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Abstract —This paper considers single snapshot 
two dimensional direction-of-arrival (2D-DOA) 
estimation in impulsive noise environment 
employing linear arrays. 2D-DOA estimation is 
realized in two steps. Firstly, the 2D-DOA 
estimation problem is decomposed into two 
independent one dimensional direction-of-arrival 
(1D-DOA) estimation problems. The 1D-DOA 
estimation is derived using the support vector 
regression based basis selection algorithm. 
Secondly, an over-complete dictionary is designed 
based on amplitude information of sources, and 
angle pairing is accomplished in perspective of 
basis selection. Validity and advantages of the 
proposed algorithm are shown through computer 
simulations. 
 

Index Terms — 2D-DOA, basis selection, linear 
array, single snapshot, support vector regression. 
 

I. INTRODUCTION 
Direction-of-arrival estimation is to find the 

directions of sources impinging on antenna arrays 
[1]-[5]. Recently, a 1D-DOA estimation algorithm 
was proposed based on the sparse signal 
reconstruction [6], which renders several 
advantages over existing methods, including 
increased resolution, improved robustness against 
limited number of snapshots, and the capability to 
handle correlated sources.  

Two-dimensional direction-of-arrival (2D-DOA) 
estimation is usually nontrivial. Although angle 
pairing can be accomplished by searching, such a 

method is computationally unattractive [7]. Based 
on the observation that the data matrices with the 
same set of eigenvectors can be diagonalized by 
the same similarity transform, two methods were 
introduced to realize angle pairing [8]. Some other 
methods based on eigen-structure of signals were 
also developed [9]. Recently, a 2D-DOA 
estimation algorithm has been proposed based on 
the support vector machine [10], whose 
performance is influenced by the training scenarios. 
When a limited number of snapshots are available, 
performance of the aforementioned algorithms will 
deteriorate. Thus, it is desirable to develop 
2D-DOA estimation methods using a single 
snapshot. [11] and [12] presented two single 
snapshot 2D-DOA estimation methods, where 
nonuniformly spaced planar arrays were used. In 
[13], a uniform rectangular array is employed to 
realize single snapshot 2D-DOA estimation. All 
these algorithms are based on eigen-decomposition. 
Escot et.al. [14] proposed to accomplish 2D-DOA 
estimation by particle swarm optimization. 
However, it is known that evolutionary algorithms 
are unable to yield consistent solutions and usually 
suffer from high computational load. Furthermore, 
it has been shown that impulsive noise appears at 
wireless receivers in the form of impulsive bursts 
[15]. In this case, all second-order statistics based 
algorithms are unable to perform well.  

In this paper, we address the problem of single 
snapshot 2D-DOA estimation in impulsive noise 
environment employing linear arrays. The rest of 
this paper is organized as follows. Section II 
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briefly reviews 1D-DOA estimation in perspective 
of basis selection. Section III describes the 
proposed method in detail, and Section IV presents 
simulation results to show the validity and 
advantages of the proposed method. Section V 
concludes the work described in this paper. 

 
II. REVIEW OF 1D-DOA ESTIMATION 

IN PERSPECTIVE OF BASIS 
SELECTION 

Generate an over-complete dictionary which 
consists of steering vectors from all possible 

directions of sources   1 N, ,    i.e., 

  1 N( ), , ( )  Α a a , where N	 denotes the 

number of spatial samplings. The 1D-DOA 
estimation problem is equivalent to solving ̅ of  =	 ̅ + ,       (1) 
where the i-th element of ̅ is nonzero if and only 
if a source comes from θ .  is the snapshot, and 

 denotes the noise. When the number of sensors, 
denoted by M, is much smaller than N, i.e., M<<N, 
most of entries in ̅ are zero. Solving ̅ from (1) 
can be formulated as a basis selection problem. 

Under Gaussian noise assumption, the optimal ̅ 
in (1) can be found by solving the following 
optimization problem: min ̅ E ( ̅),        (2a) 

   subject to ‖ − ̅‖ ≤ ε ,    (2b) 
where E (s̅) represents the diversity of s̅ which 
can be chosen according to some existing criteria 
[6]. There have been many algorithms to solve (2), 
one of which is the match pursuit [16]-[19]. 
 

