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Abstract ─ The frequency dependence of the 
effective permittivities of simple dielectric 
composites is evaluated by different quasi-
dynamic homogenization methods. Three retrieval 
approaches based on the scattering parameters are 
proposed for dielectric materials. A compensation 
method for the conventional Nicolson-Ross-Weir 
(NRW) retrieval is applied to eliminate the Fabry-
Pérot (FP) resonances and their distortions of the 
retrieval results. All these quasi-dynamic 
homogenization methods are then evaluated by 
comparing the corresponding retrieval results 
against one another. Finally, by comparing these 
retrieval results with the static Lord Rayleigh 
prediction, the limitation of the quasi-static 
approximation for such composites is considered. 
  
Index Terms ─ Dispersion diagram, 
homogenization, Rayleigh mixing rule, S-
parameter retrieval.  
 

I. INTRODUCTION 
Homogenization is a method whereby the 

complicated and spatially varying microscopic 
fields existing in a heterogeneous medium, when it 
is excited by an electromagnetic (EM) wave with 
sufficiently large wavelength, are replaced by 
smoothly varying (or macroscopic) fields. These 
fields can be used for characterizing the behavior 
of the medium with effective parameters [1, 2], the 
permittivity ε and the permeability μ. Indeed, 
depending on the symmetry, the arrangement and 
the intrinsic EM properties of the constituents of 
the composites, the effective bulk medium may 
exhibit anisotropic, bianisotropic, or chiral 
characteristics [3]. We, however, confine our 

focus to mixtures composed of linear, lossless, and 
passive dielectric materials, which in turn allows 
us to compress all EM properties approximately 
into the effective permittivity εeff. 

In electrostatics, the permittivity of the 
effective bulk medium εeff can be successfully 
predicted by various classical mixing formulas. 
These mixing rules in general determine εeff in 
terms of the permittivity of the individual phases 
and their volume fractions for specific inclusion 
shapes. The Lord Rayleigh formula is taken due to 
its sufficient accuracy as the static prediction for 
the εeff of the composites of our interest in this 
paper. For spherical inclusions (εi) with volume 
fraction p dispersed in the host medium (εe), the 
Rayleigh effective permittivity εRay reads [4], 
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When the scale of the local inhomogeneity is, 
however, no longer very small compared with the 
wavelength of the applied fields, the validity of the 
quasi-static description of heterogeneous media 
with effective medium parameters becomes a 
critical issue. 

With the recent emergence of metamaterials, 
many researchers [5, 6] had extended such a 
homogenization procedure into this sensitive 
region, where the dimension of unit cell is usually 
an appreciable fraction of the wavelength [7], to 
characterize their EM properties with the effective 
medium parameters ε and μ. On the contrary, in 
[8] the authors found that the conventional 
effective material parameters are meaningless for 
an optical fishnet metamaterial due to the 
mesoscopic nature and the related spatial 
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dispersion. Instead of questioning its validity, we 
discuss in this paper how far upwards in frequency 
range we can approximately apply the static 
permittivity. We explore this problem by 
considering the quasi-dynamic homogenization of 
two kinds of simple composites — a transversally 
infinite slab and a simple cubic lattice, and 
constrain the homogenization of the slab to only 
one of the principal axes to eliminate the spatial 
dispersion influences. It is furthermore assumed 
that the constituents of the composites are 
dielectric materials and no artificial magnetism is 
generated by the homogenization. In order to 
determine the limit of the quasi-static 
approximation, we present four different S-
parameter-based methods and the ka–βa 
dispersion diagram method [9] to retrieve the 
frequency dependence of the effective permittivity 
of two composites, and then compare them with 
the corresponding static Lord Rayleigh prediction 
to decide up to what extent it still holds the 
predictive power. It is moreover demonstrated that 
below such limits the spatial dispersion can be 
neglected for the simple cubic lattice. 
 

