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Abstract ─ A fast solver based on multilevel La-
grange interpolation of homogenous space electric 
and magnetic field Green’s functions is discussed. 
Broadband applications are possible due to a 
wavelength adaptive multilevel scheme. By an 
FFT-technique, the pertinent translation operators 
are diagonalized. An impedance boundary condi-
tion (IBC) is employed considering electric and 
magnetic currents for the approximate treatment of 
non-metallic objects. The common mixed-
potential integral equation and a direct field for-
mulation are both discussed. In general, the direct 
field formulation leads to more accurate results in 
conjunction with interpolated Green’s functions, 
especially for low frequency problems. The effi-
ciency of the algorithm is shown in several numer-
ical examples. 
  
Index Terms ─ Electromagnetic radiation, elec-
tromagnetic scattering, fast integral solvers, inte-
gral equations.  
 

I. INTRODUCTION 
Surface integral equation methods belong to 

the most efficient techniques for solving electro-
magnetic scattering or radiation problems. When 
employing method of moments (MoM) discretiza-
tion, the integral equation (IE) operators are con-
verted into matrix vector products [1, 2]. Unfortu-
nately, these IE operators are in general fully pop-
ulated, causing bad numerical complexities. This 
makes the computation of problems with many 
unknowns very challenging. Hierarchical fast 
solvers have been introduced to overcome this 
problem. One of the most popular methods is the 
multilevel fast multipole method (MLFMM) [2]. 
In this method, discretization elements with small 
separations are grouped hierarchically and far-

range interactions are computed among groups of 
basis functions on appropriate levels in the ac-
cordant hierarchy. Interactions between the single 
basis/testing functions are just contained in the 
translation operators between elements, which are 
very close to each other. Due to the strongly in-
creasing magnitude of the Hankel functions, the 
MLFMM suffers a low frequency breakdown. 
This makes the numerical evaluation of the 
MLFMM diagonal plane wave based translation 
operators very difficult [2]. Hence, other ap-
proaches have to be found. One possibility to 
overcome this drawback is to include evanescent 
waves within the respective translation operators 
to better capture reactive fields [3]. Furthermore, it 
is also possible to work with the standard multi-
pole-based translation operators at low frequencies 
[4], which are full operators. With respect to the 
diagonal MLFMM, both approaches have in-
creased computational complexity. 

For approximating smoother fields at lower 
frequencies, polynomial field representations ap-
pear to be very appropriate as low interpolation 
orders may be sufficient. One popular method 
working with a non-hierarchical approximation on 
a grid of equally spaced points covering all objects 
is the adaptive integral method (AIM) [7]. Alt-
hough the approximation itself is non-hierarchical, 
a hierarchical acceleration of the translation step is 
performed by an FFT. Due to the AIM grid struc-
ture, empty portions of the solution domain are 
also covered causing unnecessary computations.  

A hierarchical method employing multilevel 
Taylor series expansion of the respective Green’s 
functions is presented in [5]. In [6], a method 
based on Lagrange interpolation of the Green’s 
functions is proposed. The advantage of Lagrange 
interpolation is its rather constant approximation 
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error throughout the interpolation domain due to 
several interpolation points, whereas the approxi-
mation error of the Taylor expansion increases 
with distance from the single expansion point. 

In this contribution, a method working with 
multilevel Lagrange interpolation based polyno-
mial factorization of Green’s functions, which is 
fully compatible with the well-known MLFMM 
oct-tree is presented. Firstly introduced in [8] for 
perfectly electric conducting (PEC) objects and 
mixed-potential electric field integral equation 
(MPIE) formulation, the method has been expand-
ed for the treatment of IBC objects. The method is 
also applied to magnetic field integral equation 
(MFIE). Mixed-potential and dyadic integral equa-
tion formulations for electric and magnetic cur-
rents are considered and compared. The transla-
tions are only performed between non-empty box-
es within the multilevel configuration. On the var-
ious levels, translations are accelerated by FFT 
without loss of accuracy. Due to the involved oct-
tree structure, near-couplings can be computed by 
direct-MoM. Hence, no pre-correction step is nec-
essary as in AIM or other pre-corrected FFT 
methods. The excellent performance of the algo-
rithm, especially for low-frequency applications, is 
demonstrated in several examples. 