III. THE PROPOSED 2D-DOA 
ESTIMATION ALGORITHM 

 
A. Basis selection algorithm in impulsive noise 
environment 

In this paper, we choose the lp-norm as the 
diversity measurement [19]. In the impulsive noise 
environment, basis selection can be realized via 
solving the following problem: min ̅‖ ̅‖ , p ≤ 1,    (3a) 

subject to x − ̅ < , ∀ = 1,… , , (3b) 
where  denotes the i-th row of , x  denotes 
the ith element of x, and 	ε  represents the 
impulsive noise. ‖ ̅‖  denotes the lp-norm of ̅ 

which is computed via ‖ ̅‖ = ∑ |s̅ | /
. 

Since direct solution of (3) is difficult, the affine 
scaling transformation [19] is applied to transform 
(3) into an equivalent problem min ‖ ‖ ,    (4a) 

subject to x − < , ∀ = 1,… , , (4b) 
where = ̅ , = , and =diag |s̅ | / .  denotes the i-th row of . 

Considering x  as the target for the input pattern 
, (4) is identical to the optimization problem of 

SVR [20] formulated as min , , ∗‖ ‖ + C∑ (ϵ + ϵ∗),  (5a) 

subject to 
x − ≤ ε + ϵ− x ≤ ε + ϵ∗ϵ , ϵ∗ ≥ 0 , (5b) 

where ϵ , ϵ∗  are slack variables, and C>0 
determines the trade-off between finding a sparse 
solution and retaining small residual error. The 
dual problem of (5) is given by min , ∗ −∑ ∑ (α − α∗) (α − α∗)〈b , b 〉  −ε∑ (α + α∗) + ∑ x (α − α∗)，(6a) 

subject to ∑ (α − α∗) = 0, α , α∗ ∈ [0, C], (6b) 
and  is given by = ∑ (α − α∗) ,   (7) 
which is called support vector expansion. By 
solving (6),  can be obtained, and ̅  can be 
calculated using ̅ = . 

For our problem, the input pattern  is 
unknown, we thereby propose the following 
iterative algorithm to solve (3): 
Step 1: Initialize ̅(0)using a randomly generated 
vector, k=0, (0) = diag |s̅ (0)| / , and B(0) 
= AW(0). 
Step 2: Solve (4) using SVR and obtain ( ). 
Step 3: k = k + 1, ̅( ) = ( − 1) ( − 1), ( ) = diag |s̅ ( )| / , B(k) = AW(k). 
Step 4: If ‖ ̅( + 1) − ̅( )‖ /‖ ̅( + 1)‖ < , 
stop. Otherwise, go to Step 2. 

In the aforementioned iterative algorithm, k is 
the number of iteration steps, and  is the 
convergence criterion, which is chosen to be 0.01 
in this paper. 
 
B. Angle pairing using basis selection 
1) Over-complete dictionary with respect to 
directions of sources: In this paper, three 
unparallel arrays A, B, and C are used. The unit 
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direction vectors of the arrays are assumed to 
be (1,0,0) , (cosθ , sinθ , 0) , and (cosθ cosφ , sinθ cosφ , sinφ ). Suppose that a 
narrow band source with azimuth angle θ and 
elevation angle φ impinges array A, B and C with 
1D-DOA ϑ , ϑ  and ϑ , respectively. The 
following equations can be derived: cosϑ = cosθcosφ,   (8a) cosϑ = cosθcosφcosθ + sinθcosφsinθ ,(8b) cosϑ = cosθcosφcosθ cosφ +      sinθcosφsinθ cosφ + sinφsinφ . (8c) 
From (8), we may express cosϑ  in terms of cosϑ  and cosϑ  as cosϑ = f(ϑ , ϑ )     = 	cosϑ cosφ sin(θ − θ )/sinθ + cosϑ 	 cosφ sinθ /sinθ + 1 − (1 + D)cos ϑ sinφ , 

(9) 

where D = − cosθ /sin θ . Therefore, 
the steering vector of array C can be expressed in 
terms of ϑ  and ϑ  as (ϑ ) = e / ,… , e /   

    = e ( , )/ , … , e ( , )/ , (10) 
where d  denotes the distance between the origin 
and the i-th sensor of array C. 

