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Abstract ─ Antenna testing consists locating the 

potential defaults from radiated field measurements. It 

has been established in literature, that compressive 

sensing methods provide faster results in failure detection 

from smaller number of measurement data compared  
to the traditional back-propagation mechanisms. 

Compressive sensing (CS) methods require a priori 

measurement of failure-free reference array and require 

small number of measurements for diagnosis. However, 

there are conflicting reports in literature regarding the 

choice of appropriate CS method, and there is no 

sufficient comparison study to justify which one is  

a better choice under a very harsh condition. In this  

study, recovery performance test of CS methods for the 

diagnosis of antenna array from few near-field measured 

data under various signal-to-noise ratios (SNRs) is 
presented. Specifically, we tested three prominent 

regularization procedures: total variation (TV), mixed 

l1 l2⁄  norm, and minimization of the l1 in solving 

diagnosis problems in antenna array. Linear system that 

relates the difference between near-field measured data 

from reference antenna (RA) array and array under test 

(AUT), and the difference that exist between coefficients 

of RA and the AUT, is solved by the three compressive 

sensing regularization methods. Numerical experiment 

of a 10 × 10 rectangular waveguide array under realistic 
noise scenario, operating at 10 GHz is used to conduct 

the test. Minimization l1 technique is more robust to 

additive data noise. It exhibits better diagnosis at 20 dB 

and 10 dB SNR, making it a better candidate for noisy 

measured data as compared to other techniques. 

 

Index Terms ─ Antenna array diagnosis, antenna 

testing, compressive sensing, near-field, low SNR. 
 

I. INTRODUCTION 
Nowadays, near-field equipment is used for routine 

array test. Apart from radiation pattern measurements, 

diagnosis of antenna array is another major application. 

Current and future technologies employ sophisticated 

active or phased arrays with large elements. For 

example, large array employed in RADAR systems,  

full MIMO systems, massive MIMO, and personal 

communication devices that require complex antenna 

arrays. As a result, there will always be a demand for fast 

and accurate complex antenna systems diagnosis, to 

resolve the unacceptable radiation pattern distortion 
caused by element (s) failure in the array.  

Many antenna array diagnosis methods, based on 

genetic algorithms [1], [2], exhaustive search [3], matrix 

inversion [4], and MUSIC [5], have been developed in 

literature to identify faulty antenna elements in an array. 

All the methods compare the array under test (AUT) with 

the radiation pattern of an “error free” reference array. 

All the methods in [1-5] need big measurement samples 

for large antenna arrays, to get reliable diagnosis. 

Reducing the measurement samples, compressive 

sensing (CS) based techniques have been reported in [6]-
[9]. Despite the compelling outcome, the methods in [1]-

[9] focused on the detection of sparsity pattern of a failed 

array, i.e., failed elements location, not on the complex 

blockage, as addressed in [10]. Recently, compressive 

sensing approaches have shown great advantages in terms 

of reduced number of measurement data, reconstruction 

accuracy, and simulation time [11]. Compressive 

sensing (CS) is a method of signal processing through 

which it is possible to reconstruct or recover a signal 

from a set of linear measurements rather than the original 

signal itself, and the measurements set is less than  

the signal. Consequently, the primary signal will be 
reconstructed from measurement matrix, which is ill-

posed as a result of decreased dimension.  

In literatures, such as [7-11], differential scenario 

with sparse recovery algorithms have been used to 

diagnose antenna arrays and retrieve element excitations. 

This method results to a small number of unknown, 

however, they require a well detailed array model with 

the exact information of the radiation patterns of the 

antenna to generate appropriate results. Particularly, 

total variation (TV) norm, mixed ℓ1 ℓ2⁄  norm and 

minimization of the ℓ1 norm were tested to proffer 

solution to an inversion issue. However, based on the 

acquired information, no work has thoroughly compared 

the methods, particularly the recovery performance 
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under different signal-to-noise ratios (SNRs). For a noisy 

measured data, which of those methods is more suitable? 

i.e., which method gives better recovery performance for 

near-field measured data with low SNR? This paper 

provides answer to this question. In addition, there are 
contradicting reports and recommendations in literature. 