II. GEOMETRY SETUP 
Composites are analyzed in this paper using 

two models. The first one is a slab of thickness d 
which is infinite in the transverse direction (x and 
y) and formed from 9 cubic unit cells in z 
direction, while the other one is an infinite simple 
cubic lattice. Both composites are composed of the 
same unit cells. The unit cell is constructed by a 
dielectric spherical inclusion with relative 
permittivity εi centered in a dielectric cube (εe = 1) 
with edge length a, and the inclusion volume 
fraction is p. In this paper, we use the 3D EM 
simulator CST Microwave Studio (CST MWS) 
[10] to compute the required data for the εeff 
retrievals of different mixtures. 

 
A. The slab 

We consider the situation when a plane wave 
with y-polarized electric field is normally incident 
on the transversally infinite slab. Such a scenario 
can be realized by a finite structure with proper 
boundary conditions in CST MWS, due to the 
symmetry of the field distribution. As shown in Fig. 
1, a slab of thickness d is made of 9 unit cells in a 
row, and an additional free space is added to 
prevent higher modes from propagating. PEC 

boundary conditions are assigned to the slab’s upper 
and lower surfaces in y direction, while in x 
directions PMC boundaries are given. The whole 
geometry is then excited by two waveguide ports, 
which as well compute the S-parameters for 
retrievals. Only the electric response in y direction 
is of interest due to the y-directionally polarized 
electric field. Since the whole structure is 
symmetric with respect to the xz and yz planes, the 
computational complexity can be reduced by 
defining them respectively as electric and magnetic 
symmetry planes. Therefore, merely one quarter of 
the structure needs to be computed. 

 

 
Fig. 1. 3D simulation configuration for the nine 
layer transversally infinite slab in CST MWS. 

 
B. The simple cubic lattice 

The simple cubic lattice can be constructed in 
CST MWS readily by assigning periodic boundary 
conditions to all six surfaces of the cubic unit cell. 
The ka–βa dispersion diagrams of the TEM modes 
for three different propagation directions, along the 
cube edge, surface diagonal and volume diagonal, 
are then generated respectively for retrievals.  
 

III. RETRIEVAL METHODS 
Many sophisticated techniques have been 

employed for the practical measurements to 
estimate the dielectric properties of materials [11]. 
But the full wave simulator, which eliminates 
many realistic uncertainties, enables us to retrieve 
the permittivities of the proposed composites with 
more straightforward methods. In this section, 
different retrieval methods will be introduced 
targeted on different composites. For the slab, four 
S-parameter-based methods are applied, while the 
ka–βa dispersion diagram approach is presented 
for the infinite lattice. 

 
A. The slab case — S-parameter-based methods 
1. The conventional NRW method 

PMC 

PEC 

Addition free space 
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The classical approach of retrieving the 
effective ε and μ from S-parameters was originally 
studied by Nicolson, Ross, and Weir [12, 13]. Smith 
and coauthors improved and extended this method 
to determine the effective medium parameters of 
metamaterials [14]. Later, Chen and coauthors 
presented a more robust method aiming at 
metamaterials as well [15]. For a plane wave 
normally incident on a homogeneous slab with 
thickness d, the simulated S-parameters are related 
to n and z by [15]: 
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where k denotes the free space wave number. The 
sign ambiguity in Eq. (2) can be cleared by the 
requirement Re(z) ≥ 0. Once z is determined, the 
imaginary part of the refractive index n will be 
solved by Eq. (3) and (4). The branch index m 
(integer value) of the logarithm function is then 
decided by the non-magnetic presumption. The 
effective permittivity and permeability can, hence, 
be directly calculated from the refractive index n 
and the impedance z by εeff = n/z, μeff = nz. 
 
2. Retrieval from either S11 or S21 

It is important to notice that for nonmagnetic 
materials with the assumption μeff = 1, when a 
plane wave is normally incident on a homogenous 
slab with thickness d, the gap between S-
parameters and medium parameters εeff can also be 
bridged by the following equations, 
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where R = (z–1)/(z+1) = (1–εeff
1/2)/(1+εeff

1/2). Both 
Eq. (5) and (6) then become functions of only one 
variable εeff, meaning either S11 or S21 contains 
sufficient information for the retrieval. In other 
words, this fact enables us to retrieve the effective 

permittivity from either one of S-parameters by 
solving the complex roots of Eq. (5) or (6). 
 
