
)()(          
)())(()(

rEr
rErrJ

a

hfa









Computational Electromagnetics and Model-Based Inversion:  
A Modern Paradigm for Eddy-Current Nondestructive Evaluation  

 
Harold A. Sabbagh1, R. Kim Murphy1, Elias H. Sabbagh1, John C. Aldrin2, 

Jeremy Knopp3, and Mark Blodgett3 
 

1 Victor Technologies LLC, Bloomington, IN  47401, USA 
 has@sabbagh.com, kimmurphy1@aristotle.net, ehs@sabbagh.com,  

 

2 Computational Tools, Gurnee, IL  60031, USA 
aldrin@computationaltools.com, 

 

3 Air Force Research Laboratory (AFRL/MLLP), Wright-Patterson AFB, OH  45433, USA 
jeremy.knopp@wpafb.af.mil, mark.blodgett@wpafb.af.mil 

   
(Invited Paper) 

 
Abstract ─ This is the first of a planned series of 
papers in which we demonstrate the application of 
computational electromagnetics, especially the 
volume-integral method, to problems in eddy-
current nondestructive evaluation (NDE).  In 
particular, we will apply the volume-integral code, 
VIC-3D, to solve forward and inverse problems in 
NDE.  The range of problems that will be 
considered spans industries from nuclear power to 
aerospace to materials characterization.  In this 
paper we will introduce the notion of model-based 
inversion, emphasizing the role of `estimation-
theoretic metrics' to the practical application of 
inverse theory. 
  
Index Terms ─ volume-integral equations, 
electromagnetic nondestructive evaluation, model-
based inversion, model-based standards, 
estimation-theoretic metrics. 
 

I. INTRODUCTION 
Nondestructive evaluation (NDE) is to 

materials and structures what CAT scanning is to 
the human body–an attempt to look inside without 
opening up the body. As in CAT scanning, modern 
NDE requires sophisticated mathematical software 
to perform its function. This is especially true with 
regard to quantitative NDE, wherein we attempt to 
quantify defects, that is, determine their size, 
location, even shape, rather than just to detect their 

presence. Low-frequency electromagnetic methods 
using eddy-currents are a traditional mode of 
doing NDE (approximately 35% of NDE uses 
eddy-currents, depending upon the specific 
application), but the technology still suffers from a 
lack of algorithms and software to allow its full 
potential to be realized. 

In its essence, electromagnetic (eddy-current) 
nondestructive evaluation (NDE) is a scattering 
problem in which the anomaly (the flaw) in Figure 
1 produces a current whose associated magnetic 
field is coupled into the probe coil. The change in 
driving-point impedance seen at the terminals of 
the coil is the measurable that indicates the 
presence of the anomaly. The ‘anomalous current’ 
associated with the flaw, then, is the principle 
electromagnetic quantity that is to be computed in 
order to determine the change in impedance, and 
to this end we have introduced VIC-3D© [1], a 
volume-integral code [2] [3].  

The anomalous current is defined to be  
 
 

(1) 
 
 
where  is the conductivity of the flaw region, 
his the (uniform) conductivity of the host, and 
E(r) is the total electric field, which is the sum of 
the incident field due to the probe coil and the 
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secondary field due to Ja(r). Clearly, because the 
anomalous current is identically zero away from 
the flaw (or anomalous region), only this region 
needs to be gridded in order to transform the 
volume-integral equation into its discrete form via 
the Galerkin variant of the method of moments. 
Furthermore, if the grid is uniform in all three 
directions, the resulting discretized equations have 
matrix elements that are either Töplitz or Hankel. 
The ijth element of a Töplitz matrix is a function 
of ( i – j ) and is a function of ( i + j ) for a Hankel 
matrix. This allows one to compute matrix-vector 
products very quickly using the FFT when solving 
large problems with an iterative scheme, such as 
the conjugate-gradient method. Indeed, we solve 
problems with 100,000 unknowns quite routinely 
in a matter of minutes on personal computers 
using the volume-integral method. See [2] and [3] 
for the technical details. 
 

 
 
Fig. 1.  Illustrating eddy-current nondestructive 
evaluation as a scattering problem. 
 