For instance, Fuchs et al. [11] recommended the use of 

mixed ℓ1 ℓ2⁄  norm while Migliore [7] recommended 

minimization of the ℓ1 norm. Again, these are conflicting 

results necessitating the further study. 

In CS mechanisms, the number of measurements 

required increases logarithmically and slowly based on 

the number of unknowns [12-17]. Hence, field synthesis 

scheme benefits more in sparse recovery-based methods 

[11]. Modeled diagnostic issues can be evaluated by 
using the available customs whose calculation times are 

little more than the standard approaches. Therefore, it is 

good to show that total time required in getting the array 

of antenna diagnosed majorly depend on time taken  

in measurement, with post-processing time of higher 

magnitude faster. That is the reason that sparse recovery 

methods with few numbers of measurements will 

provide faster antenna array diagnosis. Researchers have 

proposed various compressive sensing algorithms [11], 

[12]-, [25] but only three of them are reported in this 

paper because of their robustness and efficiency [4]. 

Total variation (TV) norm, mixed ℓ1 ℓ2⁄  norm and 

minimization of the ℓ1 norm methods are adapted and 

applied to a simulated near-field data of a 10 GHz 

waveguide array with 100 elements in which failures had 

been added intentionally. And the recovery performance 

under low SNR was evaluated, to determine the best 

algorithm fit for such scenario.  

CS methods provide good, reliable, and accurate 

antenna array diagnosis at low SNR compared to the 

conventional methods. This is a useful feature, 

particularly in very harsh measurement environment. 
Nevertheless, no work has thoroughly compared the CS  

methods. Furthermore, in a very harsh measurement 

environment (i.e., low SNR), which of these methods  

is preferable? That is, which of the methods provide 

better recovery performance for low SNR near-field 

measurement? This paper answers this question, 

specifically; total variation (TV) norm, mixed ℓ1 ℓ2⁄  

norm and minimization of the ℓ1 norm were examined to 

solve an inversion problem. The results obtained will 

influence the choice of CS diagnosis method especially 

under very low SNR measurements. 

 

II. DIAGNOSIS PROBLEM OF ANTENNA 

ARRAY 
Here, we consider a rectangular radiating antenna 

array in space (Fig. 1). The radiated field of antenna is 

usually considered in phase or/and amplitude within the 

near-field region. The AUT is as shown in Fig. 1 (b). The 

associated parameters of AUT is marked with “u” as 

superscript. Especially, 𝑬𝑢(𝑥, 𝑦) is the tangential field 

that is concentrated on the antenna aperture, i.e., 

                𝑬𝑢(𝑥, 𝑦) = 𝐸𝑥
𝑢(𝑥, 𝑦)�̂� + 𝐸𝑦

𝑢(𝑥, 𝑦)�̂�,              (1) 

where 𝐸𝑥
𝑢(𝑥, 𝑦)𝑥 and 𝐸𝑦

𝑢(𝑥, 𝑦)�̂� are components x and  

y of the electric field situated on the aperture Σ 

respectively. Near-field 𝑁𝑢(𝑟, 𝜃, ∅) is field measured on 

part of hemispherical surface (0 ≤ 𝜃 ≤ 𝜋 2,⁄ 0 ≤ 𝜙 ≤
2𝜋) at radius r from center of AUT, and  𝑟 < 2𝐷2/𝜆, D 

is diameter of the antenna. Also, the near-field of RA is 

assumed available. The associated parameters are with 

“o” superscript. 𝑬𝑜(𝑥, 𝑦) is the field on RA aperture Σ 

and 𝑵𝑜(𝑟, 𝜃, ∅) denotes the far-field radiated. For the 
DA depicted in Fig. 1 (c), the tangential distribution 

𝑬(𝑥, 𝑦) on its aperture equals the difference between the 

RA and AUT field, and the corresponding near-field 

𝑵(𝑟, 𝜃, 𝜙) is expressed as the difference between the 

near field of RA and AUT as: 

                   𝑬(𝑥, 𝑦) = 𝑬𝑢(𝑥, 𝑦) − 𝑬𝑜(𝑥, 𝑦),                  (2) 

