
ACES JOURNAL, Vol. 37, No. 8, August 2022 842

Analytical Approximations for the Maximum-to-mean Ratio of the E-field
in a Reverberation Chamber: A Review

Qian Xu1, Rui Jia2, Lifei Geng2, Hao Guo2, and Yongjiu Zhao1

1College of Electronic and Information Engineering
Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China

emxu@foxmail.com, yjzhao@nuaa.edu.cn

2State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System
Luo Yang, China

jiarui315@163.com

Abstract – The expected value of the maximum value of
the rectangular E-field is important in radiated suscepti-
bility testing in a reverberation chamber. In this paper,
different forms of equations for the maximum-to-mean
ratio of the rectangular E-field are reviewed. Important
derivations are summarized and detailed. It is interest-
ing to note that some series which could be difficult to
deal with from mathematics could be solved efficiently
from physical point of view. The relationship between
the independent sample number N and the parameters in
generalized extreme value distribution is also given.

Index Terms – maximum-to-mean ratio, reverberation
chamber, statistical electromagnetics.

I. INTRODUCTION
Reverberation Chambers (RCs) have been widely

used in electromagnetic compatibility (EMC) testing [1].
Compared with an anechoic chamber, no radio absorber
is used on the walls, thus a rich multipath environment
can be created in an RC. By rotating the mechanical stir-
rers in an RC, statistically uniform and isotropic electro-
magnetic fields can be created. A typical measurement
setup is illustrated in Fig. 1. For the radiated susceptibil-
ity testing in an RC, the maximum E-field is of interest
[1], [2] as the device under test (DUT) could be malfunc-
tioned by the maximum E-field.

In an RC, statistical electromagnetics are used to
characterize the field properties. The probability density
function (PDF) and the cumulative distribution function
(CDF) of the maximum rectangular E-field have been
given in [2]–[5]. Approximate analytical equations have
also been given in [4], [5] for large independent sample
number N. Different forms of equations exist, and the
similarities and equivalencies among them have not been
summarized.

In this paper, we review the analytical equations
for the expected value and the standard deviation of the

Fig. 1. A schematic plot of radiated susceptibility in an
RC.

maximum E-fields in literatures. Numerical results are
calculated and compared with different forms of analyti-
cal equations.

II. THEORY
The mean rectangular E-field strength in an RC is

easy to estimate. However, the maximum rectangular
E-field strength is of interest in many scenarios for EMC
testing. The maximum-to-mean ratio of the rectangular
E-field in an RC has been well studied in [2]–[5]. The
PDF and the CDF of the maximum rectangular E-field in
an RC are [2]–[5]:

p(x) =
Nx
σ2

[
1− exp

(
−x2

2σ2

)]N−1

exp
(
−x2

2σ2

)
, (1)

and:

F (x) =
[

1− exp
(
−x2

2σ2

)]N

, (2)

where N is the independent sample number, x repre-
sents the maximum value of the rectangular E-field
x = ⌈|Ex|⌉N , and ⌈·⌉N represents the maximum value
from N samples. The PDF of the normalized ⌈|Ex|⌉N can
be obtained by setting σ =

√
2/π , as the mean value

of |Ex| is σ
√

π/2. For different N, the PDF plots are
illustrated in Fig. 2. It can be observed that when N
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increases, the expected value of the maximum E-field
increases. The confidence interval of maximum E-field
can be calculated from CDF in (2) [1], [5].

Fig. 2. PDF plots of the normalized maximum E-field
(normalized to the mean value ⟨|Ex|⟩) for different inde-
pendent sample number N.

The expected value of the maximum-to-mean ratio
of the rectangular E-field be expressed as [2], [5]:

α (N) =
⟨⌈|Ex|⌉N⟩
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(3)
However, numerical integration is required to evalu-

ate (3) using a computer, an approximate equation could
be necessary to have a quick estimation for a given N. By
applying the binomial theorem:
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Although (3) is converted to the summation of a fi-
nite series, (4) is still not easy to evaluate. Symbolic cal-
culation is required to maintain high precision, as the
magnitude of s(k) resonant drastically. A plot of |s(k)|
is illustrated in Fig. 3, as can be seen, when N is large,
the magnitude of the series varies from 100 to 1030. If

there is no special treatment for s(k), numerical calcu-
lation is easy to diverge for large N and wrong results
could be obtained.

