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Abstract –This article discusses the distinction be-

tween interfaces and boundaries in electromagnetics.

Boundary conditions can be used to narrow down the

computation domain of complex problems. However,

terminating the space by a boundary condition is an

approximation in real-world situations where fields

penetrate across interfaces. To make this approxima-

tion accurate, the material parameters need to have a

very strong contrast between the materials on the adja-

cent sides of the interface. In this article, the question

is addressed how extreme the permittivity and perme-

ability have to be in order to reasonably model a sur-

face as a perfect electric conductor (PEC) boundary.

It is argued that in addition to the large value of the

permittivity, also a very small magnitude of the per-

meability is necessary in order to speed up the con-

vergence of a material response towards the ideal PEC

case.

Index Terms –Boundary conditions, extinction,

extreme-parameter materials, metamaterials, PEC,

scattering.

I. INTRODUCTION

In electromagnetics, the objective is often to solve

electric and magnetic fields in a given region of space.

Fields, due to a source, radiate and penetrate into the

near and far surroundings, reacting to the environ-

ment, its structure, and boundaries. Sometimes, for

reasons of decreasing the computational complexity

and cost, the problems are formulated in a form that

the domain of interest is bounded in which the fields

need to be calculated. On the boundary of this do-

main, certain sufficient conditions for the fields have

to be forced in order that the solutions are correct and

non-ambiguous.

Boundary conditions simplify the solution process

because one does not need to bother what happens

on the other side of the boundary. On the other

hand, when applied to model real-world situations,

boundary conditions only approximate the electro-

magnetic effect of the material behind the surface. It

is well known that replacing a dielectric boundary by

an impedance condition is not exact or even accurate

for an arbitrary field setting. This happens especially

when the discontinuity of the material parameter con-

trasts over the interface is not very large.

It is essential to emphasize this fundamental dif-

ference between the interface problem and boundary

problem (Figure 1). In the interface problem, the ma-

terials everywhere, on both sides of the interface, af-

fect the fields in both domains. On the other hand, if

the region 1 is terminated by a boundary condition,

nothing behind this boundary can have any effect on

the fields. In fact, it is senseless to talk about the re-

gion behind this boundary because it does not exist in

the electromagnetic problem.

Despite this distinction, a connection exists be-

tween the two situations. Indeed, either of them can

be approximated with the other one in certain cases.

When such an approximation is taken, it is important

to keep in mind which one of the pictures is primary.

The first choice is that one treats the interface picture

as a true model of the real world. Then it is possible

to solve the electromagnetic problem in the interest-

ing region by replacing the interface with a boundary

and cutting away everything on the other side. This

procedure can be termed as the analytic approach.

However, the complementary view is very im-

portant and useful: the boundary condition itself is

primary. A great variety of different electromag-

netic boundary conditions exist, and it is a legitimate
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Fig. 1. The distinction between interface (left) and

boundary (right) problems. In the latter case, there is

nothing beyond the boundary.

project to study their properties in a systematic man-

ner. Some of such ideal boundary conditions may turn

out to display potential for interesting applications.

For example, using such a concept, a desired antenna

structure can be theoretically designed, and if the re-

sult is worth realizing, the next step is to synthesize it

using composites or metamaterials. This procedure of

starting from the boundary condition and proceeding

to materials is called the synthetic approach.

Materials with extreme parameters are hence a nat-

ural choice for creating ideal boundaries. The term

“extreme parameters” often refer to cases where one

or more of the material parameters (permittivity, per-

meability, refractive index, and wave impedance) have

either very small or very large values [1, 2]. Also

anisotropic materials with certain components of the

parameter tensors being extreme fall into this class.

In the following, the effect of boundary conditions

(in particular, the perfect electric boundary, PEC) is

approximated by materials with isotropic extreme pa-

rameters, and the accuracy of the approximation is be-

ing estimated in quantitative terms.

II. EXAMPLES OF BOUNDARY
CONDITIONS

Well-known boundary conditions are perfect elec-

tric conductor (PEC) and perfect magnetic bound-

ary (PMC) conditions. In the former, the electric

field component tangential to the surface vanishes

(n×E = 0), and the latter condition requires that the

tangential magnetic field becomes zero (n×H = 0).
Here n is the unit normal pointing away from the

boundary.

