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Abstract – In instrumentation systems, shielding is the
main issue that judges the performance of the system.
The electromagnetic (EM) noise may affect the perfor-
mance of the instrumentation system if inadequate pro-
tection is reached. It is considered the main source of
unprotectable interference that may affect these systems
in many cases. In this paper, shielding is attained by
wrapping the source carrying signal with periodic thin
conductive strips separated by slots or openings. This
arrangement will protect the sources from the outside
EM fields. Shielding factor and shielding efficiency are
studied by extracting magnetic fields. For this purpose,
an analytical solution based on solving Laplace’s equa-
tion for the magnetic vector potential in the region of
interest is presented. A closed form of the induced eddy
current in the conductive strips is calculated based on
Fourier series expansion. Furthermore, numerical sim-
ulation using the commercial software MWS CST is
employed to validate the analytical solution. The perfor-
mance of the proposed shielding structure is studied and
analyzed in terms of shielding factor and shielding effi-
ciency. The outcomes of both methods are showing very
good agreement.

Index Terms – Eddy current, electromagnetic (EM)
shielding, quasistatic, shielding efficiency, shielding
factor.

I. INTRODUCTION
Electromagnetic Interference (EMI) resulting from

EM fields is the most effective interference that may
deviate the instrumentation system performance. The

evolved system requirements to overcome the inaccu-
racy and measurement errors through reducing EMI
and producing free-of-noise signals have all been thor-
oughly considered. EMI has been handled to make the
electronic system immune to measurement inaccuracy
and errors. Electromagnetic shielding (EMS) is typically
used to block or minimize either the emitted or reflected
electromagnetic fields, which is the most effective way
to reduce EMI. Shielding can ensure better isolation
depending on the shielding structure or shape. The per-
formance of magnetic shielding was proposed by Kim
et al. [1]. An excellent shielding factor was obtained
when double-layer shielding using inner silicon steel
layer and mu-metal outer layer. Various shielding strate-
gies have been investigated in the literature. Multilayer
shielding was proposed in [2] and [3], where numeri-
cal analysis for shielding efficiency was calculated. The
effect of material properties on the magnetic shielding
was further investigated in [4] using different electri-
cal steel panels. Park et al. [5] proposed a shielding
structure that comprises a periodic metal strip inserted
on a conventional ferrite plate. The model was stud-
ied by exploring the effect of metal strips on shield-
ing properties. This shielding technique with strips has
found many real-life applications [6]. Magnetic shield-
ing of cylindrical geometry was studied and analyzed
[7], [8]. The analysis deduced an inherent relationship
between shielding efficiency and shielding parameters
involved.

Due to the presence of a time-varying magnetic
field, the mechanism of shielding arises from the fields’
cancellation, which is determined by the induced eddy
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current in the shield material. Several methods have been
reported to find a general solution of eddy current in
conductors analytically and numerically. The solution
method depends on the geometry and excitation type.
Closed-form expressions for eddy current in cylindri-
cal shielding structures are obtained using second-order
vector potentials [9]. The modified Bessel and exponen-
tial functions [10] are exploited to calculate the eddy
current field excited by a probe coil near a conduc-
tive pipe [11]. Eddy current in conducting plates was
found through solving the vector potential as a series of
eigenfunctions [12]. Reduced vector potential combined
with Dirichlet-to-Neumann boundary conditions, was
proposed to predict the induced current density distri-
bution in nondestructive testing applications [13]. Com-
putational numerical techniques such as finite element
method (FEM) [14] and finite difference method (FDTD)
[15] were utilized to calculate the induced eddy currents
in thin metal sheets. These methods are complicated and
require a dense system matrix. The quasi-static approxi-
mation is applied to Ampere’s law, where the total mag-
netic field is characterized by excited and induced fields.
The resulting Laplace equation was solved analytically
for many practical geometries [16]. In this paper, a model
of periodic coplanar conductive strips is developed. Eddy
current is obtained analytically by solving the Laplace
equation combined with Fourier series expansion. The
effect of the strip’s shielding parameters is investigated
analytically and numerically.

