
Fast Multipole Method for Large-Scale Electromagnetic Scattering
Problems on GPU Cluster and FPGA-Accelerated Platforms

V. Dang, Q. Nguyen, and O. Kilic

Abstract ─ The fast multipole method (FMM) for
large-scale electromagnetic scattering problems is
implemented on high performance computing
(HPC) platforms and its performance is
investigated in terms of accuracy, speedup, and
scalability. The HPC platforms include a 13-node
graphical processing unit (GPU) cluster, and a
field programmable gate array (FPGA)-based high
performance reconfigurable computer (HPRC).
The details of the implementations and the
performance achievements are shown and
analyzed. We demonstrate a scalable
parallelization while maintaining a good degree of
accuracy.

Index Terms - Electromagnetic scattering, fast
multipole method (FMM), FPGA, GPU, high
performance reconfigurable computer (HPRC),
iterative solvers, and method of moments.

Department of Electrical Engineering and Computer Sciences
The Catholic University of America, Washington, DC 20064, USA

13dang@cardinalmail.cua.edu, 93nguyen@cardinalmail.cua.edu, and kilic@cua.edu

I. INTRODUCTION
Modeling large-scale objects is a challenging

problem in electromagnetics community due to the
excessively heavy requirements of memory and
computational resources. Since it has an important
role in the research of target identification, or the
stealth and anti-stealth technology, many
numerical techniques have been developed over
past two decades to reduce this burden without
significant loss of accuracy, including adaptive
integral method (AIM) [1], impedance matrix
localization (IML) [2], and fast multipole method
(FMM) [3]. Compared with the others, FMM is
among the most suitable techniques for large-scale
problems. It reduces the computational complexity
of method of moments (MoM) from O(N3) to

O(N3/2) where N denotes the number of unknowns,
whereas AIM and IML have the complexity of
O(N3/2logN) and O(N2

Many authors have investigated the
parallelization of FMM and its multi-level version
(MLFMA)

logN), respectively.

[4-12] on CPU clusters in solving
problems of hundreds of thousands to millions of
unknowns. Others used FMM to solve large
acoustic problems on multi-node GPU systems
[13-14], or implemented MLFMA on GPUs, [15].

This paper is a continuation of our previous
efforts [16, 17], and investigates the parallelization
of FMM for electromagnetics structures on two
HPC platforms. The first platform includes 13
nodes populated with a Nvidia Tesla M2090 GPU.
The second platform is an FPGA-based SRC-7
system, which includes a single Altera Stratix
EP4SE530 FPGA. In this paper, we enhance the
GPU cluster implementation in [16] by the use of
the two workload partitioning techniques among
the computing nodes, namely group-based and
direction-based distributions. The group-based
distribution technique is applied for the calculation
of the near components of the impedance matrix,
while the direction-based distributions are used in
the far component computation as will be
discussed later in the implementation section. Our
previous work in [16] utilized only the group-
based approach, which resulted in more
communication overhead. Regarding the FPGA
platform, this paper provides an entire FMM
implementation whereas our previous work in [17]
utilized the FPGA only for the near component
calculations of the impedance matrix. More details
of the entire FMM implementation on FPGA is
provided in the implementation section.

1187 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

1054-4887 © 2013 ACES

Submitted On: July 23, 2013
Accepted On: Jan. 19, 2014

For the sake of validation of accuracy with
analytical methods, the work presented here
focuses on canonical problems such as scattering
from a sphere. The work can easily be extended to
real-life problems involving complicated
structures.

The rest of the paper is organized as follows.
Section II provides an overview of FMM. We
present the implementation of FMM on HPC
platforms in section III.

II. OVERVIEW OF THE FAST
MULTIPOLE METHOD (FMM)

Performance metrics for
evaluation are presented in section IV. The
experimental results are discussed in section V,
followed by the conclusions in section VI.

The fundamental principles of FMM and its
applications in electromagnetics have been well
studied in literature [3-4]. In this section, we
provide a brief overview to help our discussion on
its parallel implementations discussed in section
III.