           𝑵(𝑟, 𝜃, 𝜙) = 𝑵𝑢(𝑟, 𝜃, 𝜙) − 𝑵𝑜(𝑟, 𝜃, 𝜙).           (3) 

 
 (a) (b) (c) 

 

Fig. 1. Antenna array decomposition and modeling for diagnosis. (a) Reference antenna (RA), (b) antenna under test 

(AUT), and (c) differential antenna (DA). Number of failures here is 2 for 24 elements, and Σ is the aperture [11]. 
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III. COMPRESSED SPARSE RECOVERY 

TECHNIQUES 
The role of matrix inversion technique is to 

introduce a priori knowledge within the inversion. The 

efficient approach that is required in getting this 

regularization is by approximately reducing the selected 

norm q of x solution. Hence, the optimization problem to 

be solved becomes: 

            min
x

‖𝑋‖𝑞  subject to ‖𝒚 − 𝑨𝑿‖2 ≤ 𝛾,              (4) 

where ‖·‖𝑞 represents 𝑙𝑞 norm, and 𝛾 is a function of 

noise and factors affecting the measurement. Different 

routines solutions are readily available to solve the 

convex optimization problem of Eqn. (4), such as [19-

25]. The three norms 𝑙𝑞, chosen according to a priori 

knowledge of a differential antenna diagnosis setup, can 

then be explained for inversion regularization. We can 
consequently apply them to effectively diagnosis radiating 

elements. 
 

A. TV norm 

According to a priori knowledge that solution x has 

small discontinuities due to the presence of failures. 

Besides the failures, it is expected that the field x is to  
be made almost zero. Therefore, TV-norm is a smooth 

function to regularize x [25]. So, minimizing TV-norm 

is minimizing its gradient, this is the effect of smoothing. 

Consider 2-dimensional complex data set 𝑋 ∈ ℂ𝑀×𝑁, 

TV-norm gives: 

        ‖𝑋‖𝑇𝑉 = ∑|𝑿𝑚+1,𝑛 − 𝑿𝑚,𝑛|

𝑚,𝑛

+ |𝑿𝑚,𝑛+1 − 𝑿𝑚,𝑛|                        (5) 

‖𝑣𝑒𝑐(𝛁𝑥𝑿)‖1 + ‖𝑣𝑒𝑐(𝑿𝛁𝑦)‖
1
, 

𝑣𝑒𝑐 (X) produces vector N by M that has the columns X, 

stacked beside each other. Gradient matrix 𝛁𝑥 and 𝛁𝑦 are 

made up of  𝑀 × 𝑀 and 𝑁 × 𝑁 size, respectively. They 

are computed as: 

𝛁𝑥 = [
−1 1 0

               ⋱         ⋱
0 −1 1

] and 

 𝛁𝑦 = [

−1 0
1 ⋱

⋱ −1
0 1

]. 

Then, the problem of optimization in Eqn. (4) becomes: 

    min
𝑿

‖𝑿‖𝑇𝑉 subjects to  ‖𝒚 − 𝑨𝑣𝑒𝑐(𝑿)‖2 ≤ 𝜖.       (6) 

 

B. 𝓵𝟏 norm 

Since sparse solution 𝑋 exists, then a search space 

can be reduced by initiating a priori knowledge in 

inversion. Particularly, the ℓ1-norm (‖𝑋‖1 = ∑ |𝑥𝑘|𝑘 ) is 

the leading convex surrogate of the appropriate vector 

estimate. That is, the quasi-norm ℓ0 that calculates 
nonzero occurrences of a particular vector). Consequently, 

ℓ1 norm technique is an effective method for enhancing 

the sparse solution [7], [8], [10], [11]. The problem of 

the regularization is: 

min
𝑋

‖𝑋‖1 subject to  ‖𝒚 − 𝑨𝑣𝑒𝑐(𝑿)‖2 ≤ 𝜖.        (7) 

Minimization of the ℓ1-norm forces the pointwise 

sparsity of solution per sample 𝑥𝑘 of EM field on the DA 

aperture. 