A generalization of PEC and PEC conditions is

the impedance boundary condition [3] which defines

the ratio between the tangential electric and magnetic

fields on the surface. Another generalization is the so-

called PEMC condition [4, 5] with one parameter M
which states that the fields satisfy n×(H+ME) = 0.
Furthermore, the so-called soft-and-hard surface [6] is

characterized by another interesting pair of boundary

conditions v ·E = 0, v ·H = 0, for a vector v along

the boundary.

Also, field components normal to the boundary

have been of interest in terms of surfaces [7]. The

so-called DB boundary condition [8] requires that the

normal components of the electric and magnetic flux

densities vanish on the surface, which in connection

with isotropic media means that the fields themselves

do not have normal components: n · E = 0 and

n ·H = 0. Recent generalizations to the DB boundary

condition include the so-called D’B’ boundary [9, 10].

In the following, we will focus the analysis on the

PEC boundary condition, and look for ways to simu-

late it by material structures.

III. ISOTROPIC EXTREME-PARAMETER
MATERIALS

Let us limit the discussion to isotropic materials

whose electromagnetic response can be characterized

by two (complex) parameters, the relative permittivity

ǫr and relative permeability µr.
1 Using these parame-

ters, two other quantities can be written, the refractive

index m =
√
µrǫr and the relative wave impedance

ηr =
√

µr/ǫr. Then, depending on whether the mag-

nitudes of any of these four parameters are very large

(VL) or very small (NZ, “near-zero”), we can distin-

guish the eight classes of extreme-parameter electro-

magnetic media that are listed in Table 1.

Plotted in the plane where the axes give the log-

arithm of the permittivity and the permeability, the

extreme-parameter materials are located away from

the origin, as shown in Figure 2. The logarithm im-

plies here that the parameters are assumed to have

only positive values.

1The relative permittivity of the material is defined by normal-

izing the absolute permittivity ǫ by the free-space permittivity ǫ0,
likewise for the permeability: µ = µrµ0. The speed of light is

c = 1/
√

µ0ǫ0.
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Table 1: Classes of extreme-parameter media

very large very small

ǫr EVL ENZ

µr MVL MNZ

m IVL INZ

ηr ZVL ZNZ

IV. ARTIFICIAL PEC MATERIAL

Intuitively, the concept of a perfect electric conduc-

tor is close to medium with a very large permittivity

value. Indeed, a high permittivity means that the elec-

tric field inside the medium is forced to vanish in or-

der not to run into an infinite energy density (which is

proportional to ǫr|E|2). Consequently, due to the con-
tinuity of the tangential electric field over the bound-

ary, the tangential field has to vanish on both sides of

the boundary. Hence, the PEC condition is satisfied

on the surface of a material with ǫr = ∞.

In addition, also from the point of electrostatics, a

similar argument can be made. The image of a point

charge from a dielectric half space of permittivity ǫr
has the amplitude −(ǫr − 1)/(ǫr + 1) compared to

the original source [11, p. 111]. This image clearly

approaches, when ǫr → ∞, the mirror image of a

point charge from a PEC plane, which is of the same

magnitude as the original charge but of opposite sign.

However, the situation is not as simple in electro-

dynamics. From Faraday’s law in the electromagnetic

time-harmonic case (∇ × E = −jωB), one can in-

fer that also the magnetic flux densityB has to vanish

inside a medium where the electric field is identically

zero. Furthermore, the magnetic constitutive relation

reads

B = µH. (1)

While B is identically zero, no condition is set to the

magnetic field strength. If finite values are allowed

for the H field, the inevitable conclusion is that the

permeability has to vanish: µr = 0. Furthermore,

due to the continuity of the normal-directed flux den-

sities over interfaces, a corollary of the PEC condition

would be that the normal component of the magnetic

flux density is zero on this boundary: n ·B = 0.
This line of argument raises the question whether it

is possible to replace a situation involving the mathe-

matically idealized PEC condition by a homogeneous

Fig. 2. Plotted in the plane where the axes are the

logarithms of the (positive and isotropic) permittivity

ǫr and permeability µr, the various classes of extreme

materials fall away from the center. Depending on

whether the permittivity (E), permeability (M), the re-

fractive index (I), or the impedance (Z) is very small

or very large, the different extreme-material parame-

ters occupy a certain place in the plane.

high-permittivity structure, or does one need to re-

quire an additional condition that the permeability is

small. In the following, we examine the validity of the

previous argumentation which calls for extreme val-

ues for both permittivity and permeability by solving

electromagnetic scattering problems from such struc-

tures.