Like in MoM, FMM solves for the linear
equation system created in the form of ZI = V
where I represents the unknown currents, V
depends on the incident field, and Z is the
impedance matrix. The main idea in FMM is the
grouping concept as shown in Fig. 1, where the N
edges in the mesh of a given structure are
categorized into M localized groups based on their
proximity. According to this approach, two
interaction types can be defined: near and far, as
depicted in Fig. 1. These different types allow the
system matrix to be split into two components,
Znear and Zfar

()near farZI Z Z I V .= + =

, as shown in equation (1),

 (1)

The near term comprises of interactions
between spatially close edges, and is computed
and stored in a similar manner to MoM [18]. The
interactions between the remaining edges that are
spatially far from each other constitute the far
term. The advantage of separating the Z matrix
into two components is that the Zfar

1
ET

 matrix does
not need to be computed and stored ahead of time.
Instead it is factorized into radiation, , 2

ET ,

receive, 1
ER , 2

ER and translation functions, LT .
Equation (2) depicts these functions based on the
electric-field integral equation (EFIE) formulation,

() () ()(
() () ()

2
1 1

2
2 22

4

1

'im ' 'i m

'im ' 'i m

E E
far , L ,mm

E E
, L ,mm

jk ˆ ˆ ˆ ˆZ d R .T k , , .T

ˆ ˆ ˆ ˆd R .T k , , .T ,
k

η
π

=

− 


∫

∫

r r

r r

k k k r k

k k k r k
(2)

where

() ()

() ()

1

2

,
k r

r n

k r
r n

k f r

k .f r

' 'i m
' '' 'i m

' 'i m
' '' 'i m

ˆjE '
, i m

S
ˆjE ' '

, i m
S

ˆT .e dS

ˆT .e dS ,

⋅

⋅

=

= ∇

∫

∫
(3)

() ()

() ()

1

2

k r
r n

k r
r n

k f r

k .f r

im

im

im

im

ˆjE
, im

S
ˆjE

, im
S

ˆR .e dS ,

ˆR .e dS ,

− ⋅

− ⋅

=

= ∇

∫

∫
 (4)

()
() ()

1

0

2

2 1
4

k r () ()

 r k r

'

' '

L
l

L mm
l

()
l lmm mm

kˆT k , , j l

ˆh k P .

π
+

=

= − +

⋅

∑

(5)

In the equations above, the prime syntax
denotes the source points, and i and m are indices
that refer to the edges and groups in the mesh,
respectively. The vector rab

implies the direction

from point b to a. The unit vector k̂ denotes the K
possible field directions in κ space, ()f r denotes

the associated basis function, () ()2
lh x is the

spherical Hankel function of the second kind, and

()lP x is the Legendre polynomial.

At this stage, the Z matrix is known and the
unknown values for I can be solved for iteratively
using equation (1). Each component of the voltage
term Vi

1 1 1

' ' ' ' ' '
' ' '

N N N

i ii i near ,ii i far ,ii i
i i i

V Z I Z I Z I ,
= = =

= = +∑ ∑ ∑

 is calculated as in equation (6) using the
matrix-vector multiplication (MVM),

 (6)

where the near component is based on MoM and
the far component is computed from equation (7)
as,

() () ()

() () ()

1

2
1 1

2
2 22

4

1

' '
'

' 'im ' 'i m' '
m 'm

' 'im ' 'i m' '
m 'm

N

far ,ii i
i

E E
, L ,mm i

m B i G

E E
, L ,mm i

m B i G

Z I

jk ˆ ˆ ˆ ˆd R . T k , , . T I

ˆ ˆ ˆ ˆd R . T k , , . T I ,
k

η
π

=

∉ ∈

∉ ∈

=







−



∑

∑ ∑∫

∑ ∑∫

r r

r r

k k k r k

k k k r k

(7)

where mG denotes all elements in the mth

mB
 group,

and denotes all nearby groups of the mth group.