II. MODEL-BASED INVERSION 
In solving problems in eddy-current NDE, one 

often models the anomaly as a region that can be 
defined in terms of a few parameters. For example, 
we can model corrosion pitting in aerospace 
structures or heat-exchanger tubes in nuclear 
power plants by truncated right-circular cylinders–
‘pillboxes’–for which the parameters would be 
height and diameter (and perhaps the coordinates 
of the center of the pillbox). The inverse-scattering 
problem in which these parameters are to be 
determined from measurements of the driving-
point impedance of the probe coil is what we call 
‘model-based inversion.’ 

Figure 2 illustrates a system representation for 
three important problems: (a) a direct problem, in 
which the input and system are known, and the 
output is to be determined; (b) a signal-detection 
(communication) problem, in which the system (a 
communication channel) and output are known, 
and the problem is to determine the input signal; 
and (c) the inverse problem, in which the input and 
outputs are known, and we must determine the 
system.  

For the most part, the problems solved in [2]-
[6] are direct problems; we assume knowledge of 
the probe and flaw, and determine the response of 
the probe, namely the driving-point or transfer 
impedances.  The second problem of Figure 2 is 
dealt with in communication and information 
theory texts, and has a close relation to inverse 
problems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  System representation of direct and inverse 
problems: (a) The direct problem; (b) The signal-
detection (communication) problem; (c) The 
inverse problem. 
 
Nonlinear Least-Squares Parameter Estimation  

Let  
 

(2) 
 
where p1,…, pN are the N parameters of interest, 
and f is a control parameter at which the 
impedance, Z is measured. The parameter f can be 
frequency, scan-position, lift-off, etc. It is, of 
course, known; it is not one of the parameters to 
be determined. To be explicit during our initial 
discussion of the theory, we will call f ‘frequency.’  

In order to determine p1,…, pN, we measure Z 
at M frequencies, f1,…, fM, where M > N:  

OUTPUT 
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INPUT 
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SYSTEM 
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OUTPUT 
[KNOWN] 
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[TO BE 
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(3) 
 
 
The right-hand side of (3) is computed by applying 
the volume-integral code to a model of the 
problem, usually at a discrete number of values of 
the vector, p, forming a multidimensional 
interpolation grid.  

Because the problem is nonlinear, we use a 
Gauss-Newton iteration scheme to perform the 
inversion. First, we decompose (3) into its real and 
imaginary parts, thereby doubling the number of 
equations (we assume the p1,…, pN are real). Then 
we use the linear approximation to the resistance, 
Ri, and reactance, Xi, at the ith frequency: 
 
 
 
 
 
 
 
 

(4) 
 
 
 
 
 
 
 
                                          )()(

1 ,, q
N

q pp 
 

 
where the superscript (q) denotes the qth iteration, 
and the partial derivatives are computed 
numerically by the software. The left side of (4) is 
taken to be the measured values of resistance and 
reactance. We rewrite (4) as  
 

(5) 
 
where r is the 2M-vector of residuals, J is the 2M 
× N Jacobian matrix of derivatives, and p is the N-
dimensional correction vector. Equation (5) is 
solved in a least-squares manner starting with an 
initial value, (x1

(0),…,xN
(0)), for the vector of 

unknowns, and then continuing by replacing the 
initial vector with the updated vector (x1

(q),…,xN
(q)) 

that is obtained from (4), until convergence occurs 
[7]. 
 
 

III.  ESTIMATION-THEORETIC 
METRICS 

We are interested in determining a bound for 
the sensitivity of the residual norm to changes in 
some linear combination of the parameters. Given 
an ε > 0 and a unit vector, v, the problem is to 
determine a sensitivity (upper) bound, σ, such that  
 

(6) 
 
A first-order estimate of  is given by 
 

(7) 
 
 
Note that if vxJ )( is small compared to 

)( xr , then is large and the residual norm is 
insensitive to changes in the linear combination of 
the parameters specified by v. If v = ei, the ith 
column of the N x N identity matrix, then (7) 
produces i, the sensitivity bound for the ith 
parameter. Since i will vary in size with the 
magnitude of 

ix , it is better to compare the ratios 

ii x/ , for i =1,…, N before drawing conclusions 

about the fitness of a solution.  
The importance of these results is that we now 

have metrics for the inversion process: 
)(  xr , the norm of the residual vector at the 

solution, tells us how good the fit is between the 
model data and measured data. The smaller this 
number the better, of course, but the ‘smallness’ 
depends upon the experimental setup and the 
accuracy of the model to fit the experiment. 
Heuristic judgment based on experience will help 
in determining the quality of the solution for a 
given .  

