
A Hybrid ACA-FDM for Electromagnetic Scattering from PEC 
Targets 

 
 

Xinlei Chen, Changqing Gu, Xiaoqiao Deng, Bingzheng Xu, Zhuo Li, and Zhenyi Niu 
 

College of Electronic and Information Engineering 
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China  

gucq@nuaa.edu.cn 
 

 
Abstract ─ In this paper, the adaptive cross 
approximation (ACA) algorithm is combined with 
the fast dipole method (FDM) to solve the 
electromagnetic scattering from perfect electric 
conducting (PEC) targets. In the ACA-FDM, the 
ACA and the FDM are employed to deal with the 
near-group pairs and the far-group pairs 
respectively. Compared with the conventional 
FDM, the submatrices related to the interactions of 
the near-group pairs are efficiently compressed by 
the ACA, so the ACA-FDM saves CPU time and 
memory requirement, when the criterion for the 
far-group pairs becomes stricter in order to obtain 
relatively high accurate solutions. Numerical 
results about the electromagnetic scattering from 
PEC targets are given to demonstrate the merits of 
the ACA-FDM. 
 
Index Terms ─ Electromagnetic scattering, 
equivalent dipole method (EDM), fast dipole 
method (FDM), adaptive cross approximation 
(ACA). 

 
I. INTRODUCTION 

The method of moments (MoM) has been 
widely used to solve electromagnetic scattering 
problems. However, the computational complexity 
and memory storage of the conventional MoM 
which leads to a dense matrix equation are both 

2( )O N  for matrix iterative solvers, where N  is 
the number of unknowns. Both the matrix-fill and 
matrix-solve processes are expensive. Fortunately, 
many methods have been developed in order to 
overcome this problem through these years, such 
as multilevel fast multipole algorithm (MLFMA) 
[1-2], adaptive integral method (AIM) [3-4], pre-
corrected fast Fourier transform (P-FFT) method 

[5-6] and adaptive cross approximation (ACA) 
algorithm [7-12]. 

Recently, the equivalent dipole method 
(EDM) [13-14] based on the commonly used Rao-
Wilton-Glisson (RWG) [15] basis function has 
been developed to simplify the MoM impedance 
matrix element filling procedure. In the EDM, 
each RWG element is viewed as a dipole model 
with an equivalent moment, and the mutual 
impedance elements is replaced by the interactions 
of equivalent dipoles, which has a simple closed 
canonical form. However, the computational 
complexity and memory storage of the EDM don’t 
change, which are still 2( )O N . More recently, the 
fast dipole method (FDM) [16-17] is proposed to 
mitigate this problem. Through a simple Taylor's 
series expansion of all the terms including R  in 
the formulation of EDM, the FDM can achieve the 
separation of the field dipole and source dipole. 
Therefore the complexity of interactions between 
two far groups such as group i  and j  can be 
reduced from ( )i jO N N  to ( )i jO N N , where iN  
and jN  are the number of the dipoles in group i  
and j , respectively. 

However, in order to get good solutions, the 
FDM has to choose stricter criterion for far-group 
pairs. In other words, the number of near-group 
pairs must increase. Although the near group 
interactions can be efficiently calculated by the 
EDM, they will still lead to rapidly increase in 
memory requirement and CPU time in the matrix-
vector products (MVPs). In this work, the adaptive 
cross approximation (ACA) algorithm [8] is 
employed to deal with the near group interactions. 
The ACA is purely algebraic in nature and 
relatively easy to implement. Also, it does not 
require knowing all the impedances of 
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submatrices. For a relatively high accuracy the 
hybrid ACA-FDM saves memory requirement and 
CPU time than the conventional FDM. 

The remainder of the paper is organized as 
follows. In Section II, the basic principle of the 
FDM is presented. Then we describe how the 
ACA is combined with the FDM in detail. In 
Section III, some numerical results about the 
bistatic radar cross section (RCS) are given to 
verify the efficiency and accuracy of the new 
method. Finally, conclusions are drawn in Section 
IV.  
 