 

C. 𝓵𝟏 𝓵𝟐⁄ -norm 

The position and dimension of the radiating aperture 

can be taken. The solution X is grouped into G groups 

𝑋𝑔 that corresponds to each aperture of the radiating 

element g. For a faulty element, all regions of 

discretization 𝑥𝑘
𝑔

 within the aperture becomes nonzero. 

Let vector X of dimension MN be divided into G non-

overlapping groups depicted as 𝑋𝑔 of size 𝑁𝑔, such as 

∑ 𝑁𝑔
𝐺
𝑔=1 = 𝑀𝑁. Then, the mixed ℓ1 ℓ2⁄ -norm is given as: 

‖𝑋‖1,2 = ∑‖𝑋𝑔‖2

𝐺

𝑔=1

= ∑ √|𝑥1
𝑔|

2
+ ⋯ + |𝑥𝑁𝑔

𝑔 |
2

 

𝐺

𝑔=1

.                     (8) 

Mixed ℓ1 ℓ2⁄ -norm have similar behavior with ℓ1 Norm 

on vector‖𝑋1‖2,…, ‖𝑋𝑔‖2,… ‖𝑋𝐺‖2, it therefore induces 

group sparsity at the radiating aperture level. The 

regularized inversion optimization problem is given as: 

           min
𝑋

‖𝑋‖1,2 subject to  ‖𝒚 − 𝑨𝑋‖2 ≤ 𝜖.             (9) 

 

IV. NUMERICAL SIMULATIONS 
Considering an open-ended waveguide array 

constituted by a 10 × 10 WR90 waveguides that operates 

at 10 GHz, aperture size 22.86 × 10.16 𝑚𝑚2, and spaced 

uniformly by 𝜆 𝑎𝑛𝑑 𝜆/2 along x- and y-planes, 

respectively, as depicted in Figs. 2 (a-c). Because 

normalized patterns provide sufficient information to 

obtain substantial results, we considered the normalized 

pattern as shown in Figs. 2 (d, e). The antenna array’s 

radiation pattern is computed using antenna toolbox in 

Matlab software. At first, all the elements N in the array 
are excited with the same value in order to emulate  

RA (i.e., array without failure). To model the AUT, K 

failures in either phase 𝛿Φ or amplitude 𝛿A are added.  

Practically, noise contaminates measurements; 

hence, we added a Gaussian noise n to the radiation 

pattern of the reference and defaults as 𝒚𝑛
𝑞

= 𝒚𝑞 + 𝒏𝑞 

where 𝑞 = {𝑟, 𝑑}. Noise level is computed by SNR 
which could be extracted from the highest magnitude of 

received field to fit with dynamic range of measurement. 

Then the noise can be given as: 

  𝑛𝑞 =
ℕ(0,1) + 𝑗ℕ(0,1)

√2
 𝑚𝑎𝑥|𝒚𝑞|. 10−𝑆𝑁𝑅𝑑𝐵/20,   (10) 

where ℕ(0,1) represents Gaussian random vector with  
0 mean and 1 standard deviation. SNR can be varied  

in random near-field measurements, and subjecting the 
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compressive sensing methods to different scenario can provide recovery performance of each methods.  

 
 (a) (b) 

 
 (c) 

 
   (d)    (e) 

 

Fig. 2. Simulation setup. (a) Waveguide, (b) radiation pattern, (c) antenna array, (d) normalized radiation pattern with 
no element failure, and (e) normalized radiation pattern with 6 elements failures. 

 

V. RECOVERY PERFORMANCE 

Quantifying the diagnostic performances, the 

following indicator is introduced. Firstly, we add the 

field’s magnitude samples 𝑥𝑘 situated on each element’s 

aperture g: 𝛼𝑔 = ∑ |𝑥𝑘
𝑔|𝑔 , 𝑓𝑜𝑟 𝑔 = 1, … , 𝐺. From that, 

we get a positive number for each radiating element g, 

the difference ∆𝐹𝐴 between lowest failure level and 

highest false alarm is computed. ∆𝐹𝐴 value is the margin 
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set as threshold to differentiate between true failure and 

false alarm. Higher margin ∆𝐹𝐴 implies easier diagnostic, 

while a negative ∆𝐹𝐴 implies incorrectly performed 

diagnostic because false alarm value appears bigger than 
a failure. 