Denote the estimated two 1D-DOA with 
respect to array A and B as = ϑ ,… , ϑ  
and = ϑ ,… , ϑ , where M  and M  are 
the number of 1D-DOA estimated with respect to 
array A and B, respectively. It is possible that 
some sources have identical 1D-DOA, thereby M ,M ≤ M holds. The equality holds only when ϑ ≠ ϑ , ϑ ≠ ϑ  are tenable for all i ≠ j. Using 
(9) and (10), we may generate an over-complete 
dictionary with respect to array C in terms of ϑ  
and ϑ  as 				 (ϑc) = (f(ϑa, ϑb))       = [ ∆ ϑa1, ϑb1 ,… , ∆ ϑa1, ϑbMb , ∆ ϑa2, ϑb1 ,…, ∆ ϑ , ϑ , … , ∆ ϑ , ϑ , … , ∆ ϑ , ϑ ], 

(11) 
where ∆ ϑ , ϑ  consists of steering vectors 

with respect to the neighboring region of ϑ , ϑ , 
i.e., ∆ ϑ , ϑ = [ (ϑ − ∆ , ϑ − ∆ ),     

(ϑ − ∆ + δ , ϑ − ∆ + δ ),        (ϑ − ∆ + 2δ , ϑ − ∆ + 2δ ),…,    (ϑ + ∆ , ϑ + ∆ )].     (12) 
In (12), ∆  and ∆  denote the neighboring 
region of ϑ  and ϑ , respectively. δ  and δ  
denote the sampling interval of ϑ  and ϑ , 
respectively. By introducing neighboring region, 
potential error in the 1D-DOA estimation can be 
amended so that accurate 2D-DOA estimation can 
be achieved. 

2) Over-complete dictionary with respect to 
amplitudes of sources: The over-complete 
dictionary 	 (ϑc)  given by (12) contains all the 
possible angle pairings. The columns of (ϑc) 
which match the snapshot of array C (denoted by 

) gives the correct angle pairing result. 
Therefore, the angle pairing problem can be 
formulated as the following inverse problem which 
aims to compute ̅ : =	 ̅ + ,   (13) 
where  denotes the additive noise on array C. 
However, solving (13) directly with basis selection 
cannot guarantee correct angle pairing result. It is 
noted that if there were two angle pairs satisfying f ϑ , ϑ = f ϑ , ϑ , i ≠ k,	j ≠ l, incorrect angle 
pairing occurs. In order to avoid such a problem, 
additional constraint should be imposed on ̅  
when solving (13). 

It is observed that incorrect angle pairing 
probably results in significant difference between 
signal amplitudes estimated from (13) and those 
from the 1D-DOA estimation step. Thus, 
constraint can be imposed on the signal amplitude 
to guarantee correct angle pairing result. 

Suppose that the estimated amplitudes of 
sources from 1D-DOA estimation are =s ,… , s  and = s ,… , s . It is assumed 
that  and  should not change significantly 
with respect to the three arrays. The following 
constraints can be imposed on ̅ : ‖ ̅ − ‖ ≤ ε ,   (14a) ‖ ̅ − ‖ ≤ ε ,   (14b) 

where the elements of  and  are given by  						b (i, j) = {1, if	 (ϑ ) ∈ ∆ ϑ , ϑ , … , ∆ ϑ , ϑ0, otherwise ,    

993 ACES JOURNAL, VOL. 27, NO. 12, DECEMBER 2012



 
 						b (i, j) = {1, if	 (ϑ ) ∈ ∆ ϑ , ϑ , … , ∆ ϑ , ϑ0, otherwise .    (ϑ ) denotes the j-th column of (ϑc). With (14), 
angle pairing can be realized by finding a sparse 
solution ̅  from =	 ̅ + ,    (15) 
where = [ (ϑ ) ] and =[ ] . 
 
C. Discussions on the proposed single snapshot 
2D-DOA algorithm 

Conventional application of SVR requires a 
large number of training data to derive an accurate 
regression model [10], [21]. Then, the derived 
regression model is used for online testing. The 
computational complexity for training is usually 
large. Furthermore, if the real scenario is different 
from the trained ones, the performance of SVR 
will deteriorate. On the other hand, the proposed 
algorithm utilizes SVR as a solver to solve (4). 
Therefore, offline training and online testing are 
not required for the proposed algorithm. 