3. Effective wavelength retrieval (EWR) 

For a lossless slab, the FP resonances will 
occur when the thickness of the slab d is 
equivalent to an integer t multiple of one half of 
the effective wavelength of the field inside the slab. 
In this occasion, there is no reflection, i.e., S11 = 0. 
From either the above condition or Eq. (5), we 
have exp(–j2nkd) = 1, which gives the following 
equation, 

 
2
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2

tt
t
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where λt is the free space wavelength at the FP 
resonance of order t. Although this method is only 
valid for the retrieval at frequency points 
corresponding to the FP resonances, it provides a 
good comparison and validation for the results by 
other retrieval approaches. 

In particular, the FP resonance and its 
influence on the retrieved results are usually 
neglected in the previous literature, partially due to 
the narrow retrieval frequency band. Another 
major factor is that the test samples are usually 
lossy materials, such as various kinds of 
metamaterials. 
 

B. The lattice case ─ ka–βa method 
The frequency dependence of the εeff of the 

infinite simple cubic lattice can be addressed as 
long as the ka–βa dispersion diagram is obtained, 
given that the effective wave number β is related 
to k by β = k εeff

1/2. 
For an infinite lattice composed of nonmagnetic 

materials, the following eigenfunction can be 
derived from Maxwell equations [16],  

     
2

1
,

c




            
H r H r

r
      (8) 

where H(r) denotes the magnetic field pattern of 
the harmonic mode, c is the free space light speed 
and ω represents the eigenfrequency. Only the 
TEM mode H(r) = H0 e

–jβa needs to be considered 
here. Then according to Eq. (8), under a certain 
propagation direction, the eigenfrequencies ω (or 
k) can be calculated by giving different phase 
shifts βa. The desired ka–βa dispersion diagram 
can thus be generated. In CST MWS, a certain 
propagation direction can be specified by 
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systematically varying the three phase shifts βxa, 
βya, and βza between the periodic boundary pairs 
in the x, y, and z directions. Three different 
propagation directions are considered in this paper 
for the simple cubic lattice — along the edge, the 
surface diagonal, and the volume diagonal of the 
cubic unit cell. The computed field pattern is then 
utilized to identify the direction of the retrieved 
εeff. 

 
IV. RESULTS AND DISCUSSION 

For the quasi-dynamic homogenization, an 
important parameter is the number of unit cells in 
one effective wavelength λeff at a certain 
frequency. We define the effective wavelength by 
reducing the free-space wavelength according to 
the static Rayleigh prediction, λeff = λ/(εRay)

1/2. But 
since the frequency dependence of εeff is also of 
our interest, we normalize the frequency to f20, 
which denotes the frequency when the reduced 
wavelength is 20 times the length of the unit cell, 
λeff = 20a.  
 

A. Compensation method 
For the composite with p = 0.1, εi = 10, and εe 

= 1 shown in Fig. 1, the comparison of the 
retrieved effective permittivities by four S-
parameter-based methods is visualized in Fig. 2. 
According to Eq. (1), the Rayleigh εeff for such a 
mixture is roughly 1.2434 (green dotted), and at 
low frequency all the results are in good 
agreement with this value. As the frequency 
increases, the effective permittivities gradually 
deviate from the static prediction and grow as 
expected. However, for the NRW (black solid), the 
FP resonances appear at 2.9851, 5.9617, 8.921, 
11.851, and 14.738 GHz, and there is clearly a 
systematic leap following each FP resonance. For 
the S11 method (blue dot-dashed), the retrieved 
permittivity presents a small variation around the 
more stable results by the S21 approach (red 
dashed). As for the EWR (black dots), the results 
not only coincide as expected with those by S11 
since the EWR is actually a special case of the S11 
method, but follow closely those by the S21 
method. The EWR therefore provides a good 
confirmation of the validity of the S21 method. 