For all the methods adopted, we repeated the 

simulation for 120 times with the incorporation of the 

Gaussian white noise. The simulation results given in 

this study are average figures over the 120 simulation 

times, so as to ensure appreciable results. The total 

number of measurement employed for investigation is 

12 × 12 = 144 for all the methods because choosing 

higher measured points have no effect on the recovery 

performance. The associated parameter 𝜖 in the data-
fitting of the sparse recovery techniques (Eqn. 4) is 

selected to be higher than noise intensity. We specifically 

put 𝜖 at 1.1‖𝒏‖2 while in measurements, an estimation 

of the SNR is employed to calculate 𝜖. Anechoic 

chamber that exhibits various SNR is assumed, and we 

set the value of 𝜖 accordingly.  

 

 
 

Fig. 3. Result sample of array diagnosis. 𝑎𝑙𝑝ℎ𝑎𝑘  is the 

radiating element k level. ∆𝐹𝐴 is the distance or gap 

between the least of the six errors (red) and the highest 

false alarm (black). 

 

D. Amplitude failures 

At first we consider K=6 waveguides are excited 

with 1 − 𝛿𝐴 amplitude as against 1 to initiate amplitude 

failures. Accessing the recovery performance, the margin 

∆𝐹𝐴 is computed for different SNRs. The results are 

reported in Fig. 3 and Tables 1 and 2 respectively.  

It is simpler to conduct diagnosis when amplitude 

error is more important which is as expected. Generally, 

for a particular SNR, ∆𝐹𝐴 is higher when 𝛿𝐴 = 1 than 

𝛿𝐴 = 0.1. The ℓ1 Norm exhibit highest ∆𝐹𝐴 in both cases, 

this implies best diagnostic performance at different 

SNRs. Though it took longer simulation time than other 

compressed sensing methods. 

E. Phase failures 

In this case, K=6 waveguides are excited with 

amplitude of 𝑒𝑗𝛿Φ  instead of 1 to emulate failures in 

phase. ∆𝐹𝐴 was computed for different SNRs to evaluate 

the recovery. The results obtained are shown in Tables 3 

and 4. All the comments made for amplitude failures also 

hold here. As expected, larger phase error is much easier 

to diagnose than smaller one. The best diagnostic results 

are obtained by ℓ1 norm approach. 

Generally, the diagnosis is weak at lower SNRs for 
both amplitude and phase errors. Therefore, this is a gap 

to be filled up by new algorithms, which is open for 

research and development. The algorithm should exhibit 

higher ∆𝐹𝐴 recovery performance both at higher and 

lower SNRs. Because most near-field equipment exhibit 

different degrees of SNRs, it will make the diagnosis 

better and correct. But based on this study, ℓ1 norm offer 

better diagnosis at lower SNRs; 20 dB and 10 dB from 

near-field. In all the cases considered for both amplitude 

and phase failures, and results obtained in Table 1-4, ℓ1 

norm has widest ∆𝐹𝐴 gap among the three regularizers 

considered. Next is TV, which performs better than the 

mixed 𝑙1 𝑙2⁄  norm. For instance, at 10 dB SNR of Table 

1-4, only ℓ1 norm gives value for ∆𝐹𝐴. This case is  

the same for 𝛿𝐴 = 1 and 𝛿𝐴 = 0.1 amplitude failure 

configurations, and 𝛿Φ = 700 and 𝛿Φ = 100 phase failure 

configurations. Therefore, ℓ1 norm is the best choice 

among the three CS methods for all SNR levels 

considered. 
Ensuring common ground for comparison with 

reference [11], the diagnosing scheme and the AUT 

configurations are made similar to [11], but the 

diagnosing results are different. In [11], the mixed 𝑙1 𝑙2⁄  

norm minimization indicates best performance, while  

in this study; the ℓ1 norm minimization indicates best 

performance. The disparity might be because of the 

nature of field considered. In [11], the CS methods are 

investigated at far-field, but in this work and that of 

Migliore [7], minimization 𝑙1technique show best 

performance and more robust against measurement noise. 