II. FORMULATIONS 
A. Basic Principles of the FDM 

For perfect electric conducting (PEC) targets, 
the equivalent dipole method (EDM) [13-14] views 
each RWG element as a small dipole and the 
mutual impedance is replaced by the interaction 
between two dipoles when the distance of the two 
dipoles is beyond a appropriate threshold distance 
(typically 0.2  ~0.5  ). Considering two well-
separated dipoles (the mth dipole and the nth 
dipole), the relevant impedance element for electric 
field integral equation (EFIE) and magnetic field 
integral equation (MFIE) can be calculated by [13-
14] 

( )E
mn m nZ jk  m G R m                 (1) 

   ( )m G R mM
mn m nZ jk                   (2) 

where 

2
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In (1)~(4), ( )c c
m m m ml   m r r  and ( )c c

n n n nl   m r r  
are the equivalent dipole moments of the mth and 
nth RWG elements. ˆ=m m nm m m  . ( )c c

m n
 r r  is the 

position vector of the centroid of two adjacent 
triangular patches ( )m nT T  , and ( )m nl l  is the length 
of the common edge of ( )m nT T  . 
ˆ ˆ ˆ ˆ ˆ( )m m m m m

     n n n n n  is the average normal 

vector, and ˆ m
n  represent the unit normal vectors of 

mT  . ( ) 2c c
n n n

  r r r  and ( ) 2c c
m m m

  r r r  

respectively represent the position vectors of the nth 
and mth dipoles' centers (see Fig. 1). 

mn m n  R r r r , R  R , ˆ RR R .   and k  are 
the impedance and wavenumber of the free space. 
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Fig. 1. Geometry of the mth and nth RWG 
elements and their equivalent dipole models [16]. 
 

It can be seen from (1) and (2) that the 
calculation of mutual impedance elements of both 
EFIE and MFIE in the EDM is very simple. 
However, it don't change the memory cost and 
matrix-solve time. The fast dipole method (FDM) 
[16-17] can mitigate this problem. In the FDM, the 
target is grouped with equally sized cubes, then all 
dipoles are assigned to individual cubes. The FDM 
is used in those far-group pairs. We use ( , )D i j  

max{| |,| |,| |}i j i j i jx x y y z z      to define the 
distance between two groups i  and j , in which 
( , , )i i ix y z  and ( , , )j j jx y z  are the coordinates of the 
centroid of group i  and group j ,   is the side 
length of the group. A given integer bD  ( bD ≥1) is 
used to decide if the two groups are far-group pair. 
If ( , ) bD i j D , the two groups are a far-group pair. 
It can be found that the FDM will give more 
accurate solutions with the increment of bD , so bD  
can be used to control the accuracy of the FDM. 

Now, we consider two dipoles m  and n  that 
respectively belongs to group j  and i , and suppose 
the two groups are a far-group pair. The impedance 
element can be represented as (1) and (2) for EFIE 
and MFIE. The distance between the two dipoles 
can be written as 

=ji mj ni mp np   R r r r r r                    (5) 
where 

j iji o o r r r , r r r
jmj m o  , 

ini n o r r r . 

mp m p r r r , np n p r r r ,   2r r r
j ip o o  . 

ior  and 
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jor  are the center positions of group i  and j  
shown in Fig. 2.  
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Fig. 2. The mth and nth RWG elements and the 
groups they belong to [16]. 
 

R  (  =1,-1,-2,-3) in (3) and (4) can be 
expanded using the Taylor series as [17] 

22 2
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where 
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The dyad ˆ ˆRR  in (3) can be approximated as 
[17] 

2

1ˆ ˆ [ ( ) ( )]ji ji m n ji ji m n
ji

m n

r
    

 

RR r r s s r r s s

T T
   (9) 

in which 

2

1 1=
2m ji ji m ji ji m

jir
    

T r r s r r s             (10) 

2

1 1=
2n ij ij n ij ij n

ijr
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T r r s r r s             (11) 

ˆ ˆ
m mj mj ji ji  s r r r r                    (12) 

ˆ ˆ
n ni ni ij ij  s r r r r                     (13) 

Substituting (6) (  =1,-1,-2,-3) and (9) into 
(1), and substituting (6) ( =1,-2,-3) and (5) into 
(2), the impedance element in the FDM for EFIE 
and MFIE can be obtained.  