 
II. INTEGRAL EQUATION 

 FORMULATION 
Consider a time-harmonic (time dependence 

𝒎𝒋𝝎𝒕 suppressed) discretized surface integral equa- 
tion (IE) 

 [ ]{ } [ ]{ } { }.J MZ J Z M e+ =  (1) 
{𝐽} and {𝑀} are the unknown electric and mag-

netic surface current expansion coefficient vectors 
and {𝑒} is the excitation vector due to an incident 
plane wave or a delta-gap source [1, 2]. Rao-
Wilton-Glisson (RWG) vector basis functions 
𝐛𝑛(𝐫′) and either RWG or 𝑛� ×RWG testing func-
tions 𝐚𝑚(𝐫) = 𝑛� × 𝐛𝑚(𝐫), 𝑛� being the respective 
surface normal vector, are employed.  

The respective MoM matrix entries are given 
by 
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The excitation vector elements are 
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The parameters 𝝁, 𝜺, 𝒌 and 𝒁 = �𝝁 𝜺⁄  are the 
permeability, permittivity, wavenumber and   
wave impedance of free-space. 𝑮(𝐫, 𝐫′) =
𝒎−𝒋𝒌�𝐫−𝐫′�/(𝟒𝝅|𝐫 − 𝐫′|) is the homogeneous space 
scalar Green’s function, 𝐆�(𝐫, 𝐫′) = ��̅� +
𝟏 𝒌𝟐⁄ 𝛁𝛁�𝑮(𝐫, 𝐫′) the electric field dyadic Green’s 
function, and 𝜶 the so-called combined field inte-
gral equation (CFIE) combination parameter with 
𝟎 ≤ 𝜶 ≤ 𝟏. 𝐄𝒊𝒊𝒊(𝐫) and 𝐇𝒊𝒊𝒊(𝐫) are the electric 
and magnetic field strength due to the respective 
excitation. 

No magnetic surface currents 𝐌𝑨 with the ex-
pansion coefficients {𝑴} occur at the respective 
Huygens’ surface if a PEC object is analyzed and 
equations (1) and (2) determine a unique solution 
for {𝑱}. However, in general this set of equations is 
under-determined and additional equations are 
required. For this purpose, the common impedance 
boundary condition [10] is utilized for dielectrical-
ly coated PEC objects. The IBC is defined on the 
boundary between the exterior of the coating and 
the surrounding medium. It is formulated as 

  (7) 
𝒁𝑨 is the characteristic surface impedance which  
can be approximated according to [10] as 𝒁𝑨 ≈
𝒋𝒁�𝝁𝒓 𝜺𝒓⁄ 𝐭𝐚𝐧(𝒌𝒎√𝝁𝒓𝜺𝒓) with the relative per-
meability and permittivity 𝝁𝒓 and 𝜺𝒓 and the 
thickness 𝒎 of the coating. The IBC (7) is then 
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discretized according to [11] and the resulting 
equations are directly considered within an itera-
tive solver. 

The hyper-singular integrals in (2) and (3) can 
be avoided by the so-called mixed-potential for-
mulation which has only weak 𝟏/𝑹-singularities 
with 𝑹 = |𝐫 − 𝐫′|. After applying some vector-
analytic manipulations to (2) and (3), especially 
the surface divergence theorem [1], the inner 
products involving 𝛁𝛁𝑮(𝐫, 𝐫′) are rewritten in the 
following manner [11]: 
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with the operators 

 
( )

( )
'

'

( ') ( , ') ( ') '

( ') ( , ') ( ') '.
A

s
A

G da

L s G s da

∇∇ = ∇∇ ⋅

=

∫∫

∫∫

L v r r r b r

r r r r
 (9) 

𝑪𝒎 is the boundary curve of the test domain 
and 𝒖�𝒎 is the unit vector in the tangent plane and 
perpendicular to 𝑪𝒎. The mixed-potential cou-
pling integrals with (8) and (9) applied to (2) and 
(3), respectively, are named 𝒁𝒎𝒊,𝑱

𝒎𝒊𝒎𝒎𝒎 and 𝒁𝒎𝒊,𝑴
𝒎𝒊𝒎𝒎𝒎 in 

the following. 
For reducing redundancy of the discretized IE 

operators, which are in general fully-populated 
with respect to the contained far-interactions, an 
appropriate basis change is performed for these 
far-interactions. The basis change is achieved by 
multilevel Lagrange interpolation of the pertinent 
Green’s functions, where the current basis func-
tions are mapped on the interpolation samples. A 
further speed-up is reached by FFT acceleration 
for the computation of the multilevel interactions 
among the interpolation samples. 