As shown in Fig. 2, the presence of the FP 
resonance prevents us from utilizing the results by 
the conventional NRW technique. In order to 

compensate its influence, the μeff by the NRW is 
also shown in Fig. 3. It can be seen that although 
we use the condition that μeff is closest to unity to 
settle the branch index m, the retrieved μeff leaps 
away from 1 after each FP resonance. A further 
investigation into the calculated n and z indicates  

 

0 1 2 3 4 5
1.24

1.25

1.26

1.27

1.28

1.29

 f /  f
20

R
e(

 
ef

f )

 

 

S
11

S
21

NRW


eff

Rayleigh

 
Fig. 2. The retrieved permittivities by four 
different S-parameter-based retrieval methods. 
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Fig. 3. The retrieved μeff by the conventional NRW 
method. 
 
that the ill-retrieved z causes the abnormal leaps of 
the εeff and μeff, while the n displays reasonable 
frequency dependence. The effective permittivity 
can hence be calculated by εeff = n2 instead of εeff = 
n/z, provided the nonmagnetic assumption μeff = 1.  

Figure 4 clearly illustrates that the 
compensated result has an excellent agreement 
with that by the S21 method. It should be noticed 
that since the electrical size of the dielectric 
inclusion (whose permittivity is reasonably low) is 
so small that the magnetic response can be 
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neglected, and since no other assumptions are 
applied, the compensation method does make 
physical and numerical sense. In addition, the 
compensated εeff is not exactly the same as that by 
the S21 method, suggesting that these two methods 
are independent of each other. 

In particular, the unstable retrieval by the S11 
method in Fig. 2 inspires us to study the imaginary 
parts of the εeff, respectively, by the S11 and S21 
methods. Figure 5 illustrates that the S21 method is 
superior to the S11 method in that it manages to 
present clearly smaller values for the imaginary 
part of the εeff for this lossless mixture. This point 
shows that the S11 method is not suitable for such 
small reflection cases. 
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Fig. 4.  The compensated result to the NRW 
method compared with those by the other three S-
parameter-based approaches for the composites 
with p = 0.1, εi = 10, and εe = 1. 
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Fig. 5.  Comparison between the imaginary part of 
the retrieved εeff by only S11 and that by only S21. 
 

B. ka–βa retrieval and spatial dispersion 

Figure 6 visualizes the retrieved εeff for 
different wave propagation directions, and its 
legend provides not only the direction of 
propagation but also that of the field polarization. 
The ‘SD–VD’ (short for surface diagonal–volume 
diagonal), for instance, denotes the case when a 
plane wave travels along the surface diagonal of 
the cubic unit cell with a volume-diagonal-
polarized electric field. As can be seen, the 
retrieved permittivities converge to the static 
Rayleigh prediction when the frequency decreases. 
For small values of f/f20, the composite looks very 
isotropic, and the spatial dispersion becomes more 
apparent as the value of f/f20 increases over 2, i.e., 
a/λeff is larger than 1/10. Another interesting 
observation is that in this 3D scenario, waves 
propagating in different directions with the electric 
field in the same direction will result in the same 
dispersion curve. As shown in Fig.6, the ‘Edge–
Edge’ curve agrees well with the ‘SD–Edge’ curve. 
Moreover, the dispersion curve when the electric 
field is polarised along the edge deviates most 
from the dotted curve predicted by the Rayleigh 
mixing rule, while the volume-directed electrical 
field leads to least deviation. The dispersion curve 
resulting from a surface-diagonal-directed 
electrical field lies between these two utmost cases. 
 

0 1 2 3 4 5
1.24

1.25

1.26

1.27

1.28

1.29

 f /  f
20

 
ef

f

 

 

Edge–Edge
VD–SD
SD–VD
SD–Edge
Ray

 
Fig. 6.  The retrieval results for different directions 
of propagation when p = 0.1 and εi = 10. Note that 
the relative difference |εEdge–Edge – εSD–VD| ⁄ εRay is 
less than 1% up to 5 in terms of f/f20 (SD and VD 
stand for surface and volume diagonal). 
 

