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Abstract – This paper describes an algorithm to sim-
ulate transient behavior of a dipolar bead in an elec-
trophoretic spherical cavity. The model includes consid-
eration of form drag and viscous damping, both corrected
for wall effects. In particular, the bead rotation as a func-
tion of monopole and dipole charge, and the impact of
gravity on the bead dynamics is investigated. Several
levels of approximation are implemented to expedite the
overall computation. A consistent set of results is pre-
sented to describe the accuracy of the simulation.

I. INTRODUCTION

The transient dynamics of dipolar beads in an elec-
trophoretic spherical cavity presents an interesting phe-
nomenon, because it captures the interplay of elec-
trophoretics, particle dynamics, and tribology. The prob-
lem geometry is described by a dipolar bead immersed in
a polarized fluid within the cavity. Switching bias volt-
ages are applied to induce both translational and rota-
tional motion of the bead. This paper details a model
of coupled phenomena which employs ODE’s to describe
the bead dynamics, integral equations for the field solu-
tion, and particle simulation for the bipolar migrations.
Special focus is given to the impact of confinement and
gravitational force on the bead dynamics.

II. PROBLEM FORMULATION

We assume a dipolar bead with radius rb and mass m
in a spherical cavity of radius rc. The bead is divided
into two distinct hemispheres with different net charges
qb and qw. For low counter ion concentrations, we can ap-
proximate the charge distribution on the bead by the first
two terms of a multipole expansion, i.e. by the monopole
charge qm = qb + qw and the dipole moment p = qddp,
where qd = |qb − qw|/2 is the dipole charge and dp is the
distance between the hemispherical charges qw and qb.
This dipole length dp depends on the actual distribution
of charge on each hemisphere, and is given by 2rb, rb,
and 3rb/4 for uniform polar, surface, and volume distri-
butions in each hemisphere, respectively.

External electrodes are placed above and below the
cavity. Fig. 1 shows a schematic 2D cross section of
the computational cell. The cavity is centered between
the top and bottom electrode, and all linear dimensions
(width W , length L, and height H) are identical for the
uniform cube. The whole system is filled with a liquid
that exhibits a low, but finite conductivity σ (e.g. we can

Fig. 1: Cross-section of unit cell with one dipolar bead inside
the cavity. Shown dimensions are not to scale. For the present
discussion we assume a cavity radius that is 25% larger than
the bead radius.

think of the sheet material as a gel that has been swollen
with an oil). Fig. 2 shows a snapshot of the animated

Fig. 2: 3D snapshot of animation of dipolar bead inside the
cavity. One quadrant of the cavity wall has been removed for
clarity. The graphic is rendered using the commercial software
package AVS.

dipolar bead dynamics within a spherical cavity.

A. Translational Motion

The translational motion is governed by Newton’s
equation

mR̈ = qmE + (p · ∇)E− Γtft(R)Ṙ − mbgez, (1)

where Γt is the translational drag coefficient, mb is the
buoyant mass of the bead, and g is the gravitational accel-
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eration. For beads with a radius of rb ≈ 50μm the gravi-
tational force becomes relevant for the bead dynamics, if
the bead and solvent densities are not well matched (i.e.
mb �= 0). The parameter ft(R) is a position-dependent
drag correction due to the cavity walls, and has been
chosen as [1]

ft(R) = 1 +
2ε

ε2 − ξ2
, (2)

where ξ = |R − rc|/rb is the scaled actual distance of
the bead center from the cavity center rc, while ε = (rc−
rb)/rb is the maximal possible distance of the bead center
from the cavity center.

The first term on the right-hand-side of Eqn. 1 is the
Coulomb force due to the electrostatic field. The second
term is a dipole force, which includes both the Clausius-
Mossotti contribution and a “hard” dipole due to the as-
signed hemispherical charges. The third term is the form
drag, which is dependent on the shape of the bead and
its location relative to the cavity walls. For spherical par-
ticles at low speed this term reduces to the Stokes drag
Γt = 6πηrb modified by the wall correction factor (Eqn.
2) (η is the viscosity of the fluid inside the cavity). From
Eqn. 2 we see that drag increases significantly when the
bead is in close proximity to the wall.