 
III. LAGRANGE INTERPOLATION OF 

GREEN’S FUNCTIONS 
The electric field dyadic Green’s function 

𝐆�(𝐫, 𝐫′), the scalar Green’s function 𝐺(𝐫, 𝐫′) and 
its gradient ∇𝐺(𝐫, 𝐫′) can be factorized by La-
grange interpolation with respect to 𝐫 and 𝐫′ em-
ploying Lagrange interpolation factors according 
to 

 (10) 

with Λ𝑖(𝐫) being the respective Lagrange poly-
nomials and 𝑁𝑝 the number of interpolation 
points. When inserted in equations (2) and (3), the 
resulting integrals can be pre-computed and do not 
have to be evaluated in every matrix-vector prod-
uct within an iterative solver. 

By this Lagrange interpolation point represen-
tation, an accelerated evaluation of the discretized 
IE operators can be achieved in two ways. First, 
the necessary number of interpolation points can 
be considerably smaller than the number of basis 
functions. This is in particular the case for low-
frequency applications where very many discreti-
zation steps per wavelength are needed in order to 
represent fine geometrical details. Second, the 
coupling computation effort can be considerably 
reduced when employing an FFT-based coupling 
computation. 

 
IV. DIAGONALIZATION OF THE 

TRANSLATION OPERATOR 
The computational effort of the presented La-

grange interpolation based integral equation repre-
sentation has a disadvantageous large computa-
tional effort for the far-interactions of 𝑂�𝑁𝑝3𝑁𝑝3� =
𝑂�𝑁𝑝6� for one pair of interpolation domains (3D 
cubes) with 𝑁𝑝 being the number of interpolation 
points. This is because the interpolations must in 
general be performed in three dimensions, even if 
a surface integral equation is considered. Further-
more, the corresponding translation operators are 
still full operators. 

To overcome this drawback, an FFT-based 
method for diagonalizing the corresponding trans-
lation operators is employed. In particular the for-
mulation for 𝑍𝑚𝑛,𝐽

𝑑𝑖𝑟𝑒𝑐𝑡 according to (1) and (2) is 
considered but everything applies in similar form 
also for 𝑍𝑚𝑛,𝐽

𝑚𝑖𝑥𝑒𝑑  and all other matrices. The ap-
proximated matrix 𝑍�𝑚𝑛,𝐽 with the interpolated 
dyadic Green’s function according to (10) can be 
formulated as 
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As it can be seen, the Green’s function is factor-
ized by the Lagrange interpolation with respect to 
𝐫 and 𝐫′ so that the integrals in (11) can be pre-
computed. 

Employing tensor notation with third order ten-
sors, each order corresponding to one Cartesian 
dimension, the 𝑗 summation in (11) can be rewrit-
ten as 
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with the third order tensors [𝐒]3 and [𝐑]3 contain-
ing the source or receive integrals, respectively, 
and ∆𝑖𝑘 = 𝑖𝑘 − 𝑖′𝑘 . This discrete convolution in 
space domain with equidistant sampling can effi-
ciently be computed in spectral domain according 
to 
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Zero-padding has to be performed in order to 
avoid aliasing errors. The symbol ” ” denotes the 
Hadamard (tensor element-wise) dyadic-vector 
product in the discrete Fourier domain. It is essen-
tial, that the necessary forward transformations 𝐹 
and backward transformations 𝐹−1 are performed 
by FFT to obtain enhanced computational effi-
ciency when employing (13) instead of (11). In the 
end, the receive contributions in [𝐑]3 must be 
multiplied with the test integrals. Since the transla-
tions are computed as Hadamard products in the 
discrete Fourier domain, diagonalization of the 
translation operators has been achieved. However, 
the computational complexity is then dominated 
by the transformations instead of the coupling 
computations itself. Together with the necessary 
zero-padding, the overall procedure appears to be 
efficient only for relatively large numbers of inter-
polation points, as e.g. obtained if the whole radia-
tion or scattering object is covered with one regu-
lar grid. 

By numerical experiments it was found that 
employing (13) is advantageous even for the small 

number of 3 interpolation points per Cartesian di-
mension. For cubic interpolation with 𝑁𝑝 = 4, 
which is mostly a good choice for accurate compu-
tations, there is a reduction in translation time by a 
factor of about 7. Due to this observation, FFT-
based translations are employed within this fast 
solver. The complexity of the translation is 
𝑂�𝑁𝑝3log𝑁𝑝3� = 𝑂�𝑁𝑝3log𝑁𝑝 � with respect to the 
number of interpolation points 𝑁𝑝 instead of 
𝑂�𝑁𝑝6� for direct translation in space domain. 
 