C. Frequency dependence of εeff and quasi-
static approximation limit 

1. Frequency dependence of εeff 
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The one-principal-axis homogenization of the 
9-layer slab (y direction) and the infinite simple 
cubic lattice (along the edge) are analyzed and 
shown in Fig. 7. The result shows that the 
permittivities of these two composites are in good 
agreement with one another, which further 
confirms the validity of all the presented εeff 
retrieval methods. In order for further validation, 
the εeff of these composites with the similar 
geometry but larger inclusions (p = 0.3) are 
considered. As shown in Fig. 8, the εeff of the slab 
along y direction and that of the lattice along the 
cube edge have a good match. Moreover, stronger 
spatial dispersion is observed, and the relative 
difference |εEdge–Edge – εSD–VD| ⁄ εRay is less than 1% 
up to 3.24 in terms of f/f20.  
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Fig. 7.  The comparison among all the retrieved 
permittivities by different methods for p = 0.1 and 
εi = 10. 
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Fig. 8.  The comparison among all the retrieved εeff 
by different methods for p = 0.3 and εi = 10. 
 

It is also noted from Fig. 8 that the S11 method 
still seems unstable but the variation is much 
smaller than in Fig. 7 due to the increase of the 
targeted effective permittivity. For smaller p and 
moderate εi = 10, S11 is very small in amplitude 
and close to zero. When p increases, S11 becomes 
larger and thus less sensitive to the errors. So the 
tolerance of the S11 method could be improved as 
sufficiently large S11 is encountered, for instance, 
when the composites with a larger p or higher 
permittivity contrast are considered. 
 
2. Quasi-static approximation limit 

These results provide us possibilities to 
address the question regarding the limitations of 
the quasi-static homogenization principles for 
these dielectric composites with relatively small 
permittivity contrasts and volume fractions. 

 It is true that the homogenization with the 
effective constitutive parameters is in essence an 
approximation process, and may become less 
meaningful in the rigorous sense when the 
geometry details of the composites are not 
sufficiently small compared with the free-space or 
effective wavelength inside [8, 17]. However, it 
will be still interesting to quantitatively explore 
the limitation of the quasi-static approximation in 
a quasi-dynamic range by defining some criterion. 
In this paper, the relative difference between the 
retrieved εeff and the static Lord Rayleigh 
prediction εRay is chosen as a proper target to be 
investigated, i.e., |εeff – εRay| ⁄ εRay. 
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Fig. 9.  The relative difference between all the 
retrieved permittivities and the static Rayleigh 
prediction for p = 0.1 and εi = 10. 
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Figures 9 and 10 illustrate the relative 
differences between the retrieved εeff and the static 
prediction εRay for different p. Let us regard 1% 
relative difference as a satisfactory tolerance, and 
define the limit frequency meeting this criterion as 
fL. Thus, the quasi-static approximation limit is 
denoted as fL/f20. Then for composites of our interest 
with different p, the one-principal-axis quasi-static 
approximation can be considered to be valid up to 
3.5 and 2.1 in terms of f/f20, correspondingly a/λeff ≈ 
1/5.7 and 1/9.5. Within these limits, the relative 
difference between the εeff along the edge and the 
volume diagonal, i.e., |εEdge–Edge – εSD–VD| ⁄ εRay, is 
also less than the 1% satisfactory tolerance for the 
cubic lattice. As a result, the spatial dispersion can 
be neglected below these quasi-static limits. 
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Fig. 10.  The relative difference between all the 
retrieved permittivities and the static Rayleigh 
prediction for p = 0.3 and εi = 10. 
 

To grasp the dependence of this limit on the 
inclusion properties, more composites, similar to 
that shown in Fig. 1 but with different εi and p, are 
considered and the computed limits fL/f20 are shown 
in Table 1. It is shown that this limit decreases with 
the increase of either the permittivity contrast or the 
inclusion volume fraction. That is, for increasing 
frequency, the quasi-static approximation will lose 
its predictive power more quickly for the composite 
whose inclusions have stronger interactions. 
 