B. Rotational Motion

Bead rotation is governed by the torque equation

IΩ̇ = p × E− kΓrfr(R)Ω, (3)

where Ω is the angular velocity, I is the moment of inertia
of the bead, and Γr is the rotational drag coefficient.
The position dependent parameter fr describes the wall
corrections to the rotational drag and has been chosen as
[2]

fr(R) = 1 +
1

ε1
ln

(

2ε1
ε − ξ

)

, (4)

where ε1 = ε/(1 + ε). The parameter k depends on ma-
terial and operational properties, and can be chosen to
control the oscillation of the bead about its equilibrium
position. An estimate for k is given by the particular
solution

k =
2
√

pEI

Γr

(5)

to Eqn. 3, which results in critically damped oscillations
of the electrical dipole of the bead around the direction
of the applied electric field.

C. Field Solution

Several levels of approximations are implemented to
expedite computations. The most accurate version solves

for the electrostatic field using a boundary integral equa-
tion method [3] that takes into account contributions
from the diverse collection of free charge, interfacial
bound charge, volume space charge, and assigned bead
charge. Lower order versions may be invoked through
combinations of image symmetries, analytic representa-
tions, particle-particle particle-mesh (PPPM) scheme [4],
and “super-ion” or particle clumbing [5] schemes.

Fig. 3: Explicit electric field calculation along a straight line
through the center of a bead in the model system. Since the
dielectric constants of the different materials are very similar,
the electric field changes only very slightly within the sheet.

Fig. 3 shows the electric field due to an applied bias
voltage calculated along a line through the center of the
bead using a 1D and a cylindrical symmetric model. Both
models give very similar results, with the axisymmetric
model exhibiting departure from 1D fields near the po-
lar regions of the bead and the cavity due to the finite
curvature of the interface regions.

D. Time Integration Algorithm

Difference formulas are used for time integration of the
second order differential equations. The central differ-
ence approximation

R̈ =
[R(t + Δt) − 2R(t) + R(t − Δt)]

Δt2
(6)

may be rearranged to result in

R(t+) = 2R(t) − R(t−) +
F(t) − Fdrag

mΔt2
(7a)

Θ(t+) = 2Θ(t) − Θ(t−) +
TΘ(t) − TΘ,drag

IΔt2
, (7b)

Ψ(t+) = 2Ψ(t) − Ψ(t−) +
TΨ(t) − TΨ,drag

IΔt2
, (7c)

629LEAN, VÖLKEL: ELECTRODYNAMICS OF DIPOLAR BEADS IN AN ELECTROPHORETIC SPHERICAL CAVITY



3

where Eqn. 7a represents the three cartesian coordinates
of the bead position, Eqns. 7b and 7c represent the cor-
responding torque equations resolved in the two indepen-
dent spherical angles, and t± = t ± Δt.

E. Boundary Conditions

Since charge-charge interactions are long-range, we
have to choose proper boundary conditions to avoid non-
physical behavior in our finite-size computational cell.

Fig. 4: Schematic drawing of image cells used to implement
the different boundary conditions.

In order to satisfy the ground plane boundary condi-
tion at the bottom of the sheet (z = 0), a mirror image
with opposite charge for each ion has to be considered
(Fig. 4, top).

For zero-flux boundary condition we have to satisfy
the condition En = 0 on each of the vertical sidewalls,
where En is the normal component of the electric field
on the boundary. This can be approximated by placing
mirror-symmetric nearest neighbor image cells in the xy
plane (Fig. 4, bottom). More accurate approximations
would include more terms (mirror image cells) in this
series expansion.

If we want to allow ions to move in and out of the
computational cell, one can impose periodic boundary
conditions on the vertical sidewalls, where ions moving
out of one side wall re-enter from the opposite sidewall.
These can be achieved by placing nearest neighbor image
cells with the identical ion distribution as in the compu-
tational cell in the xy plane.

III. RESULTS AND DISCUSSION

Both, Eqn. 1 and Eqn. 3, can be made dimensionless
by introducing proper length and time scales. In the case
of bead translation it is convenient to introduce as length

scale the bead radius rb and as time scale τt = m/Γt,
which leads to the dimensionless equation of motion

ξ̈ = τb − ft(ξ)ξ̇ (8)

with

b =
qmE − mbg

Γtrb

. (9)

Note that the time scale here measures the time over
which inertial effects dominate over drag effects. At times
t � τt we can ignore the inertial term. In this case Eqn.
8 has the analytic solution

bt = ξ + ξ0 + 2[arctgh(ξ/ε) + arctgh(ξ0/ε)], (10)

where t is the real system time (i.e. we now have the drag
dominated time scale τ = 1/|b|), and ξ0 is the position of
the bead at t = 0. Because the drag correction diverges
as the distance of the bead from the cavity wall goes to
zero, it also takes a very long time for the bead to touch
the cavity wall. In computer simulations we therefore
limit the bead translation such that each bead always
keeps a minimum distance from the cavity wall to prevent
numerical divergences. The additional rationale is that
surface roughness would result in this order of magnitude
spacing between the bead and cavity surfaces.