 
     
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4
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M
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where 
   1 2( 1) ( 2) ( 3)

u u u uA R jk R jk R
           (16) 

   1 2( 1) ( 2) ( 3)3 3u u u uB R jk R jk R
          (17) 

  1( 2) ( 3)
u u uC R jk R

                  (18) 
(1)

M m ujkR
u ue

                       (19) 
(1)

M m ujkR
u ue

                        (20) 
for ,u m n  

Now we discuss how the FDM can efficiently 
calculate the MVPs for a far-group pair (such as 
group j  and i ). We suppose the two groups 
contain  jN   and iN  dipoles, respectively. For a 
iterative solver such as GMRES, the MVP 
between far groups j  and i  

V Z Ij ji i                           (21) 
need be computed, where Z ji  are the impedance 
submatrix between groups j  and i , whose size is 

j iN N , Ii  with a size of 1iN   is the current 
subvector, Vj  with a size of 1jN   is the result of 
Z Iji i . The complexity of (21) is ( )i jO N N . When 
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the FDM is used to calculate these interactions 
between groups j  and i , an element mv  of Vj  for 
EFIE and MFIE can be approximatively 
represented as follows. 

 
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       (23) 

Now we consider a term in (22) as an 
example to illustrate how the FDM works. It can 
be found that  

 
1

M M T M
iN

m m m m m n n
n

A B I


             (24) 

achieves the separation of m and n. Therefore, the 

result 
1

M
iN

n n
n

I

  is independent of m. For different 

dipole m in group j, 
1

M
iN

n n
n

I

  can be reused, so it 

only need be calculated once. All other terms in 
(22) and (23) can be handled in the same way. 
Thus the complexity of (21) is reduced to 

( )i jO N N  by the FDM.  

B. The ACA-FDM 
It is easy to know that the error brought by the 

FDM is decreasing with the increment of Db. 
However, with the increase in Db the near region 
increases quickly, which will increase memory and 
CPU time requirement. In this article, the adaptive 

cross approximation (ACA) [8] is employed in the 
near region to mitigate this problem. The ACA 
algorithm is a matrix decomposition algorithm 
which only requires partial impedance elements of 
original matrices and easy to implement, which can 
be efficiently calculated by the EDM. 

Considering two near groups such as group i  
and group j  (1 ( , ) bD i j D  ) which include Ni and 
Nj dipoles, respectively. The interactions jiZ  
between the two groups can be approximated by the 
ACA as 

Z U Vji ji ji                         (25) 
where r denotes the effective rank of the submatrix 

jiZ . U ji  is a matrix of size jN r , and Vji  is a 
matrix of size ir N . The goal of the ACA is to 
achieve error matrix 

R Z U V Zji ji ji ji jiF F F
            (26) 

where   is a given tolerance, and 
F

  represents 
the matrix Frobenus norm. The accuracy of the 
ACA can be easily controlled by a given tolerance 
 . According to [8], a tolerance of 10-2 can give 
accurate results, which is used in the ACA region 
in this paper. 

The detail of the ACA algorithm [8] is 
presented as follows. 
� Initialization 0R  , 

2(0) 0Z  , 1k  . 

� Find kI : if ( 1k  ) 1kI  ; else 1: ( , )Rk k kI I J 
  

1max( ( , ) )R k
i

i J   , 1 1, , ki I I   . 

� 
1

1

( ,:) ( ,:) ( )R Z u v
k

k

k k l I l
l

I I




  . 

� Find kJ : ( , ) max( ( , ) )R Rk k k
j

I J I j  , 1,j J  

1, kJ  . 
� ( ,:) ( , )v R Rk k k kI I J   . 

� 
1

1

(:, ) (:, ) ( )R Z v u
k

k

k k l J l
l

J J




  . 

� (:, )u Rk kJ  . 

� 
12 2 2 2( ) ( 1)

1
2Z Z u u v v u v

k
k k T T

j k j j k k
j






    . 

� Check convergence: if ( ( )u v Z k
k k   ), end 

iteration; else 1k k   and goto �. 
        The MVP related to the two near groups j and 
i can be approximatively represented as 
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 Z I U V Iji i ji ji i                      (27) 
Clearly, the complexity of (27) is ( ( ))i jO r N N . 
Moreover, U ji  and Vji  are stored instead of Z ji , 
so the complexity of memory requirement is  also 
reduced to  ( ( ))i jO r N N .  