3. Quasi-static limit for one-dimensional lattice 
The computational complexity of the 3D 

simulation prevents us from any exhaustive 
analyses for different p and εi. In order to confirm 
the results above, a computationally inexpensive 

1D periodic lattice in Fig. 11 is considered, whose 
dispersion equation reads [18], 

2 1 1 2 2 1

1 2
1 1 2 2 1
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    (9) 

where the wave numbers are k1 = k (ε1)
1/2, k2 = k 

(ε2)
1/2, the volume fraction of the material with ε1 

and thickness d1 is p = d1/d2 and d2 is the unit cell 
width. The frequency dependence of the εeff can 
therefore be calculated according to β = kεeff

1/2. 
We can then find out in a similar way the quasi- 

 
Table 1:  fL/f20 for varying inclusion permittivity εi 

and volume fraction p for the 3D composites 
          εi 

p 
3 10 60 

0.1 7 3.5 1.6 
0.2 5.2 2.4 1 
0.3 4.5 2.1 0.8 
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Fig. 11. fL/f20 as a function of p and ε1 for a 1D 
lattice with ε2 = 1. 

 
static limit as a function of full sets of p and ε1. In 
this case, the satisfactory tolerance is defined as 
1% deviation of the quasi-dynamic εeff from the 
Maxwell Garnett prediction (εMG = pε1+ε2–pε2), i.e., 
|εeff – εMG| ⁄ εMG. The comparison between Table 1 
and Fig. 11 shows that for the same choice of p 
and εi, the quasi-static limits fL/f20 for the 3D and 
1D composites are close to each other despite the 
obviously geometrical differences. Figure 11, also, 
supports our remarks in the previous subsection 
that the increase of the permittivity contrast will 
reduce the fL/f20, but it does not change 
monotonously with the volume fraction p for this 
1D lattice. The reason we do not observe a similar 
phenomenon in 3D composites can be explained 

d1 

d2 

ε1 ε2 
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as follows. If clusters are not allowed, the 
maximum p of such composites is about 0.52, with 
which the εi cannot dominate the εeff. The Rayleigh 
result, for example at p = 0.5, εe = 1, and εi = 60, is 
roughly 4.52, which still inclines toward the host 
permittivity εe. Thus, we are in a region similar to 
the green area in Fig. 11, where fL/f20 decreases 
monotonously with increasing p. 
 

V. CONCLUSION 
The quasi-dynamic approximation of simple 

composites is studied. By comparing the retrieved 
quasi-dynamic εeff with the static Lord Rayleigh 
prediction, the frequency limit of the quasi-static 
approximation is then considered. 

Moreover, different homogenization methods 
are developed and validated by a comparison of all 
the retrieval results. For the slab composite, the 
conventional NRW method will give rise to FP 
resonances distorting the result. We present a 
compensation approach to counteract such an 
influence, which yields the result matching that by 
the S21 method. The retrieval method involving 
only S21 is a more broadband approach than the 
others utilizing S11, particularly for these low 
reflection cases. It also deserves to be mentioned 
that the retrieval method from only one of the S-
parameters may be unstable when the desired 
permittivity varies over a large dynamical scale, 
since the algorithm utilized to seek complex roots 
of Eq. (5) and (6) is sensitive to the initial guess. 
In particular, at the transparent window when S11 
equals zero, the εeff can be separately calculated 
using the EWR method, which provides a good 
validation for other retrieval techniques.  

For the infinite lattice, the spatial dispersion is 
smaller than the deviations from the static 
Rayleigh prediction, shown in Figs. 6 and 8. This 
phenomenon gives us the possibility of defining a 
dynamic effective permittivity different from the 
static one and yet relatively independent of the 
propagation direction in the quasi-dynamic range.  

Finally, the quasi-static approximation limits 
fL/f20 are calculated for the composites with similar 
geometry but different permittivity contrasts and 
inclusion volume fractions, according to the 
criterion that |εeff – εRay| ⁄ εRay ≤ 1%. Unfortunately, 
we fail to establish such a definition of the limit 
that becomes parameter-independent for these 
composites.  It is, however, interesting to find out 
that when the frequency increases, the stronger the 

interactions among inclusions are, the quicker the 
quasi-static approximation will lose its predictive 
power for the εeff of the mixtures, if clusters are 
not allowed. A supplementary 1D lattice is 
analogically studied to confirm our conclusion. 
Our parallel work [19] focuses on the influence of 
finite slab thickness on the homogenization and 
the characterization of different layers comprising 
the slab, whose geometry setup is shown in Fig. 1. 
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