Fig. 3. Plots of s(k) for different N, symbolic calculation
is used to keep precision.

It seems we cannot go further from (4). Instead,
we can approach it physically. Suppose an E-field probe
(the Rx antenna) is placed inside a well-stirred RC,
it can be found that the maximum received power
(max(PrRC) = ⌈PrRC⌉N) can be expressed as [2]:√

max(PrRC)≈
max(|Ex|) λ

√
ηRx

8π
√

5
, (5)

where |Ex| represents the tangential component of the
E-field in an RC (⟨|Ex|2⟩ = 4⟨|Ex|⟩2/π , max(|Ex|) =
⌈|Ex|⌉N), λ is the wavelength, and ηRx is the efficiency
(including mismatch loss) of the Rx antenna respectively.
It is interesting to compare it with received power in an
anechoic chamber (AC):√

PrAC =
EACλ

√
ηRx

8π
√

5

√
2D/3, (6)

where EAC is the magnitude of the incident E-field and
D is the directivity of the Rx antenna in the direction of
the incident wave. Not surprisingly, D plays an impor-
tant role in an AC. it can be found that when D = 3/2,
(5) and (6) give the same results. This means that if the
E-field probe is calibrated in an AC, only when the direc-
tivity of the E-field probe is 3/2 (electrically small dipole
antenna), the measured E-field in an RC is statistically
accurate. When the frequency is high, the E-field probe
is no longer an electrically small antenna; the measured
mean E-field in an RC using the free space antenna fac-
tor is no longer accurate and ηRx is actually the key pa-
rameter. This effect is well known in standards related to
RC measurements [1]. At high frequencies, an antenna
is normally used to monitor the E-fields inside an RC in-
stead of using an E-field probe.

From statistical analysis in [2]:

max(PrRC)

⟨PrRC⟩
≈

N

∑
k=1

1
k
. (7)
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Note that [2], [7]:
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1
2
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From (5), (7) and (8) we have:
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Thus for large N:

α (N)≈ max(|Ex|)
⟨|Ex|⟩

≈

√
4
π

N

∑
k=1

1
k
. (10)

The problem is now converted to the partial sum of
the harmonic series. The following equation can be used
[8]:

N

∑
k=1

1
k
= γ +ψ0 (N +1) , (11)

where γ ≈0.5772 is the Euler-Mascheroni constant,
ψ0 (x) is the digamma function:
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∞
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and B2n is the Bernoulli number x
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n! .
Thus we have:
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)
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(12)
Now we have obtained an analytical approximation

for (3). In [4], the CDF value of 0.5 is used to calculate
the expected value:

α (N)≈
√√√√ 4

π
ln

1[
1−0.5

1
N

] . (13)

In [1] and [5], a similar expression is given

with α (N) ≈
√

4
π

[
0.5772+ ln(N +1) − 1

2(N+1)

]
with

slightly different parameters. Another approximation is
given in [8] for the partial sum of harmonic series

N

∑
k=1

1
k
≈ (2N +1) tan−1
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1
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1
2

ln
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2
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2520(2N2 +2N +1)7

− 6N2 +6N +1

180(2N2 +2N +1)3 + γ −1. (14)

A comparison of α (N) is given in Fig. 4 (a) using
(12)-(14), (12) is truncated with 3 terms, while the exact
value is calculated using symbolic calculation in (4). The
difference between (12)-(14) and the exact values (the
error plots) are illustrated in Fig. 4 (b), respectively. As
can be seen, (12) and (14) give smaller errors than (13).
However, they all give good approximations when N is
large.