V. SCATTERING BY
EXTREME-PARAMETER OBJECTS

For small objects, the scattering by an electromag-

netic plane wave can be explained by dipole scatter-

ing. For example, the Rayleigh scattering from a di-

electric particle is due to an electric dipole whose am-

plitude can be calculated from the electrostatic excita-

tion. It is, however, known in the Rayleigh-scattering

regime [12, Section 8.25] that to replace a PEC object

by an equivalent penetrable object, one needs to ac-

count for the magnetic dipole (calculated with µr =
0), in addition to the electric dipole (with 1/ǫr = 0).
For example, the scattering pattern of a purely dielec-

tric (small) sphere has the same amplitude in both for-

ward and backward directions, whereas a PEC sphere
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has a dominating backscattering: the back-to-front ra-

tio is close to 10 dB in the Rayleigh scattering regime

[13].

In this section, we examine the scattering problem

from extreme-parameter objects in more detail.

A. Mie scattering by a sphere

The scattering situation is of course more compli-

cated when the scatterer is no longer small compared

with the wavelength. For a homogeneous sphere, the

problem can be solved using Mie theory [14, 15]. The

scattered fields of a dielectric sphere with relative per-

mittivity ǫr, relative permittivity µr, refractive index

m =
√
µrǫr, radius r, and size parameter x = ωr/c,

are expanded using the Mie coefficients an and bn:

an =
ǫrjn(mx)[xjn(x)]

′ − jn(x)[mxjn(mx)]′

ǫrjn(mx)[xh
(2)
n (x)]′ − h

(2)
n (x)[mxjn(mx)]′

(2)

bn =
µrjn(mx)[xjn(x)]

′ − jn(x)[mxjn(mx)]′

µrjn(mx)[xh
(2)
n (x)]′ − h

(2)
n (x)[mxjn(mx)]′

(3)

that involve spherical Bessel jn and Hankel h
(2)
n func-

tions and where the prime indicates differentiation

with respect to the argument in parenthesis.

For a spherical domain, on the surface of which

the PEC condition is forced, the corresponding coef-

ficients can be derived:

an =
[xjn(x)]

′

[xh
(2)
n (x)]′

=
xjn−1(x)− njn(x)

xh
(2)
n−1(x)− nh

(2)
n (x)

(4)

bn =
jn(x)

h
(2)
n (x)

. (5)

It is worth noting that Equations (4) and (5) also fol-

low from the coefficients (2) and (3) in case ǫr → ∞,

µr → 0, for a finite m.

Let us compare the Mie coefficients of the PEC

sphere and same-sized spheres with extreme material

parameters. Figure 3 shows the behavior of the first

Mie scattering coefficient a1 for a PEC sphere and two

material realizations to approximate it. In the first of

the cases, the relative permittivity is ǫr = 106 and

there is no magnetic response. The other one is less

extreme in permittivity ǫr = 103, but it has the relative
permeability value of µr = 10−3.

The figure shows clearly that the most effective way

to simulate the smooth PEC behavior by a penetrable

sphere is using a medium with high-permittivity along

with low-permeability, instead of a non-magnetic,
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Fig. 3. Real part of the Mie coefficient a1 as function
of size parameter 0 < kr < 3 for a non-magnetic

dielectric sphere with ǫr = 106 (top), a dielectric–

magnetic sphere with ǫr = 103 and µr = 10−3 (mid-

dle), and for a sphere on the surface of which the PEC

condition is forced (bottom). The resolution of the

picture is not able to display all the resonances in the

topmost curve. However, it is anyway sufficient to

show that the curve in the center figure is clearly a

better approximation to the PEC than the topmost one.

solely extreme-permittivity response. In the case

where the sphere is purely dielectric, there are numer-

ous narrow resonances in the frequency dependence

of the Mie coefficient which contaminate the curve

(that in average follows the PEC function). In con-

trast, if the penetrable sphere becomes diamagnetic

1010SIHVOLA, LINDELL, WALLÉN, YLÄ-OIJALA: MATERIAL REALIZATIONS OF PERFECT ELECTRIC CONDUCTOR OBJECTS



(µr < 1), the PEC behavior is captured even if the

permittivity and permeability parameters are not very

extreme.