II. EDDY CURRENT ANALYTICAL
SOLUTION

The geometry comprises very thin, infinitely long
parallel conductive strips of width 2b and thickness d
that are extending along the z-axis. The strips are placed
periodically along the x-direction on the xz-plane (i.e.,
parallel conductive strips). The slit width between the
adjacent strips is 2c. The source of the exciting field is
created using an infinite number of conductive lines sep-
arated by a distance a that are arranged periodically at
y=h plane in parallel with the strips. The currents are
distributed in an alternating fashion such that every two
lines with different polarities are positioned on the top
of each strip. Such configuration creates an alternating
magnetic field. The arrangement of the geometry is illus-
trated in Fig. 1.

According to Faraday’s law of induction, the time-
varying magnetic fields generate an induced conduction
eddy current in the conductive strips. As a response, this
current creates a magnetic field that opposes the change
in the excitation field. To find the eddy currents, the gen-
eral solution for the vector potential A should be deter-
mined. Because the system is periodic in the x-direction
with a period of 2a, the exciting vector potential due to

line currents can be presented as the sum of solutions
of the two-dimensional Laplace equation for quasistatic
fields [17].

Fig. 1. Geometry of the proposed shielding system.

∂ 2Az (x,y)
∂x2 +

∂ 2Az (x,y)
∂y2 = 0. (1)

The general solution for (1) is performed
using the separation of variables technique, i.e.,
Az (x,y)= X(x)Y(y). It is noted that the magnetic
vector potential has only the z-component. Therefore,
the vector potential of the known currents in the lines
can be written as{

Ae1=
µI
π ∑

∞
n=1

1
n sin n π

2 e−n π
a (y−h)sin nπx

a , y≥h
Ae2=

µI
π ∑

∞
n=1

1
n sin n π

2 en π
a (y−h)sin nπx

a , y≤h
,

(2)
where Ae1 and Ae2 are the magnetic vector potentials in
the regions above and below the lines, respectively, µ
is the magnetic permeability of the medium, and n is a
positive integer. Similarly, the vector potential due to the
eddy currents in the conducting strips can be determined
by solving the Laplace equation under symmetry condi-
tions. The vector potential solution due to the unknown
eddy currents becomes{

As1 =
µI
π ∑

∞
n=1 Cn.e−nπ(y/a)sin nπx

a , y ≥ 0
As2 =

µI
π ∑

∞
n=1 Cn.enπ(y/a)sin nπx

a , y ≤ 0
, (3)

where As1 and As2 are the magnetic vector potentials in
the regions above and below the conductive strips respec-
tively, Cn are unknown coefficients that are yet to be
determined. The solution is required in the two regions:
region 1, 0 ≤ y ≤ h, and region 2, y ≤ 0 as depicted in
Fig. 1. The complete solution is formulated by combin-
ing (2) and (3) [16]:

A1=As1+Ae1 , 0≤y≤h
A2=As2+Ae2 , y≤0 . (4)

Boundary conditions should be applied at both
regions with,

A1 (x,0)=A2 (x,0) , (5)
(Ht1 −Ht2) = K, (6)

where A1, A2, Ht1, and Ht2 are the magnetic vec-
tor potentials and tangential magnetic fields above and



627 ACES JOURNAL, Vol. 38, No. 8, August 2023

below the shielding surface, respectively. The magnetic
field intensity is related to the vector potential by the for-
mula H = 1/µ∇ × A. From (6), the surface current den-
sity can be written as:

K =
2I
a

∞

∑
n=1

nCnsin nπ
x
a
. (7)

The eddy current flows only inside the strips such
that the surface current density K at y = 0 can be deter-
mined using the law of induction inside the lateral con-
ducting strips:

K =

{
− jωdσ (x)A1 (x,0) , |x| ≤ b
0 , b < |x| ≤ a , (8-a)
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µI
π

∞
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e
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sin
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a

,

(8-b)