For the approximate value of the relative standard
deviation of ⌈|Ex|⌉N , we can start from the definition
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4
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k
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It seems we cannot go further from (15). To obtain
the approximate value of (15), a different approach can
be used [5]. We start from the relative standard deviation

Fig. 4. (a) Plots of (4), (12)-(14) for different N, (b) error
plot of (12)-(14), units are in linear.
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of ⌈|Ex|2⌉N . From [2], we have:

stdrel(⌈|Ex|2⌉N) =
std(⌈|Ex|2⌉N)

⟨⌈|Ex|2⌉N⟩

=

√
∑

N
k=1

1
k2

∑
N
k=1

1
k

, (16)

and we know that the uncertainty of power is 2 times the
uncertainty of E-field (from P ∝ |Ex|2we have dP/P ≈
2d |Ex|/ |Ex|) [5], thus the relative standard deviation of
⌈|Ex|⌉N can be approximated as:

stdrel (⌈|Ex|⌉N)≈
1
2

stdrel

(
⌈|Ex|2⌉N

)
≈ 1

2

√
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≈ π

2
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6
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In [5], a similar expression is given with

1
2

√
π2
6 − N+1

N(N+2)

0.5772+ln(N+1) − 1
2(N+1)

.

The plot of (15),(17) and (18) are illustrated in
Fig. 5 (a), (15) is used as the reference values (the exact
values), and the difference between (17), (18) and (15)
are presented in Fig. 5 (b), respectively. It is interesting
to note that the convergence speed of (18) is different
from the mean value (by using the central limit theorem)
which is 1√

N
[5].

We can also link the parameters to the generalized
extreme value distribution (GEV) [10]–[18] when N →
∞. By applying [10]:

s =

√
6

π
std =

√
6

π
stdrel (⌈|Ex|⌉N)α (N) , (19)

m = α (N)− γs. (20)
The approximated GEV CDF is:

GGEV(x) = exp
[
−exp

(
−x−m

s

)]
, (21)

the PDF is:

pGEV(x) =
1
s

exp
[

m− x− s exp(− x−m
s )

s

]
(22)

When N → ∞, (19) and (20) can be approximated
as:

s =

√
6

π
std ≈ 1

√
π

√
γ + lnN + 1

2N

, (23)

m ≈

√
4
π

(
γ + lnN +

1
2N

)
− γ

√
π

√
γ + lnN + 1

2N

.

(24)
The plot for the exact PDFs (1) and GEV PDFs

(22) of the normalized maximum rectangular E-field are

Fig. 5. (a) Plots of the approximated relative standard de-
viation in dB units (20log10(1+ stdrel)), (b) error plot of
(17), (18), units are in dB.

Fig. 6. Comparison plots of exact PDFs and GEV PDFs
for different N.

given in Fig. 6. As expected, when N → ∞, two PDFs are
close to each other.

For the PDF of the maximum-to-mean ratio of the
received power ⌈|Ex|2⌉N , we have the same pGEV(x)
when N → ∞. The only difference is: the standard de-
viation and the expected value (α (N)) in (19) and (20)

are replaced by the values of
√

∑
N
k=1 k−2 and ∑

N
k=1 k−1,

respectively.
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Table 1: A summary of maximum-to-mean ratio expressions

III. CONCLUSIONS 
We have reviewed different analytical equations for the 

expected value and the standard deviation of the 

normalized maximum rectangular E-field in a well-

stirred RC. Useful derivations are revisited and similar 

results are obtained. Numerical results show that: for 

small independent sample number N, we can calculate 

the results using the finite series directly; when    , 

very good approximations can be obtained for both the 

expected value and the standard deviation. Table I 

summarizes the expressions in different forms. The 

approximated analytical expressions are also linked to 

the parameters of the GEV parameters when    . 
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𝛾 ≈0.5772, 𝜓0 𝑥  is the digamma 

function 

 

III. CONCLUSIONS
We have reviewed different analytical equations for

the expected value and the standard deviation of the nor-
malized maximum rectangular E-field in a well-stirred
RC. Useful derivations are revisited and similar results
are obtained. Numerical results show that: for small in-
dependent sample number N, we can calculate the results
using the finite series directly; when N > 5, very good
approximations can be obtained for both the expected
value and the standard deviation. Table 1 summarizes the
expressions in different forms. The approximated analyt-
ical expressions are also linked to the parameters of the
GEV parameters when N → ∞.
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