VI. MULTILEVEL ALGORITHM 
One major drawback of grid based fast solvers 

is the general necessity to work with 3 dimension-
al grids although the problem itself is a 2 dimen-
sional surface problem. Especially dominant is this 
drawback in AIM or pre-corrected FFT tech-
niques. There, all coupling computations are per-
formed by a global 3D FFT on a single grid cover-
ing the whole computation domain. Hence, most 
computations are performed for grid points located 
in the empty space inside the computation domain. 
To relieve this problem, a multilevel algorithm 
following a hierarchical oct-tree grouping strategy 
is developed, where regular grids within the indi-
vidual groups are considered and where the trans-
lations among non-empty groups are computed by 
employing FFT-acceleration. 

A cubic oct-tree structure as known from the 
MLFMM algorithm [2] is assumed. The distances 
𝑑 between different box centers on a given level 
𝑙𝑒𝑣 are found to be 

  (14) 

𝑑𝑙𝑒𝑣𝑛𝑒𝑎𝑟 is the near-coupling range for each level 
𝑙𝑒𝑣, where the necessary interactions are comput-
ed on finer levels or by direct MoM integration. 
𝑑𝑙𝑒𝑣
𝑓𝑎𝑟  is the far-coupling range up to which far 

translations are performed on the corresponding 
level and 𝑎𝑙𝑒𝑣   is the edge length of each cube in 
the pertinent level. On all levels, the relation 
𝑎𝑙𝑒𝑣+1 = 2 𝑎𝑙𝑒𝑣 is valid. 

The described Lagrange interpolation algorithm 
with FFT acceleration is employed for boxes with 
separations 𝑑𝑙𝑒𝑣𝑛𝑒𝑎𝑟 ≤ 𝑑 ≤ 𝑑𝑙𝑒𝑣

𝑓𝑎𝑟. Interactions 
among boxes with 𝑑 > 𝑑𝑙𝑒𝑣

𝑓𝑎𝑟are computed on the 
next coarser level 𝑙𝑒𝑣 + 1. For levels with a small 
box-size as compared to wavelength, the number 
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of interpolation points per dimension 𝑁𝑝𝑙𝑒𝑣 on a 
certain level 𝑙𝑒𝑣 can be kept constant on different 
levels as suggested in [12]. As the resulting im-
pedance matrix is then an 𝐇2 -matrix [12], compu-
tational and storage complexity per matrix-vector 
product are 𝑂(𝑁). This strategy is only valid for 
fine levels with box sizes significantly smaller 
than the wavelength. Hence, we use this strategy if 
𝑎𝑙𝑒𝑣+1 𝜆⁄  is below a constant threshold 𝑟𝑐𝑜𝑛𝑠𝑡. 
Following this strategy, a coarser level source ten-
sor [𝐒𝑙𝑒𝑣+1]3 is Lagrange anterpolated for aggre-
gation case 

,   (15) 

where the interpolation points on all levels are 
equally spaced in each dimension in order to real-
ize a regular grid. The disaggregation procedure is 
performed in the same manner by interpolating 
finer level receive contributions from correspond-
ing coarser level receive contributions. All aggre-
gation factors can be pre-computed before evaluat-
ing the matrix-vector product. Due to the orthogo-
nality of the Lagrange polynomials, the operators 
contain a lot of zero entries, which leads to com-
putation time and memory reduction.  

If the box size is not small compared to the 
wavelength, the absolute interpolation point dis-
tance is maintained on coarser levels. No Lagrange 
interpolation is necessary as all coarser level 
points are at the same position as at least one finer 
level interpolation point and the accordant La-
grange polynomials are orthogonal. Hence, (15) 
reduces to 

 

 
3 31
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ix ix y iy z iz ix iy iz

+
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for the aggregation case, whereas 𝑁𝑝𝑙𝑒𝑣 = 𝑁𝑝  at 
the finest level following this strategy and 
𝑁𝑝𝑙𝑒𝑣+1 = 2𝑁𝑝𝑙𝑒𝑣 − 1 for all subsequent coarser 
levels. ∆𝑖𝑥,∆𝑖𝑦, and ∆𝑖𝑧 are index offsets depend-
ent on the position of the finer level group within 
the coarser level group. 

For disaggregation case, the pertinent receive 
contributions from the coarser level have just to be 
copied on the finer level. Following this strategy, 
the computational complexity increases as the re-
quired number of interpolation points roughly 
doubles in each direction. The computational 
complexity following this strategy is 

𝑂�𝑁3/2log (𝑁)� in conjunction with FFT-based 
translations and is thus significantly worse com-
pared to fast high frequency solvers like MLFMM 
with 𝑂(𝑁log(𝑁)) complexity. The proposed algo-
rithm is thus especially suited for low-frequency 
problems where the fine-level strategy can be em-
ployed for most levels. 