In other words, at least for this case of a sphere, the

ZNZ model (ηr =
√

µr/ǫr near zero) approximates

PEC better than the EVL model (ǫr very large).

B. Scattering by a cube

A similar comparison can be made for the case

when the scatterer is a cube. Figures 4 and 5 display

the forward and backward scattering cross sections of

various type of cubes: a PEC cube, and two penetra-

ble cubes for which the permittivity increases. One

of these cubes is purely dielectric, whereas the other’s

permeability decreases along with increasing permit-

tivity. The size of the cube is comparable with the

wavelength (ka = 3, with a being the side length),

and the plane wave is incident head-on to one of the

faces of the cube.

The scattering results have been calculated using

the surface integral equation formulation where the

scatterer is modeled either as a non-penetrable object

with the PEC boundary condition or as a penetrable

object. In the first case, the PEC condition, n×E = 0,
is enforced to the surface integral representation of the

electric field and the solution is found with the elec-

tric field integral equation formulation [16, 17]. In this

case, the fields inside the object are not modeled.

In the latter case, the scatterer is penetrable and the

fields are modeled also inside the object. On the sur-

face, the interface conditions, i.e., the continuity of the

tangential electric and magnetic fields, are required

and the solution is found with the Poggio–Miller–

Chang–Harrington–Wu–Tsai (PMCHWT) formula-

tion [18]. In both cases, the surface current densities

are approximated with the triangular Rao–Wilton–

Glisson (RWG) [16] basis functions, the equations are

converted into matrix equations with Galerkin’s test-

ing procedure, and the matrix equations are solved

with a direct method.

The message of the curves in the figures is clear. As

the permittivity of the penetrable spheres increases,

the scattering cross section approaches that of the PEC

cube, both in the backward and forward scattering di-

rections. However, the convergence for the purely di-

electric cube is slow due to the jumps and resonances

in the curve as the permittivity increases towards the

EVL case. On the other hand, if the permeability de-

creases at the same time as the permittivity increases,
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Fig. 4. The normalized backscattering cross section

of a PEC cube (ka = 3), compared with penetrable

cubes of the same size but of varying permittivity. One

of the cubes is purely dielectric and the other has also

diamagnetic response. The cross section is normal-

ized by wavelength squared.
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Fig. 5. The same as in Figure 4, the forward scattering

cross section.

the scattering coefficients approach very soon those of

the PEC cube. For instance, when ǫr = 1/µr = 500,
the relative difference in the cross section is a couple

of percents.

The EVL case (ǫr → ∞, µr = 1) is numeri-

cally challenging, because the wave number inside

the object becomes very large and the Green’s func-

tion highly oscillating. This may partially explain the

jumps in the curves in Figures 4 and 5. In the other

case, (ZNZ, ǫr → ∞ and µr = 1/ǫr), the refractive

index m =
√
ǫrµr is unity and the problem is much

easier to solve with numerical methods.
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C. Effect of losses

In microwave and radio engineering, a common

practice is to assume that good conductors, for exam-

ple copper or some other metals, behave reasonably

as approximations for PEC. In the frequency domain,

the effect of conductivity σ comes through the imag-

inary part of the permittivity (Im ǫ = −σ/ω). This

raises the question whether the ideal PEC behavior

can be synthetized more effectively when the imagi-

nary part—instead of the real part—of the permittivity

becomes very large.

In Figure 6, we compare the scattering efficien-

cies of various spheres (with size parameter kr = 1)
against the ideal PEC sphere. The scattering effi-

ciency is a dimensionless parameter, defined as the

integrated total scattering cross section divided by the

geometrical cross section of the scatterer. We plot

the absolute difference of the efficiency of the PEC

sphere and that of the material sphere when the mate-

rial parameters grow to very large values. Three dif-

ferent cases are treated: purely dielectric (ǫr → ∞),

dielectric–magnetic (ǫr → ∞, µr → 0), and electri-

cally dissipative (σ → ∞).

