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Abstract – In this study, a novel characteristic mode
basis function construction method is proposed to solve
the problems of low efficiency and slow convergence
of the iterative solution of the characteristic mode
method. First, the characteristic modes (CMs) of each
extended block are calculated separately by dividing
objects, the CMs construction efficiency is improved for
the decreased matrix dimensionality. Next, the effective
CMs are selected as basis functions according to the
modal significances. Finally, to improve the poor condi-
tional number of the reduced matrix for the block exten-
sion, the singular value decomposition is used to enhance
the orthogonality among these basis functions. Several
numerical calculations show that the proposed method
has significant efficiency and accuracy.

Index Terms – Characteristic mode, method of moments,
reduced matrix, singular value decomposition.

I. INTRODUCTION
The method of moments (MoM) [1] is a popular

method for solving electromagnetic scattering, which
has the advantage of high computational accuracy. How-
ever, as the size of the object increases, there is a
substantial escalation in computational complexity and
memory usage. To alleviate this problem, various fast
and effective methods have been proposed, such as the
fast multipole method (FMM) [2], multilevel fast multi-
pole method (MLFMM) [3], adaptive cross approxima-
tion (ACA) [4], and adaptive integration method (AIM)
[5]. These methods effectively reduce the complexity
of matrix-vector product computation, but they usually

resort to iterative methods. In order to reduce the dimen-
sionality of the matrix, macro basis function is intro-
duced into the MoM. For example, the synthetic basis
function (SBF) method [6], sub-entire-domain (SED)
basis function method [7], and characteristic basis func-
tion method (CBFM) [8]. Based on the principle of
domain decomposition, the CBFM divides the object
into multiple blocks. Nevertheless, it demands a substan-
tial number of incident excitations, and the construction
of basis functions consumes a considerable amount of
time.

The characteristic mode (CM) is an intrinsic mode
adapted to an arbitrary electromagnetic structure, inde-
pendent of the applied excitation [9]. It is particularly
suitable for the analysis of multi-excitation problems.
Thus, the CM theory is widely used in the design and
simulation of antennas [10–13], while it is rarely applied
in the analysis of electromagnetic scattering problems.
The traditional CM method (CMM) [14] presents a high
computational complexity and low efficiency in solving
CMs. Subsequently, it is unsuitable for large electrical
problems. To improve the efficiency of CMM analy-
sis of electromagnetic scattering problems, the CMs are
used directly as the basis functions in [15]. Nevertheless,
it is difficult to apply it to electrically large problems
due to the complexity of the algorithm. Consequently,
a fast multipole algorithm is introduced in [16] to accel-
erate the solution of CMs. However, the improvement
is not significant due to the large size of the impedance
matrix. In addition, the CMM is combined with compres-
sive sensing, used to analyze the bistatic scattering prob-
lems in [17], but the dimensionality of the measurement
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matrix is large. Furthermore, considering the coupling
between the incident wave and the dielectric body, a new
CMM is proposed to analyze the scattering problems in
[18]; however, the computation complexity of CMs is
relatively high. Innovatively, a method proposed in [19]
utilizes principal component analysis (PCA) to acceler-
ate the iterative solution of CMM, which improved the
solution efficiency.

Unlike the previous works, based on the idea of
regional blocking, this study proposes a novel charac-
teristic mode basis function method (NCMBFM). First,
the object is divided into multiple blocks and extended,
selecting effective modes as basis functions. Next, the
orthogonality between these basis functions is strength-
ened by using the singular value decomposition (SVD)
[20] method. As a result, the condition number of the
reduced matrix is improved, which could effectively
boost the efficiency of the iterative solution. The corre-
sponding numerical results verify the efficiency and reli-
ability of the proposed method in the analysis of electri-
cally large problems.

II. THEORY
A. Characteristic mode method

The surface currents on the object are extended
using the Rao-Wilton-Glisson (RWG) [21] basis func-
tion, and the MoM is employed to generate the matrix
equation as follows:

ZJ = V, (1)
where Z is an impedance matrix with the size of N ×N
and N is the number of unknowns; J and V represent the
current coefficients vector and excitation vector, respec-
tively. According to the CM theory, for an arbitrarily
shaped PEC, the CMs are generated from its impedance
matrix as follows:

Z = R+ jX, (2)

XJCM = λRJCM, (3)
where R and X are the real and imaginary parts of Z,
respectively. JCM denotes the eigenvector, correspond-
ing to the eigenvalue λ . Depending on the nature of the
CMs, the superposition of a few low-order CMs is suf-
ficient to approximate the surface currents. In this con-
text, these low-order modes are chosen as basis func-
tions. This selection approach relies on modal signifi-
cances (MS), defined as