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1188

The details of the parallelization of FMM will be
discussed in the following section.

Fig. 1. Grouping in FMM (N edges, M groups).

III. HPC IMPLEMENTATION OF FMM

We consider two platforms for the parallel
implementation of FMM; namely a GPU cluster
and an FPGA-based HPRC system. In this section
we first discuss the different architectures and
programming models of these systems, and then
provide the details of our HPC implementations on
both platforms.

A. HPC architectures and programming
models

The first platform utilized in our FMM
implementation is the GPU cluster, which consists
of 13 computing nodes. Each node has a dual 6-
core 2.66 GHz Intel Xeon processor, 48 GB RAM
along with one Nvidia Tesla M2090 GPU running
at 1.3 GHz with 6 GB of GPU memory. The nodes
are interconnected through the InfiniBand
interconnection, as shown in Fig. 2. The cluster
populates CUDA v4.2 and MVAPICH2 v1.8.1 (a
well-known implementation of message passing
interface (MPI)). Two parallel programming
approaches of CUDA and MPI are combined to
provide the use of GPU programming across the
cluster.

The second platform is an SRC-7 MAPstation
workstation, which consists of one general
purpose microprocessor subsystem and one series
J MAP reconfigurable processor subsystem, see
Fig. 3. The microprocessor board, which is based
on a dual-core 3.00 GHz Intel Xeon processor and
6 GB RAM, is connected to the MAP board
through the series D SNAP interconnect. The
SNAP card plugs into the memory DIMM slot on
the microprocessor motherboard to provide a high
data transfer rate between the boards. The MAP

board is composed of one control FPGA (Altera
Stratix EP2S130) and one user FPGA (Altera
Stratix EP4SE530), which operate at 200 MHz. It
also contains 16 on-board memory (OBM) banks
with a total capacity of 64 MB, and two
simultaneously accessible 1 GB global common
memory (GCM) banks. SRC’s proprietary Carte-C
programming environment is used in the FPGA-
based code development. The programming model
offers a compromise between high-level languages
(HLLs), e.g. C, and hardware description
languages (HDLs), e.g. VHDL, to abstract
underlying hardware design details and streamline
the disparate design flows [19].

Fig. 2. System architecture of GPU cluster.

Fig. 3. System architecture of SRC MAPstation.

The two platforms utilize two different
programming models. The CUDA used by the
GPU follows the single program multiple data
(SPMD) model [20], which allows data
parallelism (wide parallelism). Under the SPMD
scenario, thousands of threads execute the same
program on different GPU cores, simultaneously
operating on different data sets in parallel. On the
other hand, FPGA programming mainly supports

1189 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

task parallelism (deep parallelism) by utilizing
pipelining technique. It is interesting to mention
that data parallelism can also be allowed in FPGA
programming. However, this depends on the
availability of on-chip resources. The SRC’s Carte
programming environment allows the user full
control of data utilization in terms of pipelining
and parallelization, whereas with the CUDA
environment the user is oblivious to how the GPU
is scheduled. Thus, CUDA is very easy to use
whereas Carte

The FMM algorithm comprises three main
steps: pre-processing, processing, and post-
processing (see

requires both software and
hardware programming skills.

B. HPC implementations

Fig. 4). The pre-processing step
involves reading the geometry mesh and dividing
edges into localized groups. The processing step
involves five tasks as shown in Fig. 4. The matrix
components for near interactions, the
radiation/receive functions, the translation matrix,
and the V vector are calculated and stored.
Iterative methods, such as biconjugate gradient
stabilized method (BiCGSTAB) [21], are
employed for solving the linear system. Finally,
the electromagnetic quantities of interest, e.g.
scattered fields, are calculated in the post-
processing step. Based on our profiling results, the
processing step consumes the most execution time
in the algorithm. Hence, it is selected as the
candidate for hardware parallelization, while the
other steps are handled on the CPU.

Fig. 4. FMM processing step flowchart.