100 1000 104 105 106
b

10-4

0.001

0.01

0.1

1

10

 Qsca -QPEC¤

Fig. 6. The absolute value of the difference be-

tween the scattering efficiency of a PEC sphere and

three material realizations: dielectric sphere (ǫr =
b, µr = 1, solid line), dielectric–magnetic sphere

(ǫr = 1/µr = b, short-dashed line), and dielectrically

lossy sphere (ǫr = 1− j b, µr = 1, long-dashed line).

The size of the sphere is kr = 1.

The curves show that when the parameter b grows
to very large values, all material realizations approach

the PEC case in terms of the scattering efficiency. As

was seen also earlier (Figure 3), the purely dielectric

sphere exhibits narrow resonances which destroy its

possibilities of being a very good PEC approxima-

tion. Furthermore, even if the resonances were fil-

tered away from this curve, the error would still de-

crease rather slowly. The ZNZ curve (large permittiv-

ity along with small permeability) approaches much

faster the PEC state than the baseline of the EVL

curve.

In the case of the conducting sphere in which the

imaginary part of the permittivity grows, no reso-

nances are seen, which is also expected. Also, the er-

ror in approximating PEC scattering becomes smaller

for increasing conductivity. However, the speed at

which the error becomes smaller is clearly lower that

of the EVL curve. Numerically it can be shown that

the asymptotic behavior of the latter (ZNZ) one is b−1

whereas the curve showing the error of the conducting

sphere decreases as b−1/2.

A further disadvantage of the model of the PEC ob-

ject as an extreme conductor is that for a conducting

scatterer, the extinction is larger than the scattering

cross section. This is due to the dissipation of the

fields that penetrate within the skin depth of the ob-

ject which means that absorption adds up to scattering

with the result that extinction increases. Hence the

comparisons of the scattering cross section and the ex-

tinction cross section against the PEC case yield dif-

ferent results. In this respect, the ZNZ object is much

closer to the PEC object; both ZNZ and PEC lack ab-

sorption and therefore have unit albedo.

Figure 7 displays the albedo (defined as the ratio

of the scattering cross section to the extinction cross

section [19, p. 183]) of a dielectric, lossy sphere (size

parameter kr = 1) as a function of the imaginary part

of the permittivity. The figure shows that the scatter-

ing and extinction can be clearly different, even if it

is true that for low losses on one hand and high losses

on the other, the albedo approaches unity.

D. Single and double negative permittivity

For metals at microwave frequencies, the approxi-

mation of a very large imaginary part of the permit-

tivity is well-founded. However, far higher in the fre-

quency range, the imaginary part of metal permittivity

decreases according to the Drude dispersion model,

and the dominating character of the dispersion is the

negative real part of the permittivity [20]. This fact

suggests one further possibility to mimic PEC objects:

with negative-permittivity scatterers.

Figure 8 displays the scattering efficiencies of vari-

ous spheres with size parameter kr = 3 as a function
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Fig. 7. The albedo (scattering efficiency divided by

extinction efficiency) of a lossy dielectric sphere as a

function of the (negative) imaginary part of the per-

mittivity. Solid line: ǫ = 2 − jǫ′′, long-dashed line:

ǫ = 50− jǫ′′, short-dashed line: ǫ = 1000− jǫ′′. The
sphere size is kr = 1.

of increasing medium parameter values. In addition to

the dielectric–magnetic and lossy objects, also single

and double-negative permittivity scatterers are shown.
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b
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Fig. 8. The scattering efficiencies of four spheres:

dielectric–magnetic sphere (ǫr = b, µr = 1/b, solid
line), dielectrically lossy sphere (ǫr = 1− j b, µr = 1,
long-dashed), single-negative sphere (ǫr = −b, µr =
1, medium-dashed), and double-negative sphere (ǫr =
−b, µr = −1/b, short-dashed). The size of the sphere
is kr = 3. The dotted line shows the PEC value.