MS =

∣∣∣∣ 1
1+ jλ

∣∣∣∣ . (4)

Moreover, a threshold τcm related to the MS is
set, and then, a group of eigenvalues is determined
based on MS > τcm . The corresponding significant CMs
are obtained as the characteristic mode basis functions
(CMBFs). Assuming that the total number of CMBFs is
K, the surface currents of the object is expressed by a

linear superposition of these CMBFs as

J =
K

∑
k=1

akJCMk , (5)

where ak is the coefficient of the CMBFs to be solved
and JCMk the kth CMBFs. Substituting equation (5) into
equation (1) and multiplying both sides of the equation
with the transpose of JCM, a reduced matrix equation
about ak of reduced order is obtained, expressed as

ZRa = VR, (6)

where ZR is a reduced matrix with a dimension of K×K
and VR = (JCM)TV is a K × 1 vector. Furthermore, a is
the matrix of extension coefficients obtained by solving
equation (6).

However, when analyzing electrically large objects,
as the matrix dimension increases, solving equation (3)
becomes more complex, which poses challenges to the
solution of the CMs.

B. Novel characteristic mode basis function method
Different from the CMM to construct CMBFs, this

study builds on the idea of regional blocking to divide
the object into m blocks. However, the blocking resulted
in a change in the shape of the object, causing corre-
sponding changes in the CMs of each block. As a con-
sequence, these CMs could no longer accurately repre-
sent the original current distribution on each block. To
solve this issue, each block is extended to ensure the
smoothness and continuity of the characteristic current
near the virtual boundary. The principle and applica-
tion of blocking is shown in Fig. 1 (take a cylinder as
the example). Where the blue part indicates the mutual
impedance matrix, the yellow part indicates the self-
impedance matrix, and the dashed line portion indicates
the extended self-impedance matrix.
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Fig. 1. The principle and application of blocking. 
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Fig. 2. Err of NCMBFM with different extended sizes. 
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Fig. 3. The number of iterations for solving the reduced matrix using different methods. 

Fig. 1. The principle and application of blocking.
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As a result, equation (1) changed as follows:
Z11 Z12 · · · Z1m
Z21 Z22 · · · Z2m

...
... · · ·

...
Zm1 Zm2 · · · Zmm




J1
J2
...

Jm

=


V1
V2
...

Vm

 , (7)

where the self-impedance matrix Zii and mutual
impedance matrix Zi j are used to represent the interac-
tions between different blocks. The current coefficient
vector Ji and excitation vector Vi are associated with
block i. The CMs of each extension block are solved by
equations (8) and (9), selected effective modes as basis
functions by MS, as follows:

Zii = Rii + jXii, (8)
XiiJCM

i = λRiiJCM
i . (9)

It is worth noting that as the number of blocks increases,
the dimension of the self-impedance matrix for each
block becomes smaller, leading to improved efficiency
in solving CMs. However, the increase in the number of
CMs results in a higher dimensionality of the reduced
matrix, necessitating iterative solutions. Furthermore,
even though blocking and extending could improve the
efficiency of solving CMs, they weaken the orthogonal-
ity between CMs, which eventually leads to a worse con-
dition number of the reduced matrix, and the iterative
solution converges slowly.

For this reason, after removing the extension and
selecting effective CMs using the MS, the SVD is
applied to these CMs. The process of SVD is as follows:

JCM
i = UWVT, (10)

where JCM
i represent the set of all basis functions on

the block i with a dimension of Ne
i × Pi; Ne

i and Pi
denote the number of unknowns and initial basis func-
tions after extending on block i, respectively. U and
VTare both orthogonal matrixes with the dimension of
Ne

i ×Ne
i and Pi ×Pi, respectively. W is a diagonal matrix

with the dimension of Ne
i × Pi. The elements of the

diagonal are arranged from largest to smallest with a
rapid decay trend, all of which are singular values of
JCM

i . Afterwards, the left singular value vectors in U are
retained as the novel characteristic mode basis functions
(NCMBFs). Supposing that the number of NCMBFs
retained on each block is Li, the current of block i is
expressed as

Ji =
Li

∑
l=1

al
iJ

NCMl
i , (11)

where al
i is the coefficient matrix to be solved and JNCMl

i
is the lth NCMBFs of block i. On this basis, the original
current of the object is expressed as

J =
M

∑
i=1

Li

∑
l=1

al
iJ

NCMl
i , (12)

where al
i is obtained by solving a reduced matrix with

the size of ∑
M
i=1 Li ×∑

M
i=1 Li.