In ACA-FDM, the ACA and the FDM are 
used to deal with the near-group pairs and the far-
group pairs, respectively. Thus both near-group 
pairs and far-group pairs can be efficiently 
calculated in the ACA-FDM. Compared with the 
conventional FDM, the performance of the near-
group interactions are improved by the ACA. 
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Fig. 3. Bistatic RCSs of a 3 m×3 m×3 m PEC cube. 

 
III. NUMERICAL RESULTS 

In this section, the ACA-FDM is 
implemented in the RCS calculations. All the 
simulations are performed on a personal computer 
with the Intel(R) Pentium(R) Dual-Core CPU 
E5500 with 2.8 GHz (only one core is used) and 
2.0 GB RAM. The combined field integral 
equation (CFIE) (combination parameter is 0.5) is 
used. The GMRES iterative solver is employed to 
obtain an identical residual error ≤ 0.01. The block 
diagonal preconditioner (BDP) is used in all the 
simulations. All the targets are discretized into 
triangular patches with an average edge length of 
0.1 . In this paper, the threshold distance of the 
EDM is chosen as 0.2  . All the objects are 
illuminated by a x̂ -polarized plane wave with the 
incident direction of ( , ) (0 ,0 )      

First we consider the scattering problem of a 
PEC cube with side length of 2.5 m. The cube is 
divided into 12228 triangular patches, and the total 

number of unknowns is 18342. All the unknowns 
are divided into 218 nonempty groups and the size 
of each group is 0.45 . Figure 3 gives the bistatic 
RCSs for   polarization calculated by the ACA-
FDM (Db=3) and the EDM. Results show good 
agreement. 
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Fig. 4. Bistatic RCSs of a PEC sphere of radius 2.5 
m. 
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Fig. 5. Bistatic RCSs of a 252.3744-mm PEC 
NASA almond. 

 
The second problem is a PEC sphere with 

radius 3 m. The sphere is meshed into 19260 
triangular patches and there are total 28890 
unknowns. All the unknowns are divided into 409 
nonempty groups and the size of each group is 
0.55  . The bistatic RCSs in   polarization are 
shown in Fig. 4. The result obtained by the ACA-
FDM (Db=3) agrees well with the Mie series 
solution, which is exact and used as a reference. 

Finally, the bistatic RCSs of a 252.3744-mm 
PEC NASA almond are calculated. The almond is 
divided into 8808 triangular patches and the 
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number of unknowns is 13212. Totally 102 
nonempty groups with the size of 0.65   are 
obtained. The bistatic RCS in   polarization 
calculated by the ACA-FDM (Db=3) is compared 
with the EDM shown in Fig. 5. 

 
Table 1: Comparison of CPU time and memory 
cost for different Db values 
 

Problem 1: cube 

Db 
FDM/ACA-FDM 

Time (s) RAM (MB) 
1 61/61 135/135 
2 75/66 363/194 
3 97/73 706/270 

Problem 2: sphere 

Db 
FDM/ACA-FDM 

Time (s) RAM (MB) 
1 159/159 280/280 
2 188/166 745/386 
3 236/182 1434/523 

Problem 3: almond 

Db 
FDM/ACA-FDM 

Time (s) RAM (MB) 
1 38/38 229/229 
2 57/42 504/273 
3 76/45 775/310 

 
The memory requirements and CPU time for 

the simulations above are summarized in Table 1. 
From Table 1, it can be found that the ACA-FDM 
saves CPU time and memory requirement than the 
conventional FDM, when Db (>1) is chosen as the 
same value for the two methods. When Db=1, the 
ACA-FDM is the same as the conventional FDM, 
because the ACA algorithm is only used to handle 
the nonadjacent groups. As shown in Fig. 3~5, we 
can find that the CFIE (combination parameter is 
0.5) solved by the ACA-FDM (Db=3) can give 
good RCS solutions for the three examples. 
However, it is worth mentioning that the stricter 
criterion Db of the ACA-FDM may be required 
when more complex or larger targets are 
calculated, or when larger group size is chosen. 

 
IV. CONCLUSION 

In this article, a hybrid ACA-FDM is 
implemented to accelerate solving the 
electromagnetic scattering from PEC targets. In 
the ACA-FDM, the ACA and the FDM are used to 

deal with the near-group pairs and the far-group 
pairs, respectively. Profiting from the use of ACA 
algorithm in the near region, the ACA-FDM saves 
memory and CPU time than the FDM when the 
criteria for the far region becomes stricter.  
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