We can observe from the curves that a negative-

permittivity scatterer does not perform better in ap-

proximating the PEC response than the lossy scatterer

(with large imaginary permittivity). However, if also

the permeability is negative and small, in addition to

the large and negative permittivity, the scattering ef-

ficiency approaches more effectively that of the PEC

sphere, and the convergence speed is the same as for

the positive dielectric–magnetic (ZNZ) sphere.

VI. DISCUSSION

The previous analysis has focused on the differ-

ence between the boundary problem and the interface

problem. One needs to make a clear distinction be-

tween ideal boundaries on one hand and material in-

terfaces on the other. Boundary conditions can serve

as approximations to inhomogeneous real world struc-

tures (analytic approach) and vice versa: one can try

to mimic boundary conditions using electromagnetic

materials (synthetic approach). To be able to approx-

imate boundary conditions, extreme-parameter mate-

rials were needed.

The clear message of the analysis is that to simulate

a PEC object by a homogeneous isotropic material ob-

ject, it is most efficient to use a material with simul-

taneously large permittivity and small permeability,

instead of a pure dielectric medium with either high

permittivity or high conductivity. In other words, a

ZNZ (“near-zero impedance”) medium is better than

an EVL (“epsilon-very-large”) medium.

It is important to note that in addition to the re-

quirement of small value for the relative impedance

in the ZNZ picture, there is an additional degree of

freedom in the extreme-medium desciption: the re-

fractive index m. In the calculations of this study, m
was taken as unity. This is not compulsory. In fact, the

errors in scattering magnitudes of ZNZ objects com-

pared against PEC are functions of m. However, it

seems that the best value of m of a ZNZ scattering

in simulating PEC behavior is always quite close to

unity, even if not exactly. The optimum depends on

the shape and size of the object.

This result about the PEC–ZNZ connection can be

generalized to perfectly magnetic conductors. Even if

the analysis did not treat PMC boundary conditions,

we can make use of the duality between electric and

magnetic quantities in Maxwell equations and con-

clude that a material realization for a PMC bound-

ary is a “very large impedance” (ZVL) material rather

than a “mu-very-large” (MVL) medium.

One important question in trying to simulate

boundary conditions with electromagnetic materials is

uniqueness. The synthesis of a given boundary condi-

tion does not necessarily lead to unique recipes. The

fabrication of a DB boundary (the normal components
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of the electric and magnetic flux densities are forced

zero) is an example showing the degrees of freedom

in this respect. To create the effect of a DB surface,

one possibility is to take uniaxial material in which

the permittivity and permeability eigenvalues vanish

in the axial direction. If such a material is cut so that

the interface is perpendicular to the optical axis, the

normal components of both the electric and magnetic

flux densities are forced to vanish on the surface.

However, as shown in [21], another choice to cre-

ate a DB boundary is by use of the so-called IB ma-

terial. The IB medium, also termed as skewon–axion

medium [22], is characterized by a four-dimensional

material tensor dominated by the antisymmetric part

with the additional PEMC parameter. The number of

medium parameters in the general IB medium is 16,

meaning that there are several degrees of freedom in

the construction of a materials to give rise to a DB

boundary.

The uniqueness question can, also, be raised in

connection of the PEC synthesis. The condition on

the PEC boundary is that the tangential electric field

vanish. On the other hand, due to the continuity

of the tangential electric field across an interface, it

suffices to force the tangential electric field within

the synthetized medium to vanish. Allowing for an

anisotropic medium, this can be done by letting the

tangential component of the permittivity dyadic grow

to infinity (and, at the same time, the normal com-

ponent of the permeability dyadic decreases to zero).

Such an anisotropic medium would be another choice,

in addition to the isotropic ZNZ medium, to simulate

the PEC behavior.

Another aspect of the question of uniqueness of

the PEC realization concerns the realization of in-

finite material parameters. The numerical calcula-

tions in this article have indicated that there are sev-

eral different material realizations (for example, EVL,

ZNZ, well-conducting, double-negative, etc.) of me-

dia which all in the extreme limit approach the PEC

behavior. In this sense, the PEC realization can be

considered non-unique. However, the message is

that for pragmatic and numerical purposes, the ZNZ

method to mimic PEC behavior is computationally

most effective.
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