The sensitivity coefficient, , is more subtle, 
but just as important. It, too, should be small, but, 
again, the quality of the ‘smallness’ will be 
determined by heuristics based upon the problem. 
If  is large in some sense, it suggests that the 
solution is relatively independent of that 
parameter, so that we cannot reasonably accept the 
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value assigned to that parameter as being 
meaningful, as suggested in Figure 3, which shows 
a system, S, for which the system is sensitive to 
variable, ix , at the solution point, 

ix , and another 
system, I, for which the system is insensitive to 

ix .  
An example occurs when one uses a high-

frequency excitation, with its attendant small skin 
depth, to interrogate a deep-seated flaw. The flaw 
will be relatively invisible to the probe at this 
frequency, and whatever value is given for its 
parameters will be highly suspect. When this 
occurs we will either choose a new parameter to 
characterize the flaw, or acquire data at a lower 
frequency. 

These metrics are not available to us in the 
current inspection method, in which analog 
instruments acquire data that are then interpreted 
by humans using hardware standards. The 
opportunity to use these metrics is a significant 
advantage to the model-based inversion paradigm 
that we propose in this paper.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Showing sensitivity parameters for two 
system responses to xi. Response S is sensitive to 
xi at 

ix , whereas response I is not. 
 

IV.  INVERSE METHOD QUALITY 
METRICS 

Given the potential of inverse methods, it is 
important to develop a rigorous method for 
quantifying the performance and reliability of 
inversion schemes [8]. Although empirical studies 
provide the means for evaluating the quality of 
NDE techniques incorporating inverse methods, 
opportunities also exist with inverse methods to 
use the model calculations with quantitative 

measures to evaluate key estimation performance 
metrics without considerable experimental burden.  

In estimation theory, the Cramer-Rao Lower 
Bound (CRLB) provides the minimum variance 
that can be expected for an unbiased estimator of a 
set of unknown parameters.  In other words, the 
CRLB provides a way of quantifying the inversion 
algorithm performance. For Gaussian noise, there 
is a simple inverse relationship between the CRLB 
and the Fisher information [9]:    

 
     ,               (8) 

  
where C is the covariance matrix, the Fisher 
information is defined as 

 
                     

  .               (9) 
 
 

 is the parameter being estimated, and Z is the 
measurement vector. Fisher information represents 
the amount of information contained in a 
measurement and depends on the derivatives of 
the likelihood function which is based on the 
forward model and the noise parameters. The 
variance in a measurement is inversely related to 
the amount of information contained in the 
measurement, so it is not a surprise that (8) shows 
that the variance in the measurement is greater 
than or equal to the inverse of the Fisher 
information matrix. In eddy current NDE, the 
measurement is often the real and imaginary 
component of the impedance, Z=[R,X], and the 
Fisher information becomes a square matrix with 
dimensions equal to the number of parameters 
being estimated.  

The covariance matrix can be evaluated as a 
performance metric for inverse methods. First, the 
diagonal terms of the covariance matrix (the 
CRLB variances) provide a metric of sensitivity of 
a parameter estimated using inverse methods to 
measurement variation. Second, the off-diagonal 
terms represent the interdependence between 
select parameters being estimated to measurement 
variation. The corresponding metric is the  
correlation coefficient given by  

 
                                                                    (10) 
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These metrics can be used with parametric 
studies involving frequency or other probe 
parameters to optimize the NDE system design. As 
a general design rule for inverse methods, it is 
desirable to minimize the sensitivity to variation 
(the CRLB variances) and to have the correlation 
coefficient between the parameters being 
estimated approach zero. 