In general, solving equation (6) is categorized into
direct and iterative methods. However, the construction
of the reduced matrix ZR =

(
JNCM

)T ZJNCM is associ-
ated with the CMs. For electrically large problems, as the
number of dividing blocks increases, the count of CMs
increases, resulting in a larger dimension of the reduced
matrix, thereby making direct method solution difficult.
Based on this situation, the SVD technique and an iter-
ative method are employed to solve the problem in this
paper. Compared to the CMM, the condition number of
the reduced matrix constructed using NCMBFs is dimin-
ished, leading to a notably improved convergence rate in
the iterative solution of the reduced matrix.

III. COMPLEXITY ANALYSIS
The calculation of CMM and NCMBFM mainly pri-

marily involve three processes, generating basis func-
tions, constructing the reduced matrix, and solving the
reduced matrix. For simplicity, the effect of the extension
in NCMBFM is ignored, and the number of NCMBFs
and unknowns in each block are assumed to be P and
N
/

M, respectively. The computational complexity is
analyzed for the CMM and NCMBFM as follows:

1. Generating basis functions: In the CMM, equa-
tion (3) is commonly solved using the implicitly
restarted Arnoldi method (IRAM), the most time-
consuming of which is the LU decomposition [22],
with the complexity of O

(
N3

)
. However, construct-

ing NCMBFs in NCMBFM mainly consists of
LU decomposition and SVD; both of them have
the complexity of O

(
M
(
N
/

M
)3
)

, so the com-

plexity of the NCMBFM is O
(

2M
(
N
/

M
)3
)
≈

O
((

N
/

M
)3
)

. Since N is always greater than N
/

M,
NCMBFM can expedite the generation of basis
functions, and the acceleration factor is M3.

2. Constructing the reduced matrix: Because of the
different number of basis functions, the complex-
ity of constructing the reduced matrix in the CMM
and NCMBFM is O

(
KN2

)
and O

(
PMN2

)
, respec-

tively. Since K and PM are constants, the computa-
tional complexities of both are close.

3. Solving the reduced matrix equation: In CMM, the
small number of solved CMs leads to a smaller
dimension of the reduced matrix, which is suit-
able for using LU decomposition with complexity
O
(
N3

c
)

to solve it directly, where Nc is the dimen-
sion of the reduced matrix. However, in CMB iLU
(CMB iLU means the incomplete LU decomposi-
tion preconditioning method is used to accelerate
the iterative convergence of the blocked CMM) and
NCMBFM, as the number of unknowns increases,
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more CMs are obtained, resulting in the increased
dimensionality of the reduced matrix that requires
iterative method with a complexity of O

(
NiterN2

r
)

to solve. Niter and Nr represent the number of iter-
ations and the size of the reduced matrix, respec-
tively. For NCMBFM, the condition number of the
reduced matrix is better and the required Niter is
smaller, resulting in an acceleration factor of N

′
iter

(N
′
iter is the difference in the number of iterations).

In summary, compared to CMM, the blocking oper-
ation in NCMBFM accelerates the generation of basis
functions, albeit resulting in larger dimension of the con-
structed reduced matrix. In comparison to CMB iLU, the
introduction of the SVD process enhances the orthogo-
nality between basis functions, optimizes the condition
number of reduced matrices, and accelerates the iterative
solution of the reduced matrix equation.

IV. NUMERICAL RESULTS
To verify the efficiency of the proposed method,

the scattering properties of three objects are analyzed
using the MoM, CMM, CMB, and NCMBFM. For con-
venience of expression, the CMM of blocking is defined
as CMB. The generalized minimal residual (GMRES)
method is used for the iterative algorithm. The thresh-
old of the iLU decomposition is empirically set to 0.001
and the tolerance of the GMRES to 1E-05. In addition, to
estimate the accuracy of the calculation results, the rela-
tive error is introduced as follows:

Err =
(
∥σcal −σMoM∥2

∥σMoM∥2

)
×100%, (13)

where σcal and σMoM represent the radar cross section
(RCS), calculated via the used method and MoM, respec-
tively. Since CMM generates fewer basis functions and
has a lower reduced matrix dimension, the reduced
matrix equation is solved using a direct method. Mean-
while, the calculated results of CBFM are added as a
comparison. Besides, we have included a comparison of
the effects between NCMBFM and CM-PCA [19] in this
section.