B.1. GPU cluster implementation

The geometry mesh data resulting from the
pre-processing step in Fig. 4 is transferred to the
GPU memory once at the beginning of the
processing step and the entire computation is
performed on the GPU afterward. The
parallelization of the processing step in GPU
cluster implementation is performed at two levels:

(i) among computing nodes using MPI library, and
(ii) within GPU per node using CUDA
programming model. The workload of
computational tasks in the processing step, as
shown in Fig. 4, are equally distributed to
computing nodes such that each node holds the
same amount of workload and the inter-node
communication is minimized. Two partitioning
techniques, which are defined as group-based
distribution and direction-based distribution, are
exploited to achieve the balanced workload
distribution among the computing nodes. The first
technique involves the uniform distribution of M
groups among n computing nodes. The second
technique, which was suggested in [5], involves
the distribution of independent computation for
each sample in κ space among the nodes. Within
each node, the CUDA thread-block model is
utilized to calculate the workload assigned to that
node. The remaining parts of this section highlight
the implementation details of each computational
task in the processing step.

Our earlier work
1) Near interaction calculations

[22] on implementing MoM
on multiple GPUs is leveraged for the first task of
the processing step (see Fig. 4), namely
calculation of Znear, which utilizes conventional
MoM. Using the group-based partitioning
technique, the rows of the Znear matrix are
assigned to the computing nodes with the
assumption that each node has approximately an
equal number of Zmn Fig. 5 elements, as shown in ,

where groupN denotes the average number of edges

per group, and nodeM is defined as the average
number of groups per node [16]. At a given node,
each sparse row is handled by a CUDA block in
which a CUDA thread calculates one element,
Zmn

[16-

, of that row. For further details of the GPU
cluster implementation, the readers are referred to
our previous work in 17].

The second task is the calculation of the far
interactions, which consists of the calculations of
three functions: radiation, T

2) Far interaction calculations

E, receive, RE, and
translation, TL. As seen in equations (3) and (4),
the radiation and receive functions are in the form
of complex conjugate of each other. Thus their
implementations are identical. In contrast to our

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1190

previous work in [16-17] in which the group-based
partitioning was used for far interactions, the
direction-based partitioning strategy is applied to
the GPU implementation of this task due to the
fact that each sample in κ space is completely
independent of other samples. This efficient
workload distribution guarantees the minimum
communication at the end of the matrix-vector
multiplication as discussed later in the next
section. As shown in Fig. 6, following the κ space
distribution, each node handles calculations of M
groups for Knode (≈K/n) directions. Given this
amount of workload per node, the CUDA kernel is
launched with M•Knode blocks such that each block
performs Ngroup radiation/receive function
calculations at a given direction and each thread
evaluates a single function.

Fig. 5. Workload distribution and CUDA
implementation of the Znear

 matrix.

Fig. 6. Workload distribution and CUDA
implementation of the radiation/receive functions.

The next task for the far interactions is the

calculation of the translation matrix, TL, which
contains all the translation operators among far
groups. The workload of the TL matrix
calculations is also distributed across the nodes
following the direction-based technique since it
has to be evaluated for the entire κ space. Each
CUDA block is assigned to compute one sparse

row of the TL
Fig.

7

 matrix for a given direction and each
thread computes one element in that row, see
.

Fig. 7. Workload distribution and CUDA
implementation of the translation matrix.

The V vector calculations are simply the
evaluations of incident electric fields at each
triangle in the geometry mesh. The details of the
computation, which render itself to parallel
implementation can be found in

3) V vector calculations

[18].

The final task is the solution for the linear
equation using iterative solver, i.e., BiCGSTAB
algorithm

4) Solution of the linear equation

[21]. In this algorithm, each iteration
involves matrix-vector multiplications (MVMs),
i.e., Z.I, which constitute the most time consuming
part of the solution. The calculation of Zfar

[3]

I
comprises three stages: aggregation, translation,
and disaggregation, (the readers are referred to
for further details), while ZnearI is simply a regular
sparse MVM. This section only discusses the GPU
cluster parallelization of Zfar Fig. 8I, as shown in .
It should be noted that the other parts of the
BiCGSTAB are also performed on GPU. They
involve

The unknown currents are distributed across
the computing nodes using the group-based
partitioning technique. During the iterative linear
solution, each node calculates the estimated values

basic linear algebra operations leveraged
from the CUBLAS library [23].