 
VI. Dyadic versus mixed-potential 

MLIPFFT 
The presented multilevel interpolatory FFT ac-

celerated method (MLIPFFT) is employed to di-
rect field integral equations according to (2) and 
(3) as well as to the more common mixed potential 
integral equations (MPIE) according to (8)-(10). In 
a previous work [9] it has been shown, that the 
MPIE is preferable for interpolation in well-
conditioned problems as the computation time per 
matrix-vector product is smaller than for the EFIE 
and MFIE with dyadic Green's function formula-
tion. For ill-conditioned problems, the direct field 
EFIE and MFIE with dyadic Green’s functions are 
preferable as the isolated electric scalar potential 
and the superposition of the potential contributions 
of the MPIE usually need a higher interpolation 
accuracy. 

 
VII. NUMERICAL RESULTS 

The efficiency of the presented algorithm is 
shown for several computation examples. All 
computations shown in this section have been car-
ried out on one core of a Dell Precision T7500 
workstation (2.53 GHz clock speed, 96 GByte 
RAM). 

As a linear equation system solver, a flexible 
generalized minimal residual solver with Given’s 
rotations was used. As an iteration stop criterion, a 
residual error of 10−4 was configured. 
 
A. Sphere with dielectric coating 

A PEC sphere with diameter 1 m and a dielec-
tric coating of 2.5 cm thickness (𝜀𝑟  =  4 −  𝑗100) 
is computed as a first example. It is discretized by  
176 472 unknowns (88 236 electric and magnetic 
current unknowns, respectively). The object is il-
luminated by a plane wave with a frequency of 
500 MHz. In Fig. 1a, the bistatic radar cross sec-
tion (RCS) of the sphere is depicted for an 
MLIPFFT computation employing the IBC (direct 
field formulation) compared to an analytical Mie 

1020 ACES JOURNAL, VOL. 26, NO. 12, DECEMBER 2011



series solution. As can be seen, both results show 
excellent agreement. Figure 1b shows the object 
and the resulting magnetic current distribution. For 
the MLIPFFT, the total solution time was 2 171 
sec with a memory consumption of 1 522 MByte. 

Fig. 1a. Bistatic RCS of a sphere with dielectric 
coating. 

 
Fig. 1b. 𝑥-component of magnetic current distribu-
tion on dielectric sphere (real part). 
 
B. Parabolic reflector 

The second example is a 3𝜆 PEC parabolic re-
flector, which is vertically illuminated by a plane 
wave. The reflector is densely discretized resulting 
in 222 583 unknowns. The MLIPFFT computation 
employing a mixed-potential EFIE was performed 
within 5 577 sec and with a total memory con-
sumption of 1 873 MByte. For comparison, the 
computation was also performed by an MLFMM 
within 9 066 sec and with 9 475 MByte memory 
consumption. Both RCS results are shown in Fig. 
2a and the accordant current distribution in Fig. 
2b. 

 
Fig. 2a. Bistatic θφ-RCS of a parabolic reflector. 

 
Fig. 2b. Electric current distribution on parabolic 
reflector (real part). 
 
C. P3-Orion 

The last example is the flight object “P3-Orion” 
with a length of 35 m. At first, the object’s surface 
material is PEC. The object is discretized with  
536 250 electric current unknowns and illuminated 
by a plane wave incident from θi = 90°,φi = 20° 
with a wavelength of 36 m. The accordant 
MLIPFFT computation time was 12 675 sec and 
the required memory 7 718 MByte. Second, the 
problem was computed for a finite conducting 
coating (𝜎 = 10−1 S/m) of the object employing 
IBC. The computation time was 18 793 sec and 
the memory demand 13 610 MByte. The accordant 
bistatic φθ-RCS results are depicted in Fig. 3a. 
Figure 3b shows the object and the electric current 
distribution.  
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Fig. 3a. Bistatic RCS of P3-Orion. 

 

Fig. 3b. Electric current distribution on P3-Orion. 
 

VIII. CONCLUSIONS 
A fast integral equation fast solver, which is es-

pecially suited for low frequencies, has been pre-
sented. By 3D FFT, the accordant translation op-
erators are diagonalized. Even for small numbers 
of interpolation points, this FFT-based technique 
has shown to be effective. Furthermore, an oct-tree 
based adaptive multilevel scheme reduces the 
computation of empty space and makes the algo-
rithm useful for broadband applications and com-
binable with a high-frequency fast solver. The in-
terpolation-based fast solver has demonstrated ex-
cellent efficiency and accuracy for PEC and im-
pedance boundary body problems. 
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