Another tool used in numerical linear algebra 
for sensitivity analysis is singular value 
decomposition (SVD). SVD essentially provides a 
measure of sensitivity of measurements to 
perturbations in the unknown parameters [10]. To 
evaluate the sensitivity of an inverse problem for a 
set of measurements to changes in fit parameters, 
SVD can be applied to the Jacobian matrix such 
that  

 
                          ,                            (11) 

  
where U is an orthogonal matrix that contains the 
left singular vectors of J, V is an orthogonal matrix 
that contains the right singular vectors, and  is a 
diagonal matrix that contains the singular values 
of J. 

The condition number (CN) of the matrix is 
defined as the ratio of the largest and smallest 
singular values resulting from SVD. For inversion, 
CN has been used to quantify the well-posedness 
of the inverse problem for select parameters [11]. 
The ability to estimate parameters independently 
increases as the condition number approaches 1. It 
should be noted that SVD does not incorporate 
noise; it depends only on the noiseless relationship 
between the measurement output and the 
parameter changes. 
 
V. OPTIMIZING LAYER ESTIMATION 

USING METRICS 
An inversion experiment is revisited [12] for 

the purpose of demonstrating estimation theory 
metrics. In this experiment, the thickness of an 
AISI-304 stainless steel plate and probe liftoff 
were estimated.  The estimation procedure is 
represented in (12), which is a specialization of (4) 
to this problem with two unknown parameters. 
The left side is the measured impedance, the 
Jacobian is simply the derivative information from 
the forward model, and the thickness and liftoff 

parameters are updated until this equation 
converges, 
 
 

   
.                                              (12) 

   
 
 
 
 
 
Four scenarios in particular are investigated. 

Impedance values were generated for 
combinations of lift-off values of 0.75 and 1.5 mm 
and a plate thickness values of 1.0 mm and 2.0 
mm with Gaussian noise of 1% of the impedance 
value added as shown in Figure 4(a). For each of 
these “measurements”, the NLSE algorithm is 
applied to estimate the thickness and liftoff 
simultaneously. Figure 4(b) shows the inversion 
results in the parameter space. Note that for high 
liftoff, visual inspection indicates the variance in 
the estimation is much greater for liftoff and 
likewise for the thicker plate, the variance of the 
estimation of thickness is greater. 

The calculations required for the CRLB 
involve taking numerical derivatives of the 
impedance changes with respect to the parameter 
changes from the forward model. These 
calculations thus require far less computational 
expense with respect to Monte-Carlo simulation. 
Following (9), the Fisher information for this 
particular case is given by: 
 

                                 (13) 
 

 
    

The covariance matrix is then calculated from 
the Fisher information by (8): 
 

.  (14) 
  
The Jacobian is also decomposed into its singular 
values and singular vectors in the form of the right 
hand side of (11). The ratio of the smallest to 
largest singular values provides the condition 
number.
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Fig. 4.  (a) Distribution of source data in 
impedance plane and (b) corresponding estimated 
values in liftoff-thickness parameter space. 
 
 

Figure 5 shows the CRLB of the estimation of 
the thickness and liftoff of a 1 mm thick plate and 
1 mm lift-off for multiple frequencies. The 
agreement between the CRLB and the Monte-
Carlo approach is quite good. This analysis 
demonstrates that there is an optimal frequency to 
achieve highest accuracy in the estimation of 
thickness. Estimating conductivity and thickness 
simultaneously is typically more ill-conditioned 
than estimating thickness and liftoff 
simultaneously. The CRLB for conductivity and 
thickness estimation along with the condition 
number and correlation number as a function of 
frequency are all displayed in Figure 6. The 
behavior of the CRLB as a function of frequency 
for estimating conductivity and thickness 
simultaneously follows a similar trend and this is 

expected since the impedance changes due to 
conductivity and thickness are similar. The 
condition number reaches a maximum around 95 
kHz which implies that selectivity is good and the 
correlation is zero at this frequency which further 
confirms that point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Comparison of variance for varying 
frequency using CRLB and Monte Carlo methods 
for estimating (a) liftoff and (b) thickness 
respectively. 
 