For SVR, let l be the number of training 
points, NS the number of support vectors, and dL 
the dimension of the input data. The complexity of 
SVR is O(Ns

3 + Ns
2l + NsdLl) when Ns/l << 1 and 

O(Ns
3 + Nsl + NsdLl) when Ns/l ≈1 [22]. From (4), 

it is observed that for the proposed algorithm, the 
number of input patterns is L, and the dimension of 
the input pattern is N. Due to the property of the 
over-complete dictionary, N > L holds, so that the 
computational complexity of the proposed 
algorithm is approximately given by O(NsNL). In 
order to reduce the computational complexity of 
the proposed algorithm, grid refining technique 
can be applied so that a smaller value of N can be 
used. It should be mentioned that compared with 
applying SVR for training and testing, the 
proposed algorithm has much less computational 
load, because the number of training samples is 
usually much larger than N. 
 

IV. COMPUTER SIMULATIONS 
Without loss of generality, we assume that 

three linear arrays lie in the same plane. The 
element spacing of each array is equal to 
half-wavelength with respect to the operating 
frequency. The azimuth angle of array B and C are 

assumed to be 30o and 90o, respectively. The 
number of sources is assumed to be 4. The angular 
sampling interval to generate the overcomplete 
dictionary (ϑc)  is 1o. The parameters for 
implementation of SVR are chosen as ϵ=0.001 
and C = 0.6, which are empirical values. Impulsive 
noise is generated as the mixture of a Gaussian 
process and a Bernoulli-Gaussian process [23]. 
The Gaussian process is with zero mean and 
variance σ . The impulsive bursts are generated 
by a Bernoulli-Gaussian process, where a Gaussian 
variable with zero mean and variance σ  and a 
Bernoulli variable with success probability p are 
used. The Signal-to-Noise Ratio (SNR) is 
computed as 10 log 1/ (1 − p)σ +p(σ + σ )  dB. In the simulations, σ = 100σ  
and p = 0.1 are assumed. 
 
A. Sources with different 1D-DOAs 

In the first simulation, the sources are assumed 
to be located at (35 , 47 ) , (47 , 52 ) , (59 , 56 ) , (66 , 65 )  with unity power. The 
phase of each source is randomly distributed 
between 0 and 2π . The number of sensors is 
assumed to be 10. 

 

 
Fig. 1. The estimated spectrum for 1D-DOA 
estimation ϑ  with SNR=20 dB and L=10. 
 

Figures 1 and 2 show the estimated spectra for 
1D-DOA estimation ϑ and ϑ , respectively. It is 
observed from Figs. 1 and 2 that the proposed SVR 
based basis selection algorithm shows less 
spurious peaks than that of the FOCUSS algorithm. 
This is because the proposed SVR based algorithm 
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is robust against the impulsive noise. Also, the 
MUSIC spectrum using a single snapshot [24] is 
plotted with the number of sensors in subarray 
equal to 5. It is observed that because the number 
of sensors is small, the single snapshot MUSIC 
algorithm is unable to precisely locate the four 
sources. 
 

 
Fig. 2. The estimated spectrum for 1D-DOA 
estimation ϑ  with SNR=20 dB and L=10. 

Figure 3 presents the 2D-DOA estimation results 
for 50 independent trials with SNR equal to 20 dB. 
From Fig. 3, we see that incorrect angle pairing 
does not occur during the 50 independent trials. 

 

 
 
Fig. 3. 2D-DOA estimation results for 50 
independent trials with SNR=20 dB and L=10. 
 

Table 1 shows the Root-Mean-Square-Error 
(RMSE) of the proposed method with different 
SNR for 50 independent trials, and Table 2 shows 

the RMSE of the proposed method against the 
number of sensors. From Table 1 and Table 2, we 
see that the proposed algorithm is able to give 
satisfactory performance. As the value of SNR or 
L increases, the RMSE of estimation decreases. 

 
 
Fig. 4. 2D-DOA estimation results for 50 
independent trials with SNR=20 dB and L=10. 
 
Table 1: RMSE(degree) versus SNR for sources 
located at (35 , 47 ) , (47 , 52 ) , (59 , 56 ) , (66 , 65 ). 