σ (x) =
{

σo , |x| ≤ b
0 , b < |x| ≤ a , (8-c)

where σ (x) is the conductivity function of the strips,
which is considered as a periodic function with a con-
stant magnitude σo and a period of 2a. Consequently, it
can be rewritten in terms of a Fourier series expansion:

σ (x) = σo

(
b
a
+

2
π

∞

∑
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1
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sinmπ
b
a

cosm
π
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x

)
. (9)

Equating the current density expression in (7) with
(8) and conducting some mathematical manipulations,
will end up with a system of an infinite number of lin-
ear equations as in (10-a). The unknown coefficients Cn
can be calculated by constructing the matrix elements in
(10-b) and (10-c).

amn.Cn=bm, (10-a)
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, (10-c)

where δ = 1/
√

πµσ f is the skin depth. For the numeri-
cal solution, the maximum value of the magnetic field is
observed at specific points labeled P1, P2, P3, and P4.
The positions of P1(0,0), and P3(a,0), are in the same
plane of the strips, while P2(0,−h), and P4(a,−h)
are located underneath the strips as indicated in Fig. 1.
Only the y-component of the magnetic field is exited at

these points, which can be calculated from (4) using the
relation By = −∂A/∂x. For instance, the flux density at
P2 and P4 can be written as

B2 = By
∣∣
P2 =−µI

a

(
∑

∞
k=0 (−1)k.e−(2k+1)2π( h

a )

−∑
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(11-a)
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k=0 (−1)k.e−(2k+1)2π( h
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−∑
∞
n=1 (−1)n.ne−nπ( h

a ).Cn

)
.

(11-b)
The magnetic flux without shielding strips, which is

only due to the source currents, can be found from (2) in
all regions. At points P2 and P4, the fields become

B2,0= By
∣∣
P2 =−µI

a

∞

∑
k=0

(−1)k.e−(2k+1)2π(h/a), (12-a)

B4,0 = By
∣∣
P4 =−B2,0. (12-b)

Based on the previous analysis, the shielding factor
S can be defined as the ratio of the induced magnetic field
without conductive strips to the induced magnetic field in
the presence of conductive strips [18]. At points P2 and
P4 the shielding factor in dB becomes

S2 = 20log
(
|B2,0|
|B2|

)
, S4 = 20log

(
|B4,0|
|B4|

)
. (13)

The maximum shielding occurs when there is no gap
between the strips, which means a continuous conductive
plane. The induced magnetic fields in the presence of the
plane at the two observation points P2 and P4 become

B2,pl =−µI
a

∞

∑
k=0

(−1)k.e−(2k+1)2π( h
a )

×
(

1+ j
1

π (2k+1)
.
ad
δ 2

)
=−B4,pl . (14)

The performance of the field’s isolation is character-
ized by the shielding efficiency (T ). It can be defined as
the ratio of the induced magnetic field with conductive
strips to the induced magnetic field in the presence of a
continuous conductive plane.

T2 = 20log

(
|B2|∣∣B2,pl

∣∣
)
, T4 = 20log

(
|B4|∣∣B4,pl

∣∣
)
. (15)