VI. CONCLUSION 
The electromagnetics volume-integral code, 

VIC-3D(c), was developed to address the forward 
problem in eddy current NDE and provide the 
foundation for flaw characterization using inverse 
methods.  The numerical method addresses a range 
of problems spanning industries from nuclear 
power to aerospace to materials characterization. 
The notion of model-based inversion was 
introduced, emphasizing the role of estimation-
theoretic metrics to the practical application of 

 (a) 

 (b) 

 (a) 

 (b) 
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inversion theory. Several metrics from estimation 
theory were proposed to evaluate the quality of 
inversion schemes.  These metrics can be used in 
the design and validation of NDE inspection 
systems.  Here, the CRLB has been evaluated for 
two parameter estimation problems.  The CRLB 
was found to converge to the variance from 
Monte-Carlo simulations for Gaussian noise.  The 
condition number derived from SVD and the 
correlation terms were also presented for two 
parameter estimation often with similar trends 
corresponding to parameter selectivity.  It is 
interesting to note that if the CRLB and the 
condition number are used to determine the 
optimal frequency for inversion, they may not be 
in agreement.  Further work will be conducted to 
understand the proper way to compromise between 
these estimation metrics.  Furthermore, studies 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  Comparison of inversion metrics for 
varying frequency: (a) CRLB variance for 
thickness and conductivity estimation and (b) 
correlation and condition number. 

addressing more challenging estimation problems 
including more than two parameters and multiple 
frequencies will be pursued.  Lastly, estimation 
metrics will be extended to non-Gaussian noise 
cases. 

 
ACKNOWLEDGEMENT 

Partial funding was provided by the Air Force 
Research Laboratory – NDE Branch and Air Force 
Office of Scientific Research. 
 

REFERENCES 
[1]  http://www.kiva.net/~sabbagh. 
[2]  R. K. Murphy, H. A. Sabbagh, J. C. Treece 

and L. W. Woo, ‘A Volume-Integral Code 
for Electromagnetic Nondestructive 
Evaluation,’ Conference Proceedings: 11th 
Annual Review of Progress in Applied 
Computational Electromagnetics, Monterey, 
CA, March 20-25, pp. 109-116, 1995. 

[3] R. Murphy, H. Sabbagh, A. Chan, and E. 
Sabbagh, “A volume integral code for 
electromagnetic nondestructive evaluation”, 
Proceedings of the 13th Annual Review of 
Progress in Applied Computational 
Electromagnetics, Monterey, CA, March 
1997. 

[4] J. S. Knopp, H. A. Sabbagh, J. C. Aldrin, R. 
K. Murphy, E. H. Sabbagh, J. Hoffmann and 
G. J. Steffes, ‘Efficient Solution of 
Electromagnetic Scattering Problems using 
Spatial Decomposition Algorithms,’ 
Conference Proceedings: Review of Progress 
in Quantitative Nondestructive Evaluation, 
Volume 25A, D. O. Thompson and D. E. 
Chimenti, eds., American Institute of 
Physics, pp. 299-306, 2006. 

[5] J. R. Bowler, L. D. Sabbagh, and H. A. 
Sabbagh, “A Theoretical and Computational 
Model of Eddy-Current Probes Incorporating 
Volume Integral and Conjugate Gradient 
Methods,” IEEE Trans. Magnetics, vol. 25, 
no. 3, pp. 2650-2664, 1989. 

[6] J. S. Knopp, J. C. Aldrin, and P. Misra, 
“Considerations in the Validation and 
Application of Models for Eddy Current 
Inspection of Cracks Around Fastener 
Holes”, Journal of Nondestructive 
Evaluation, vol. 25, no. 3, pp. 123-138, 2006. 

[7] J. J. More, B. S. Garbow, and K. E. 
Hillstrom, USER GUIDE FOR MINPACK-1, 

0 20 40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

  

Frequency (kHz)

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

 

 

 
co

rr
el

at
io

n 

co
nd

iti
on

 n
um

be
r 

 correlation
 condition number

 (a) 

 (b) 

539SABBAGH, MURPHY, SABBAGH, ALDRIN, KNOPP, BLODGETT: CEM AND MODEL-BASED INVERSION



ANL-80-74, Argonne National Laboratory, 
August 1980. 