Initially, the bistatic RCS of a cylinder with a radius
of 0.2 m and a height of 1 m is analyzed at an inci-
dent frequency of 1.8 GHz. The cylinder’s surface is dis-
cretized using RWG functions, resulting in 18,478 trian-
gles and 27,711 unknowns. With the threshold τcm of the
MS set to 0.001, 1404 effective modes are generated in
CMM. Subsequently, the object is divided into 16 blocks,
and the extension size is set to 0.15λ in NCMBFM, cre-
ating 3520 effective modes and 41244 unknowns.

To investigate the effect of different extended sizes
on the accuracy, the change of RCS Err with τcm under
different extended sizes is given in Fig. 2. It can be
observed that as the extended size increases, the accuracy
increases, but so does the number of unknowns and the

number of NCMBFs. To balance time and accuracy, the
extended size and τcm are set to 0.15λ and 0.001, respec-
tively. To test the effect of with and without SVD on
the orthogonality between NCMBFs, the changes in the
condition number of the reduced matrix with different
extended sizes are shown in Table 1. It can be found that
the condition number of the reduced matrix, constructed
without SVD, increases significantly as the extended
size grows, eventually reaching the point of becom-
ing an ill-conditioned matrix. However, when NCMBFs
are handled with SVD, the condition number of their
constructed reduced matrix is significantly decreased.
Therefore, the SVD helps to strengthen the orthogonality
between basis functions to achieve the effect of optimiz-
ing the condition number of the reduced matrix.
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Fig. 2. Err of NCMBFM with different extended sizes. 
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Fig. 3. The number of iterations for solving the reduced matrix using different methods. 

Fig. 2. Err of NCMBFM with different extended sizes.

Table 1: Condition number of reduced matrix con-
structed with and without SVD for different extended
sizes

Extended Size Condition Number of
Reduced Matrix

Without
SVD

With SVD

0.10λ 6.0388E+05 1.4050E+04
0.15λ 3.8820E+06 1.2081E+04
0.20λ 9.6412E+06 1.5381E+04
0.25λ 9.8231E+06 6.5468E+03
0.30λ 2.4077E+07 4.7326E+03

The iteration number of several different methods
for the reduced matrix solution is compared in Fig. 3.
Compared to these methods, the proposed approach
exhibits the fewest iterations, resulting in a more efficient
solution to the reduced matrix equation. The bistatic RCS
of cylinder horizontal polarization is plotted in Fig. 4. It
is shown that the proposed method is in excellent agree-
ment with the calculated results of the MoM, CMM, and
CBFM.
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matrix using different methods.

0 60 120 180 240 300 360
-20

-15

-10

-5

0

5

10

15

R
C

S
(d

B
sm

)

q (°)(j = 0°)

 MoM

 CBFM

 CMM

 NCMBFM

 
Fig. 4. Bistatic RCS of cylinder in horizontal polarization. 
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Fig. 5. Bistatic RCS of missile in vertical polarization. 
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Fig. 6. Bistatic RCS of cone-sphere with a gap in vertical polarization. 

 

Fig. 4. Bistatic RCS of cylinder in horizontal polariza-
tion.

Next, a missile with a length of 1 m is calculated
for bistatic RCS at 3 GHz. The surface of the missile
is discretized by the RWG functions to generate 21,880
triangles and 32,820 unknowns. Meanwhile, the thresh-
old τcm of MS is set to 0.001. In NCMBFM, the missile
is divided into 26 blocks, and an extension of 0.15λ is
chosen to create 52,662 unknowns. 1609 effective modes
are obtained in CMM, while 4663 effective modes are
acquired in NCMBFM. Compared with the CMB iLU,
the condition number of the reduced matrix constructed
by NCMBFs decreased from 1.1309E+08 to 1.6832E+04
in NCMBFM. Moreover, the proposed method dimin-
ished the number of iterations in solving the reduced
matrix equation from 277 to 17. Hence, the solution effi-
ciency is significantly improved. The bistatic RCS of ver-
tical polarization for several methods is shown in Fig. 5.
The results show that the proposed method is consistent
with the calculation results of the MoM and CMM with
high accuracy.
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Fig. 5. Bistatic RCS of missile in vertical polarization. 
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Fig. 5. Bistatic RCS of missile in vertical polarization.

Finally, the bistatic RCS with a cone-sphere with a
gap at an incident frequency of 6.2 GHz is calculated.
The RWG basis functions discretize the target surface
to obtain 27,898 triangles and 41,847 unknowns. At the
same time, the threshold τcm of MS is set to 0.001. In the
CMM, 1959 effective modes are obtained. In NCMBFM,
6357 effective modes and 73,638 unknowns are acquired
by dividing the target into 45 blocks and extending
each block by 0.15λ . Compared to CMB iLU, the pro-
posed approach reduces the matrix condition number
from 6.2385E+08 to 1.1048E+04, while it decreases to
4.8327E+04 in CM-PCA. In addition, the iteration num-
ber for solving the reduced matrix equation dropped
from 530 to 30, while it is 42 in CM-PCA. The effi-
ciency of iterative solution is greatly improved. The hor-
izontal polarized bistatic RCS of the cone-sphere with a
gap is shown in Fig. 6. It can be concluded that the pro-
posed method is in good agreement with the results of
the MoM.