III. RESULTS AND DISCUSSION
The theoretical analysis conducted in the previous

section will be applied to obtain the shielding factor and
efficiency at some predefined points (P1, P2, P3, and
P4, see Fig. 1). The shielding effectiveness has been con-
sidered through the shielding factor. The effect of various
design parameters has been investigated. These design
parameters include the position of the excitation current
source relative to the width of the strip (i.e., b/a), slot
size, and excitation frequency. Moreover, the presented
analytical results are verified using numerical simula-
tions with the aid of the commercial simulation pack-
age MWS CST [19]. The simulation setup is carried
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out through a low-frequency solver. This solver is a 3D
solver used for simulating the time-harmonic behavior in
low-frequency systems. The simulated structure is com-
posed of two parallel cylindrical lines, each of which has
a diameter of 0.2 cm and a separation distance a = 10
cm. The two lines are excited using path current sources
with equal currents and 180◦ out of phase. The con-
ductive shielding strip is placed beneath and in parallel
with the line currents at a distance of h. The strip has a
width of b and thickness of d = 0.2 cm. The length of
both current lines and the strip is L = 40 cm. All con-
ductors are modeled by copper with a conductivity of
σ = 5.8 ×107 S/m. This structure has infinite periodic-
ity along the x-direction and infinite extent along the z-
direction. Therefore, to simulate this type of structure, a
unit cell of finite length 2a could be simulated by choos-
ing proper boundary conditions. Due to the symmetrical
geometry along the x-direction, periodic boundary con-
dition is chosen to mimic infinite copies of the unit cell
(i.e., Et = 0 at x = ±a). On the other hand, the structure
has infinite extent in the z-direction, which yields Et = 0
at z = ±L/2. Open boundaries are defined along ±y-
directions. Tetrahedral meshing technique is utilized to
perform the computational simulation in the frequency
range of 10 Hz to 3 kHz, which is chosen as an illus-
tration example to validate the presented analytical solu-
tion. All simulation data are calculated with the aid of
field monitors combined with a post-processing template
to process the obtained data.

In Fig. 2, the shielding factor S in dB is plotted ver-
sus the ratio ad/δ 2 at four observation points, where this
ratio maps to the operating frequency. Both analytical
solutions using (13) and simulated responses are plotted

(a) (b)

(c) (d)

Fig. 2. Shielding factor “S” at (a) b/a = 0.5, (c) b/a =
0.8, and shielding efficiency “T” at (b) b/a = 0.5 and
(d) b/a = 0.8 for different observations points as a func-
tion of ad/δ 2.

together in Fig. 2 (a) for height h = 0.5a and strip
width b = 0.5a. The improvement of the shielding fac-
tor is noticed as the frequency increases, and it reaches
a steady level at high-frequency values. This trend is
noted at all observation points. The highest shielding
level occurs at the center of the shield directly under-
neath the conducting strip at the conductor-air interface.
The thickness of the shielding strip is insignificant com-
pared to wavelength (d ≪ λ ). Therefore, the mag-
netic field’s strength at this position is approximately
equal to the field’s strength at the center of the strip
indicated by point P1. At low frequencies, the mag-
netic field can penetrate the shielding strip, where its
thickness is smaller than the skin depth δ . Therefore,
the shielding factor S1 shows low values. This phe-
nomenon is observed from the 2D magnetic field vec-
tor maps shown in Fig. 3 (a) for ad/δ 2= 5. The mag-
netic field is transmitted through the conductive strips,
since the induced eddy current is small. Increasing the
excitation frequency, the shielding factor improves dras-
tically (see Fig. 3 (b) for ad/δ 2= 20). This is due to
the effect of surface-induced eddy current, which can-
cels out the magnetic field at the strip surface. There-
fore, the magnetic field penetration in the vicinity of
the strips decreases significantly. From (7), the real and
imaginary parts of the normalized induced current den-
sity K(x)/ Ko on the strips at t = 0 can be evaluated
using (16-a) and (16-b), which are plotted in Fig. 4 (a):

Re
(

K (x)
Ko

)
= 2∑

∞

n=1 n·Re(Cn)sin
[
nπ

x
a

]
, (16-a)

Im
(

K (x)
Ko

)
= 2∑

∞

n=1 n·Im(Cn)sin
[
nπ

x
a

]
, (16-b)

where the constant Ko= I/a. It can be seen from this
figure that the current density has a comparable imag-
inary part with the real part. Therefore, the induced

(a) (b)

(c) (d)

Fig. 3. 2D H-field maps for b/a = 0.5 at (a) ad/δ 2= 5,
(b) ad/δ 2= 20, and for b/a= 0.8 at (c) ad/δ 2= 5 and
(d) ad/δ 2= 20.
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magnetic field due to eddy current is not enough to can-
cel out the source’s field. When increasing the frequency,
the shielding factor S1 improves. It is maintained above
30 dB at higher frequencies; i.e., ad/δ 2 > 90.