[8]  J. S. Knopp, J. C. Aldrin, H. A. Sabbagh, K. 
V. Jata, “Estimation Theory Metrics in 
Electromagnetic NDE”,  Electromagnetic 
Nondestructive Evaluation Workshop 
Proceedings, Soeul, Korea, June 10-12, 2008. 

[9]  S. M. Kay, Fundamentals of Statistical 
Processing, Volume I: Estimation Theory, 
Prentice Hall PTR, 1993. 

[10] L. N. Trefethen and D. Bau, Numerical 
Linear Algebra, SIAM, 1997. 

[11] N. J. Goldfine, “Magnetometers for Improved 
Materials Characterization in Aerospace 
Applications”, Mat. Eval. vol. 51, pp. 396-
405, 1993. 

[12] O. Baltzersen, “Model-Based Inversion of 
Plate Thickness and Liftoff from Eddy 
Current Probe Coil Measurements”, Mat. 
Eval., vol. 51, pp. 72-76, 1993. 

 
Harold A. Sabbagh received his 
BSEE and MSEE from Purdue 
University in 1958, and his PhD from 
Purdue in 1964.  In 1980 he formed 
Sabbagh Associates, Inc., and did 
research in the application of 
computational electromagnetics to 
nondestructive evaluation (NDE).  

This research evolved into the commercial volume-integral 
code, VIC-3D.  In 1998 he formed Victor Technologies, 
LLC, in order to continue this research and further 
development of VIC-3D.  His past professional activities 
have included a stint as president of ACES. 

 
R. Kim Murphy received his B.A. in 
physics from Rice University in 1978 
and his Ph.D. in physics from Duke 
University in 1984.  Since 1989, he 
has worked as a Senior Physicist for 
Sabbagh Associates Inc., and Victor 
Technologies, LLC. Dr. Murphy has 
been active in formulating models 

and coding in VIC-3D®, performing validation numerical 
experiments, and solving one-dimensional and three-
dimensional inverse problems. 

 
Elias H. Sabbagh received the B.Sc. 
in Electrical Engineering and the 
B.Sc. in Economics from Purdue 
University in 1990 and 1991.  He has 
worked as system administrator, 
software engineer, and researcher for 
Victor Technologies since its 
inception.  His interests include 

object-oriented programming, database administration, 

system architecture, scientific programming, and 
distributed programming. 
 
 

John C. Aldrin received B. Sc. and 
M.Sc. degrees in mechanical 
engineering from Purdue University, 
West Lafayette, IN, USA, in 1994 
and 1996 and the Ph. D. degree in 
theoretical and applied mechanics 
from Northwestern University, 
Evanston, IL, USA in 2001. Since 

2001, he has worked as the principal of Computational 
Tools.  His research interests include computational 
methods: modeling, data analysis and inverse methods, in 
ultrasonic and eddy current nondestructive evaluation.  
 

Jeremy Knopp received the B. Sc. 
degree in engineering physics and 
the M.Sc. degree in electrical 
engineering from Wright State 
University, Dayton, OH, USA, in 
2001 and 2005, respectively. Since 
2002, he has worked as a researcher 
at the nondestructive evaluation 

(NDE) branch of the Air Force Research Laboratory 
(AFRL). His research interests include eddy current NDE, 
computational electromagnetics, inverse problems, and 
model-assisted probability of detection.  In 2009, he won 
the Charles J. Cleary award for basic research at AFRL. 

 
Mark Blodgett received the B. Sc. in 
metallurgical engineering from Iowa 
State University, Ames, Iowa, USA 
in 1985 and M.Sc. and Ph.D. degrees 
in materials engineering from 
University of Dayton, Dayton Ohio, 
USA in 1992 and 2000, respectively. 
Since 1986, he has worked as 

materials research engineer in the Nondestructive 
Evaluation Branch at the Air Force Research Laboratory. 
His research interests include developing electromagnetic 
and multi-modal NDE approaches for materials 
characterization. 
 

540 ACES JOURNAL, VOL. 24, NO. 6, DECEMBER 2009




