C =

ln 1+ 1 2 8h/ε 8h/ε + 8h/ε +π

1
          ×

25.4×10

 
 
 

   
      

, 

 (6) 

where ℎ is the substrate height. 

The radiating element dimensions were obtained 

from Equations (2) – (6). Table 1 shows the dimensions of 

a single quasi lumped antenna at the targeted resonance. 

The parameters were determined using Equations (2) – (6) 

at a resonant frequency of 5.8 GHz, whereas the resonant 

frequency was calculated using Equation (1). Table 2 

presents the equivalent lumped elements for single quasi 

lumped antenna. 

 

Table 1: The proposed antenna quasi-lumped element 

parameters 

Parameter Dimension [mm] 

𝑊𝐶 0.35 

𝐼𝐿   3.35 

𝐶𝐿 3.05 

𝑁 8 
/

LI 1.23 

𝑔𝑒 0.3 

𝑊𝐿  1.2 

𝐿 5.4 

𝑊 5.8 

ℎ 0.813 

 

Table 2: The proposed antenna design parameters 

C CP1 CP2 L 

0.347 PF 0.17 PF 0.17 PF 1.74 nH 

 

III. CONFIGURATION OF ARRAY FEED 
The proposed herringbone antenna design comprises 

four identical resonating elements. These resonators 

consist of resonant quasi-lumped elements fed in a 

quadrature at a design center frequency of 5.8 GHz.  

The resonators were oriented at ±45° with respect to  

the feeding line. The quadrature feed yields in the 

excitations were 90° out of phase. Hence, the technique 

naturally exhibits circular polarization [22]. The 

resonators were allocated by to achieve a quadrature 

phase. In each resonator, the return phase of the 

reflection from the second element was 180° out of phase 

with the reflected wave from the initial element [23]. 

Thus, reflection enhancement is inherently achieved by 

the resonator design. The first resonator trigger along the 

feed line dictates the leading phase and the circular 

polarization orientation. The herringbone antenna has a 

shorter feeding line than that of a meandering antenna, 

resulting in array size reduction [24]. Figure 3 presents 

the prototyped antenna array in CST Microwave Studio. 

 

 
 

Fig. 3. The 5.8 GHz proposed herringbone array. 

[Microstrip length is 36 mm]. 

 

IV. RESULTS AND DISCUSSIONS 
Figure 4 shows the fabricated antenna array on  

an RO4003C microwave substrate with a relative 

permittivity of 3.38 and a thickness of 0.813 mm. 

 

 
 

Fig. 4. The 5.8 GHz prototyped herringbone array. 

 

The simulation and measurement results for the 

input return loss are shown in Fig. 5. The minimum 
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simulated input return loss for a frequency fine-tuned  

to 5.788 GHz was –14.21 dB, whereas the minimum 

measured return loss was approximately –15.84 dB  

at 5.79 GHz. These results indicate the antenna was 

resonating at the designed frequency.  

 

 
 

Fig. 5. The simulated and measured return loss results.  

 

Figure 6 shows the simulated and measured co-

polarization and cross-polarization patterns in the  

xz-plane at 5.788 GHz. Cross-polarization was higher 

than co-polarization by approximately 20 dB in the 

broadside direction, which is characteristic of left-hand 

circular polarized (LHCP) radiation. The gain of the 

array was improved to 5.28 dBi compared to that of a 

single element, which showed a gain of 1.33 dBi. 

 

 
 

Fig. 6. The simulated and measured results for E-co. and 

E-cross. polarized. 
 

V. CONCLUSION 
Herein, a novel feeding technique for the 

preparation of a CP quasi lumped antenna was presented. 

The proposed array was fed by a herringbone microstrip 

orienting the elements ±45° from the feed line to achieve 

CP radiation. A noticeably reduced size of the array was 

achieved compared to that of conventional microstrip 

antennas. Table 3 shows a notable size reduction 

comparing the proposed array with various designs 

reported in literature.  

 

Table 3: A size comparison between the proposed design 

and several designs reported in the literature 

Reference Array Size [mm] 

[25] 85×110 

[26] 70×70 

[27] 70×70 

[28] 70×70 

[29] 60×60 

Proposed work 21×38 
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