The sign of the parameter b determines whether the
bead moves up (b > 0) or down (b < 0). The gravita-
tional force breaks the symmetry between up and down
translation times for a fixed applied voltage. In particu-
lar, the bead can travel upward only, if the electric field
is strong enough to overcome gravity, i.e.

qmE > mbg. (11)

Fig. 5 shows the minimal monopole charge qm required
for a given bead size and applied voltage. For a bead
with rb = 45μm, qm = 8fC, and mb = 0.29 ∗ mbead, a
field of at least E ≥ 0.16V/μm is required before it moves
against gravity.

The bead rotation is characterized by the time scale
τr =

√

I/pE and the dimensionless version of Eqn. 7b
becomes

Θ̈ = sin Θ − 2fr(ξ)Θ̇. (12)

In the case where the inertial term can be neglected in
the equation of motion for the bead rotation the dipole
orientation angle is given by the closed form

Θ(t̂) = 2 arctg

{

exp

[
∫

dt̂

2fr(ξ(t̂))

]}

, (13)

where t̂ = t/τr is the dimensionless time parameter.
Without the wall correction to the rotational drag

(fr = 1) the bead rotation is completely specified by
its size and shape (which determine the moment of in-
ertia I), its dipole moment p, and the applied electric
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Fig. 5: Minimal monopole charge required to levitate a bead
of radius rb for a given applied voltage assuming a sheet thick-
ness H = 450μm.
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Fig. 6: Bead orientation as function of scaled time for a system
without wall drag corrections. (solid): complete solution of
Eqn. 12; (dashed): solution of Eqn. 12 without the inertial

term Θ̈.

field. Fig. 6 shows the bead orientation as a function
of dimensionless time for this case. The inertial term
of Eqn. 12 has the most effect when the bead dipole is
closely aligned with the electric field, where it slows down
the bead rotation visibly. Without the inertial term, the

bead rotation is described by the function

Θ(t̂) = 2 arctg

{

exp

[

t̂ − t̂0
2

]}

, (14)

where t̂0 is the time at which Θ = π/2.
With the wall drag fully included the translational and

rotational equation of motion become coupled and a nu-
merical approach is needed to solve for the bead dynam-
ics.

0 100 200 300 400
time [msec]

65

70

75

80

85

z 
[μ

m
]

0

50

100

150

200

Θ
 [d

eg
] 10V

20V
50V
100V

Fig. 7: Bead orientation angle and position as function of time
for different applied voltages and zero buoyant mass (mb = 0).

Fig. 7 shows typical orientation and position curves as
function of time for a bead moving inside the cavity. In
the case when the density of the bead material is matched
by the density of the solvent, the buoyant mass mb is
zero and the response of the bead becomes independent
on the direction of the applied field. However, because of
the coupling between the translational and translational
dynamics through the drag coefficients, we observe quite
different rotation speeds as function of applied field: For
free rotation, we would expect a rotation time scale that
is inversely proportional to the square root of the applied
field. With the impact of the walls on the drag, we ob-
serve instead a slowing down of the bead rotation times
at increased applied voltage (50V and 100V in Fig. 7).
This is due to the fact that at these voltages the bead
moves through the cavity before it has a chance to ro-
tate, so most of its orientation change happens near the
cavity wall where the drag is highest.
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When the buoyant mass of the bead is not zero, the
bead is also influenced by gravity, and its response to
an applied electric field depends on the orientation of
this field to the gravitational field. Fig. 8 shows bead
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Fig. 8: Bead orientation angle and position as function of
time for different applied voltages and buoyant mass mb =

0.29mbead. (solid line): upward motion; (dashed line): down-
ward motion.

orientation and position as function of time for a bead
with buoyant mass mb = 0.29∗mbead for different applied
fields that are either parallel or anti-parallel to gravity,
causing the bead to either move up or down. Again, we
see that the biggest impact on the rotation time scale of
the bead is its location relative to the cavity wall. In
particular, we observe, that for the case when the field is
parallel to gravity (bead moves down) the translational
motion is much faster than the rotational motion, and the
bead always changes its orientation close to the bottom
of the cavity. Also, because of its finite buoyant mass
the bead does not move upward for low applied voltages
(10V case in Fig. 8).