Although both SVD and PCA are featured to
enhance orthogonality within the data, but there are
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Fig. 6. Bistatic RCS of cone-sphere with a gap in vertical
polarization.
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Table 2: The simulation time of different processes and RCS Err

Model Method
Basis Functions

Construction
Time (s)

Number
of Basis

Functions

Reduced
Matrix Filling

Time (s)

Solving
Time (s)

Total
Time (s)

RCS
Err (%)

Cylinder

CBFM 716.4 4303 495.0 6.3 2163.6 0.34
CMM 3325.3 1404 47.5 2.1 4834.7 0.21

CMB iLU 108.1 3520 131.1 247.4 1931.4 0.25
NCMBFM 117.7 3520 132.1 9.1 1702.6 0.37

CBFM 1148.8 5798 933.7 9.2 4118.5 2.78
Missile CMM 5336.1 1609 76.5 2.5 7516.1 1.52

CMB iLU 185.9 4663 441.8 282.8 3650.6 1.87
NCMBFM 223.8 4663 440.9 9.5 3375.9 2.11

CBFM 1889.4 7875 1508.2 29.7 5638.3 2.63
Cone-sphere CMM 8136.3 1959 323.8 3.2 11618 1.33
with a gap CM-PCA 541.3 6357 627.7 41.8 4382.4 1.97

CMB iLU 336.1 6357 630.7 914.1 5071.2 1.60
NCMBFM 374.9 6357 629.4 33.3 4229.1 1.81

differences in the implementation and advantages. First,
SVD is applicable to various types of data and provides
an optimal low-rank approximation of the data, which
has global optimality and stability. In contrast, PCA is a
statistical method based on the covariance matrix, which
may be influenced by the distribution of the data. Sec-
ond, SVD is a rigorous mathematical method that pre-
cisely decomposes a matrix into a product between two
orthogonal matrixes and a diagonal matrix, which maxi-
mizes the enhancement of orthogonality. Third, SVD has
a wider application, such as data noise reduction, data
reconstruction, and matrix approximation. Finally, SVD
can be viewed as a special case of PCA, which also has
data interpretability.

In addition, the simulation times of different pro-
cesses and RCS Err corresponding to Figs. 4, 5, and 6
are given in Table 2. Compared to the CMM, the pro-
posed method greatly reduces the time of generating
basis functions and solving the reduced matrix equa-
tion. The total time for the three simulations is decreased
by 65%, 56% and 63%, respectively. Thus, the solution
efficiency is substantially improved. However, in CM-
PCA, the covariance matrix is constructed by computing
the covariance, and then the principal components are
obtained through SVD. Subsequently, data reconstruc-
tion is performed. In contrast, the proposed method han-
dles CMs faster and with greater efficiency.

Furthermore, both the proposed method and CBFM
are based on the idea of regional decomposition; the
CBFM compared in the paper constructs the characteris-
tic basis functions (CBFs) by multilevel plane wave and
SVD. But the proposed method has the following advan-
tages: In CBFM, the construction of the basis functions
is very time-consuming since it requires massive inci-
dent excitations and uses SVD to remove redundancy. In

contrast, CM is independent of excitation, applicable to
objects of any shape, and the basis functions are faster to
construct. Simultaneously, multiple experimental results
have demonstrated that, under comparable accuracy con-
ditions, the proposed method generates fewer basis func-
tions. Therefore, the proposed method constructs the
reduced matrix faster.

V. CONCLUSION
In this study, a novel method is proposed to accel-

erate the analysis of electromagnetic scattering prop-
erties of large electrical objects. By introducing the
idea of blocking to decrease the dimensionality of the
impedance matrix, the efficiency of solving CMs is sig-
nificantly improved. Innovatively, SVD is applied to pro-
cess the CMs, thereby enhancing their orthogonality,
improving the condition number of the reduced matrix,
and achieving rapid convergence in the iterative solution
of the reduced matrix equation. Compared to CMM, the
proposed method significantly reduces computational
time while maintaining accuracy, as evidenced by the
complexity analysis and numerical simulation results.
Simultaneously, it provides a new way to analyze the
electromagnetic scattering properties of electrically large
objects.
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