Less shielding is observed of 15 dB at a distance h
below the strip at point P2, which is indicated by the
curve S2. As expected, poor shielding performance is
observed in the slot and the region below the slot, as
can be deduced from S3 and S4 curves at P3 and P4,
respectively. The steady-state shielding factor at these
two points is 3 and 9 dB, respectively. The 2D H-field
map shown in Fig. 3 (b) illustrates the major reduction of
the field’s strength in the region below the strip. Whereas
the field’s strength is maintained high in the slot region,
the field’s cancelation is due to the increase in an eddy
current field manifested by the increase in the current
density’s real part, as depicted in Fig. 4 (b). The shielding
efficiency T is also compared, where the analytical solu-
tion using (15) and the simulated response are both plot-
ted in Fig. 2 (b) for height h = 0.5a and strip width
b = 0.5a. Higher shielding efficiency is realized in
the region directly below the conductive strips compared
with the region below the slots, where 0 dB reference
resembles the ideal value. This can be deduced from the
curves labeled T2 and T4, which correspond to the fields
observed at positions P2 and P4, respectively.

(a) (b)

(c) (d)

Fig. 4. Normalized surface current density “K(x, t)/Ko”
at t = 0 for strip width b/a= 0.5 at (a) ad/δ 2= 5,
(b) ad/δ 2= 20 and b/a= 0.8 at (c) ad/δ 2= 5 and
(d) ad/δ 2= 20 as a function of normalized position x/a.

As expected, shielding factor S improves drastically
by increasing the strip’s width b (i.e., reducing the slot’s
size), especially at positions P2 and P4. The shielding
factor has enhanced to 26 dB and 28 dB respectively at
ad/δ 2 = 90 (see Fig. 2 (c), which shows the responses
at all observation points for strip’s width b = 0.8a

and fixed height h = 0.5a). Similarly, the shielding
efficiency T also improves as illustrated in Fig. 2 (d).
The response approaches the 0 dB level and gets closer
to the shielding performance of the continuous sheet.
The 2D map of magnetic field vector at low frequency
is shown in Fig. 3 (c), while the field map at a higher
frequency is depicted in Fig. 3 (d). The field’s reduc-
tion in the region under the strips is obvious due to the
induced field originating from an increasing eddy cur-
rent that counterparts the original field. The current den-
sity is plotted in Figs. 4 (c) and (d) at low and high fre-
quencies, respectively. Again, the real part of the sur-
face current density is reduced significantly with respect
to the real part at higher frequencies compared with
the case of low frequencies. Further inspection is con-
ducted by studying the effect of the strip’s width b on the
shielding factor and efficiency at fixed height h = 0.5a.
Figure 5 shows the calculated and simulated responses of
S and T at different observation positions for ad/δ 2= 20
and ad/δ 2= 5 respectively. The shielding factor at high
frequency shown in Fig. 5 (a) reveals the behavior of
increasing the normalized strip’s width from 0 to 1.

(a) (b)

(c) (d)

Fig. 5. Shielding factor “S” at (a) ad/δ 2= 20, (c)
ad/δ 2= 5 and shielding efficiency “T” at (b) ad/δ 2= 20
and (d) ad/δ 2= 5 for different observation points as a
function of normalized strip width b/a.

The zero-width corresponds to no shielding and the
unity value corresponds to continuous plane shielding.
The shielding factor approaches the maximum value of
15 dB when b/a exceeds 0.8. Therefore, the performance
of the shielding system behaves similarly to the con-
tinuous plane, especially in the region below and away
from the conductive strips as indicated in the curves
S1, S2, and S4. Poor shielding is expected at the gap
between the strips as indicated in the S3 curve. This is
also seen from the T curves in Fig. 5 (b), where the
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efficiency is approaching the 0 dB level for b/a > 0.8.
The low-frequency performance is depicted in Figs. 5 (c)
and (d) for S and T, respectively. The trend of increasing
b is very similar to the case of high frequency but with a
less efficient shielding level.