1191 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

of its assigned unknowns and updates all nodes. In
the aggregation stage, each node computes the
radiated fields for all M groups for the Knode
directions by multiplying the unknowns with their
corresponding radiation functions, TE, and
accumulating within each group. The CUDA
execution model assigns one group for a specific
direction to each block in which each thread
performs one multiplication. The CUDA kernel
also requires parallel reductions within every
block to sum the per-thread results to give the
radiated fields for each group.

Fig. 8. Parallelization of the far MVM.

In the translation stage, the received fields for
each associated direction are calculated from the
multiplication of the translation matrix, TL, and the
radiated fields. Since the translation matrix is
sparse, the CUDA implementation simply
performs Knode normal sparse MVMs.

In the disaggregation stage, the received field
quantities of all M groups are multiplied with the
corresponding receive functions, RE, and
integrated over the partitioned κ space in each
node. Similar to the aggregation stage, the CUDA
kernel is invoked with M blocks each thread of
which computes one disaggregation followed by
the integration for one partial result of the far term
Vi

The

 as presented in equation (6). Finally, at the end
of the MVM, the partial results from all nodes are
summed together and all nodes are updated. This
is accomplished through the reduce-scatter
communication.

solution of the linear equation requires
communication only at two steps: (i) before
starting the MVM to update the estimated values

for the unknowns among the nodes; (ii) after the
disaggregation stage of the MVM to update the
ZfarI results among the nodes. Due to the efficient
use of the group-based and direction-based
distribution schemes, the inter-node
communication overhead among the nodes is
reduced. This overhead is further reduced as it is
performed directly among GPU memory spaces
using MVAPICH2’s GPU-to-GPU feature.

B.2. FPGA implementation

The SRC-7 MAPstation contains a single user
FPGA, thus in this paper the FPGA parallelization
is performed on a single node. However, this work
can be easily extended to work on a multi-node
system using MPI librabry.

Fig. 4

As in the GPU
implementation, the FPGA implementation in this
work also focuses on the parallelization of the
processing step of . However, only four tasks
of the processing step, namely calculating matrix
components for near interactions, calculating the
radiation/receive functions, calculating the V
vector, and iterative linear solution, are fully
pipelined on FPGA. Due to its complex recursive
computation relating to the evaluations of
spherical Hankel functions and Legendre
polynomials, as shown in equation (5), the
remaining task, which is calculating the translation
matrix, is not a good candidate for the FPGA
implementation and thus is handled by the CPU.
Since the on-board memory (OBM) is limited to a
total capacity of 64 MB, the entire workload
cannot fit on a single FPGA chip. Therefore, the
workload of each computational task is equally
divided in a group-wise manner into sequential
chunks. Each chunk is then computed using the
pipelining technique. Currently, the FPGA logic
resource of our SRC-7 computer limits the number
of pipelines in each task to one. In spite of that,
our implementation can be modified with minimal
effort to work with fewer chunks and more
pipelines on larger resource FPGA systems. The
remaining parts of this section highlight the FPGA
implementation details of each computational task.

The first task is the calculation of Z
1) Near interaction calculations

near
Fig. 4

, see
, which utilizes conventional MoM. Using

the group-wise partitioning technique, the
computation of Znear’s rows are divided into

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1192

Nchunknear Fig. 9 chunks (see) where MAX_OBM is
the maximum size of a single OBM bank. At the
beginning of the calculation, the geometry mesh
data is transferred from the CPU memory to the
OBM. Per chunk, the row and column indices of
the corresponding Zmn elements are transferred to
OBM followed by fully pipelined computations.
The evaluation of each Zmn [18], , is separated into
two loops running concurrently. The first loop
computes the elements under the integration sign.
For the second loop, we leverage our earlier work
in [22] on the integration implementation. The
streaming technique is exploited, as shown in
yellow blocks in Fig. 9, to enable computation and
data transfer overlapped. Accordingly, each result
of Zmn is streamed out to CPU memory
immediately as soon as it is computed. The
process is continued for the rest of chunks.