In order to discuss the rotation times for beads
with different monopole and dipole charges and buoyant
masses, we fitted the time-dependent orientation change
to a standard step function. In particular, we fitted the
expression

F (t) = sin2

(

Θ(t)

2

)

(15)

to the “Fermi-like” function

Rfit(t) =
1

1 + exp((t − t0)/τr)
, (16)

with the two fit parameters τr , which represents the time
scale of rotation, and t0, which denotes the time when the
bead rotates through Θ = 90o. The expression F (t) cor-
responds to the projection of the visible part of one hemi-
sphere onto a plane perpendicular to the applied field.
The fit function Eqn. 16 is motivated by the solution to
the freely rotating sphere without wall drag correction
(Eqn. 14). Though this function is expected to represent
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Fig. 9: Fits of time-dependence of bead orientation to Eqn.
8.

a good description of the bead rotation only, when the
bead rotates without changing position within the cavity,
we observe that it captures the main orientation change
very well in all situations encountered by our simulations,
as is demonstrated in Fig. 9. In all cases shown, the func-
tion fits the steepest part of the rotation curve very well,
while it may deviate from the observed data at small and
large orientation angles.

Figs. 10, 11, and 12 show fitted rotation times as func-
tion of applied voltage for beads with different buoyant
mass, monopole charge, and dipole charge, respectively.

At zero buoyant mass the bead translation and rota-
tion times are independent of the applied field, but are
shortest for the applied voltage where the rotation takes
place while the bead moves through the center of the
cavity (at about 20V for the situation shown in Fig. 10).
For smaller or larger voltages, the bead rotates closer
to the cavity wall and the rotation times are substan-
tially longer. For high applied voltages the bead moves
across the cavity before it has a chance to rotate, and
the observed inverse rotation times again decrease with
voltage as we expect for the case where the bead rotates
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Fig. 10: Inverse bead orientation times as function of applied
voltage for different buoyant masses mb. (solid line): upward
motion; (dashed line): downward motion.
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Fig. 11: Inverse bead orientation times as function of applied
voltage for different bead monopole charge qm [in fC], but con-
stant dipole charge qd = 4fC. (solid line): upward motion;
(dashed line): downward motion.

at a fixed location within the cavity. For beads with a
finite buoyant mass, gravity either speeds up or slows
down the translational motion, and the rotation times
become dependent on the direction of the applied field.
In particular, for the case where the field moves the bead
downward, translational motion becomes even for small
buoyant mass much faster than rotational motion and
the bead almost always rotates near the bottom of the
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Fig. 12: Inverse bead orientation times as function of applied
voltage for different bead monopole charge qd [in fC], but con-
stant monopole charge qm = 10fC. (solid line): upward mo-
tion; (dashed line): downward motion.

cavity.
A change in monopole charge of the bead has the

biggest impact on the translational speed of the bead.
However, with the coupling of the bead location into the
rotational drag, we observe also an impact of varying qm

on the rotational motion, especially at applied voltages
where the bead rotation happens near the cavity center
(Fig. 11). In particular, we see shorter rotation times
for beads with smaller qm at lower applied voltages when
moving downward, and at higher voltages when the bead
moves upward.

A change in dipolar charge has a direct impact on the
rotational speed. In the case where the bead moves down-
ward and rotation happens mainly near the cavity bot-
tom the change in rotation speed is directly related to the
dipole moment and we see a linear increase in the inverse
rotation time with dipole moment (Fig. 12). For the up-
ward motion we see a shift (increase) in the voltage for
which the rotation time is minimal with increasing dipole
moment, reflecting the fact that at a higher dipole mo-
ment the faster bead rotation requires a slightly faster
translational motion to make the bead rotate near the
center of the cavity.

An application may be flexible displays, where these
dipolar beads are dispersed in an elastomer sheet. Ar-
ray addressable electrodes on either side of the sheet will
allow for controlled switching of the beads to display im-
ages.