The excitation source of the parallel current lines
has an insignificant impact on shielding performance,
as revealed from studying the variation of the parame-
ter h/a, which is swept in the range 0.1-2. The strip’s
width is kept fixed at b/a= 0.5. Figure 6 (a) shows
the response of S at the four observations points for
ad/δ 2= 20. The shielding factor is almost constant with
the height variation. Since the excitation source position
with respect to the strips only determines the magnetic
field’s strength, the shielding factor is not affected by
increasing the source’s height. The change of the H-field
with the absence of the strips is equal to the change of
the field with the exitance of the shielding strips. There-
fore, the ratio of the fields remains steady. This can be
observed also even with different operating frequencies,
as seen in Fig. 5 (c), where the value of ad/δ 2 is 5.
The flat response of the shielding efficiency T is also
attained in Figs. 6 (b) and (d) at high and low frequen-
cies, respectively.

(a) (b)

(c) (d)

Fig. 6. Shielding factor “S” at (a) ad/δ 2= 20,
(c) ad/δ 2= 5 and shielding efficiency “T” at (b)
ad/δ 2= 20 and (d) ad/δ 2= 5 for different observation
points as a function of normalized height h/a.

IV. ELECTRIC FIELD SHIELDING
In general, EM waves propagate from one region

to another, where their associated electric and magnetic
fields are coupled in time and space as described by
Maxwell’s equations. This coupling between E and H
is produced by the magnetic induction in Faraday’s law
(∇×E = − ∂B/∂ t), and the displacement current den-
sity in Ampere’s law (∇×H = J+∂D/∂ t). In the case

where EM waves possess slow time varying fields (low
frequency) or small dimensions, quasistatic approxima-
tions can be considered such that fields become static
[20]. The quasistatic laws are attained by neglecting
either electric displacement current (∂D/∂ t ≈ 0) in
magnetoquasistatic (MQS) approximation or the mag-
netic induction (∂B/∂ t ≈ 0 ) in electroquasistatic
(EQS) approximation. In the case of current source,
MQS approximations is applied, where time derivative
of electric field vanishes. According to Faraday’s law,
the slowly varying magnetic field would induce a rela-
tively weak electric field, which is approximately static
in nature and almost independent of frequency. This is
clearly observed form the 2D E-field maps that are illus-
trated in Fig. 7. The electric field at lower and higher fre-
quencies are depicted in Figs. 7 (a) and (b), respectively
for strip width b = 0.5a. Both electric field maps are
nearly identical at the two frequencies, which reveal the
accumulation of opposite signs of charge at the strip’s
sides. Very weak E-fields exist in the region below the
shielding strips, which are mainly confined in the slit
between the adjacent strips. A smaller gap (i.e., strip’s
width b = 0.8a) yields significant reduction in the E-
fields, as seen in Figs. 7 (c) and (d) at both low and high
frequencies. As a result, E-field shielding can be attained
using this configuration.

(a) (b)

(c) (d)

Fig. 7. 2D E-field maps for b/a= 0.5 at (a) ad/δ 2= 5,
(b) ad/δ 2= 20, and for b/a= 0.8 at (c) ad/δ 2= 5 and
(d) ad/δ 2= 20.

V. CONCLUSION
In this work, an analytical solution of the Laplace

equation was presented using Fourier series expansion.
This method was used to study the shielding behav-
ior of a system comprising parallel conductive strips
separated by small slits. The performance was charac-
terized by evaluating the shielding factor in the region
below the shield. Moreover, the performance of the pre-
sented shielding system is compared with a continuous
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conductive sheet, which is manifested by the shielding
efficiency. The effect of system parameters was studied
in terms of shielding performance. The results have con-
cluded that the proposed system behaves as a full plane
when the normalized strip width is at least 0.8. This
arrangement of conductive strips with slits adds an extra
degree of flexibility compared to a continuous conduc-
tive plane shield, which could find some future appli-
cation in magnetic shielding technology. The analytical
results were also confirmed using computer simulation.
The performance of the mathematical model was in very
good agreement with the numerical simulation.
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