Probably because [7] and this work are investigated  

at near-field (i.e., measurement is taken on part of 

hemispherical surface (0 ≤ 𝜃 ≤ 𝜋 2,⁄ 0 ≤ 𝜙 ≤ 2𝜋) at 

radius r from center of AUT, and 𝑟 < 2𝐷2/𝜆. The 

minimization 𝑙1technique does not require any hardware 

modification of standard (i.e., not scattering-modulated 

based) near-field measurement systems allowing an 

increasing of the “throughput” of the array testing 

process at practically zero cost. 

The key point regularization procedure minimizing 
the 1-norm of the difference vector between a failure-

free excitation vector and the excitation vector of the 

AUT. This allows to obtain an equivalent sparse array, 

discarding the pieces of information not of interest for 

the failure identification problem. 
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This study centers on numerical experiments and 

shows that the ℓ1 norm technique gives best performance. 

However, the identification of the minimum number of 

measurements in array diagnosis, and in general the 

development of precise undersampling theorems in 

electromagnetic theory, remains an open problem that 

requires further studies. 

 

Table 1: Recovery performance for various SNRs; K=6 amplitude failures and 𝛿𝐴 = 1 amplitude failure configuration 

SNR (dB) 100 80 60 40 20 10 

∆𝐹𝐴 of 𝐿1𝐿2 0.4251 0.3997 0.3196 0.1982 NAN NAN 

∆𝐹𝐴 of TV 0.9846 0.8636 0.6738 0.6321 0.3121 NAN 

∆𝐹𝐴 of 𝐿1 0.9997 0.9892 0.9771 0.8562 0.4321 0.021 

 

Table 2: Recovery performance for various SNRs; K=6 amplitude failures and 𝛿𝐴 = 0.1 amplitude failure configuration 

SNR (dB) 100 80 60 40 20 10 

∆𝐹𝐴 of 𝐿1𝐿2 0.4531 0.2310 0.0000 NAN NAN NAN 

∆𝐹𝐴 of TV 0.5312 0.3921 0.2101 0.1031 0.0010 NAN 

∆𝐹𝐴 of 𝐿1 0.8251 0.7834 0.7321 0.6101 0.3221 0.0310 

 

Table 3: Recovery performance for various SNRs; K=6 phase failures and 𝛿Φ = 700 phase failure configuration 

SNR (dB) 100 80 60 40 20 10 

∆𝐹𝐴 of 𝐿1𝐿2 0.7984 0.7231 0.6321 0.1321 NAN NAN 

∆𝐹𝐴 of TV 0.5312 0.3921 0.4210 0.4521 0.0210 NAN 

∆𝐹𝐴 of 𝐿1 0.9876 0.9231 0.8532 0.6324 0.3871 0.1310 

 

Table 4: Recovery performance for various SNRs; K=6 phase failures and 𝛿Φ = 100 phase failure configuration 

SNR (dB) 100 80 60 40 20 10 

∆𝐹𝐴 of 𝐿1𝐿2 0.4421 0.3410 0.3750 NAN NAN NAN 

∆𝐹𝐴 of TV 0.6120 0.5881 0.5101 0.0000 NAN NAN 

∆𝐹𝐴 of 𝐿1 0.8612 0.7994 0.7821 0.2101 NAN NAN 

 

VI. CONCLUSION 
In this paper, a recovery performance analysis test 

of compressive sensing methods for antenna array 

diagnosis from near-field measured data is presented. 

Particularly, we considered three prominent regularization 

procedures: total variation (TV), mixed 𝑙1 𝑙2⁄  norm, and 

minimization of the 𝑙1 to solve diagnosis problems in 
antenna array at low SNR. Simulation of a 10 GHz 

10 × 10 rectangular waveguide array under realistic 

noise conditions was presented and used to conduct the 

test for various SNRs. Generally, the diagnosis is weak 

at low SNRs for both amplitude and phase errors, so for 

data with low SNRs. Minimization 𝑙1 technique show 

more robustness to additive data noise than total variation, 

and mixed 𝑙1 𝑙2⁄  norm. Therefore, minimization 𝑙1 is a 

better choice whenever antenna array diagnosis is to be 
performed in a very harsh measurement environment. 
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