Fig. 13 shows a comparison of our model to exper-
imental data. Dipolar beads of size rb ≈ 50μm have
been densely packed into a thin gel matrix that has been
swollen with a silicone oil (see e.g. Sheridon et al. [6]
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Fig. 13: Comparison of model predictions with experimen-
tal data: Charge parameters qb, qm, qd, and qw that fit the
experimental data best as function of applied field.

for more details). The dipolar character of the bead is
introduced by selecting different materials for each of the
two hemispheres, e.g. a black-colored and a white-colored
wax. The oil causes a homogeneous swelling of the gel,
resulting in cavities around the beads that are about 25%
larger in diameter, while maintaining a very low conduc-
tivity throughout the gel (σ ≈ 10−12S/m). By apply-
ing a slowly alternating voltage pulses on a horizontally
aligned gel sheet the beads are switched from top to bot-
tom and vice versa. The dynamics of this switching is
captured by measuring the dynamic reflectivity of the
sheet, which is directly proportional to the white area
of the beads exposed to the observer, as a function of
time. This experiment is repeated for different values
of the applied voltage. We then use our mathematical
model (Eqn. 1 and 3) to obtain monopole and dipole
charges of the bead (or, correspondingly the charge on
each of the hemispheres can be obtained from the rela-
tions qm = qb + qw and qd = 0.5 ∗ |qb − qw|) that best
fit the experimentally obtained reflectance data for each
applied voltage. For the three highest field values shown
in Fig. 13 the fit is clearly good and shows only a slight
monotonic increase in charge magnitude. The remaining
three curves for lower fields are for incomplete rotation.
Since these fields are not able to levitate the bead, the
switch from black-to-white happens near the cavity floor
rather than originate from the roof of the cavity. This
short period of time would be insufficient for the bead to
complete rotation. When the bead settles or makes con-
tact with the cavity floor, friction would stop the rotation
leading to partial switching as shown by the asymptote
to smaller changes in dipole angles.

If the model is a good representation of the experiment,
the fitted charge values for the bottom-to-top switching
cycle should be the same as that for the top-to-bottom
switching cycle. Fig. 14 shows the monopole and dipole
charge that best fits the experimental data at each ap-

Fig. 14: Comparison of model predictions with experimen-
tal data: Charge parameters qb, qm, qd, and qw that fit the
experimental data best as function of applied field.

plied voltage. At the higher voltage we extract consistent
values for the bead charges for bottom-up and top-down
bead dynamics, while at the lower voltages this is no
longer the case. The major reason is that we assume the
bead to be located at the top plate as initial condition for
the top-to-down switching cycle, which is not physically
possible at low fields that are insufficient to levitate the
beads.

In addition to the choice of initial condition, other dy-
namic processes that are dependent on the applied field
become relevant, e.g. field-dependent stripping of coun-
terions from the bead’s surface/Debye layer, or counte-
rion migration, may introduce additional time scales to
the bead dynamics that are not covered by the model we
discussed here. Additional mobile charges can have dif-

Fig. 15: Calculated electric field along a straight line through
the model system for different ionic concentrations.

ferent impact on the bead dynamics, depending on their
concentration and mobility. If the additional charges are
substantially faster than the bead (what one typically
would expect for small counter charges in a low-viscosity
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medium such as the solvent), then their main contribu-
tion on the bead dynamics will consist of the shielding
of the electric field that the bead sees. In particular, if
the concentration of the these ions is large enough, the
electric field at the bead position can become completely
shielded (see Fig. 15).

However, if the concentration of the additional charges
is small enough to not incur complete shielding of the ap-
plied field, the bead will still respond to the external field.
Moreover, if the mobility of these charges is reduced, e.g.
when moving through the elastomer layer outside of the
cavity, the time for those charges to move a distance com-
parable to the bead size may become of the order of the
bead translation and rotation times, leading to compet-
ing effects on the bead dynamics. A detailed study of
such scenarios will be presented elsewhere.

IV. SUMMARY

This paper described an effective algorithm to simulate
the dynamics of a dipolar bead inside a spherical cavity
under the influence of an electrostatic field and gravity,
subject to wall effects on drag and viscous damping. Us-
ing this model we have shown that the wall effects on the
drag effectively couple the translational and rotational
motion of the bead, leading to a rather rich response be-
havior of the bead as a function of applied field, bead
monopole and bead dipole charge. In addition, if the
bead density is not matched exactly by the solvent den-
sity, gravity breaks the symmetry between upward and
downward motion, which can lead to substantially lower
switching times for upward motion due to different lo-
cations at which the bead rotates. Several levels of ap-
proximation have been implemented to expedite compu-
tations, and the accuracy of the model has been verified
by analytic solutions. Comparison of our model to dy-
namic reflectivity measurements on dipolar beads packed
into a swollen, low-conductivity, gel matrix show very
good agreement at higher applied fields, where the dy-
namic effects of other mobile charges (e.g. counterions)
becomes negligible.
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