RMSE(degree) of 2D-DOA estimations (L=10) 
SNR(dB) (35 , 47 )(47 , 52 )(59 , 56 )(66 , 65 )

10 3.9530 2.2170 2.7130 2.9181 
15 2.0245 1.3396 2.0770 1.3156 
20 1.4917 0.9763 1.8636 1.0039 
25 0.8356 0.7345 1.2893 0.7087 
30 0.6461 0.6799 1.0668 0.7038 
35 0.6080 0.6406 0.7332 0.6338 
40 0.5849 0.6373 0.6429 0.5703 

 
Table 2: RMSE(degree) versus L for sources 
located at (35 , 47 ) , (47 , 52 ) , (59 , 56 ) , (66 , 65 ). 
RMSE(degree) of 2D-DOA estimations (SNR=20 
dB) 

L (35 , 47 ) (47 , 52 ) (59 , 56 ) (66 , 65 )
8 1.9921 1.8592 2.6749 1.8475 
9 1.6292 1.3489 2.2948 1.4928 
10 1.4917 0.9763 1.8636 1.0039 
11 1.0192 0.8674 1.4059 0.8924 
12 0.9019 0.8347 1.3873 0.7294 

 
 

995 ACES JOURNAL, VOL. 27, NO. 12, DECEMBER 2012



 
 

B. Sources with the same 1D-DOA 
In this simulation, we assume that the four 

sources are located at (35 , 47 ) , (35 , 62 ) , (50 , 80 ), (76 , 62 ) with unity power. In this 
case, two sources have identical azimuth angle, 
and the other two sources have identical elevation 
angle. 

Figure 4 shows the 2D-DOA estimation results 
for 50 independent trials with SNR = 20 dB and L 
= 10. Tables 3 and 4 show the RMSE of the 
proposed method with different SNR and L, 
respectively. When some sources have identical 
1D-DOA, the number of derived 1D-DOA 
estimations is smaller than that of sources. 

In this simulation, only three DOA are estimated 
in the 1D-DOA estimation step. However, using 
the proposed angle pairing method, the sources 
with the same 1D-DOA automatically split. As 
shown in Fig. 4, the proposed algorithm does not 
give incorrect angle pairing results for 50 
independent trials. Tables 3 and 4 show that the 
performance of the proposed algorithm in this case 
is a little bit poorer than that in the previous 
simulation, but it is still satisfactory. 
Table 3: RMSE (degree) versus SNR for sources 
located at (35 , 47 ) , (35 , 62 ) , (50 , 80 ) , (76 , 62 ). 
RMSE(degree) of 2D-DOA estimations (L=10) 

SNR(dB) (35 , 47 ) (35 , 62 )(50 , 80 ) (76 , 62 )
10 3.6711 2.5581 4.0508 2.6989 
15 2.6146 1.9299 3.0435 2.3649 
20 1.5336 1.2835 2.1237 1.9011 
25 1.1902 1.0214 1.8015 1.5975 
30 1.0508 0.9582 1.1362 1.1212 
35 0.9112 0.9011 0.9571 0.9821 
40 0.8489 0.7530 0.8960 0.9155 

 
Table 4: RMSE (degree) versus L for sources 
located at (35 , 47 ) , (35 , 62 ) , (50 , 80 ) , (76 , 62 ). 

RMSE(degree) of 2D-DOA estimations 
(SNR=20 dB) 

L (35 , 47 ) (35 , 62 ) (50 , 80 (76 , 62 )
8 2.5935 2.9737 2.9207 2.1537 
9 2.1788 2.6361 2.3228 2.0449 
10 1.5336 1.2835 2.1237 1.9011 
11 1.0564 1.0190 1.8211 1.4085 
12 0.9382 0.9015 1.5020 1.0349 

V. CONCLUSIONS 
In this paper, a new method has been described 

to address the problem of 2D-DOA estimation 
using a single snapshot in impulsive noise 
environment. Three unparallel linear arrays are 
employed. The 2D-DOA estimation problem is 
decomposed into two 1D-DOA estimation 
problems which are solved by the proposed SVR 
based basis selection algorithm. To realize angle 
pairing, an over-complete dictionary is designed 
using estimated amplitudes of sources. Computer 
simulation shows that the proposed algorithm is 
able to realize single snapshot 2D-DOA estimation 
in impulsive noise environment with satisfactory 
accuracy. The proposed method is especially 
useful for 2D-DOA estimation using a limited 
number of snapshots in the presence of impulsive 
noise. Future work is to extend the proposed 
method to other array structures.  
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