Fig. 9. Workload distribution and FPGA
implementation of the Znear matrix.

The second task is the far interaction
calculations. As mentioned before, for the FPGA
implementation we only consider the radiation, T

2) Far interaction calculations

E,
and receive, RE, functions, and their
implementations are identical since they are
complex conjugates of each other. For the sake of
simplicity, the group-wise partitioning technique is
also used to divide the radiation/receive functions
to Nchunk Fig. 10 chunks (see). The
radiation/receive functions must be evaluated at all
K directions. Before calculations, the group and
direction data are transferred from the CPU
memory to the OBM. Per chunk, the geometry
mesh data is transferred to OBM before the fully

pipelined computation starts. The use of
streaming, as shown in yellow blocks in Fig. 10,
allows the computations to continue while the data
is being transferred out. The results are stored in
the global-common memory (GCM) instead of the
CPU memory to avoid the overhead of
communication through SNAP card.

Fig. 10. Workload distribution and FPGA
implementation of the radiation/receive functions.

3) V vector calculations

As in the GPU cluster implementation, the
calculations of the V vector are parallelized on the
hardware. The FPGA implementation details are
not discussed in this paper due to its simplicity.

Similar to the GPU implementation, this
section focuses on the Z

4) Solution of the linear equation

farI matrix-vector
multiplication (MVM) in BiCGSTAB algorithm.
The calculation of Zfar

Fig. 8

I comprises three stages:
aggregation, translation, and disaggregation. The
parallelization of far MVM follows the flowchart
presented in , except one node is available to
us in the HPRC system and is used to handle the
entire computation. Thus, communication is not
required at the end of the MVM. In terms of
FPGA pipelining, it can be observed in equation
(7) that these three stages are similar and involve
multiplications and accumulations (integrations).
Hence, a generic implementation, as shown in Fig.
11, can be applied to all stages. The symbols
Input_A, Input_B, and Output_C are used to
represent the input and output variables, and
acc_length is the length of the accumulation for
each stage (see Table I).

1193 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

Before calculations, the Input_A is transferred
to the OBM from the CPU memory. Using the
group-wise partitioning technique, per chunk, the
Output_C are then computed by multiplying each
value of Input_A with its corresponding value of
Input_B, and accumulating on acc-length
sequences. All computation loops are fully
pipelined such that Input_B is streamed in from
the GCM while Output_C are streamed out to the
GCM.

Table I: General symbols for each stage in the far
MVM.

 Aggrega-
tion

Translation Disaggrega
-tion

Input_A unknown
currents

radiated
fields of M
groups

received
fields of M
groups

Input_B radiation
functions

translation
matrix

receive
functions

Output _C radiated
fields of
M groups

received
fields of M
groups

ZfarI

acc-
length

number
of edges
per group

number of
elements per
TL

K

 matrix’s
row

Fig. 11. Generic FPGA implementation of three
stages of the

IV. PERFORMANCE METRICS

far MVM.

In our performance analysis, we assume two
models. The first model is the fixed-workload
model (Amdahl’s Law) [24] where the
computational workload is fixed and equally

distributed among the processing elements (PE)
(i.e., computing nodes for GPU implementation
and MAP cards for FPGA implementation) as the
number of processing elements increases. The
second model is the fixed-time model (Gustafson’s
Law [24]) where larger computational workloads
(larger problem size) are used while maintaining
the same performance as the number of processing
elements is increased.

The performance of our HPC implementations
is evaluated in reference to its single CPU
implementation. In our analysis, we consider the
computation time, Tcomp, which is defined as the
time spent on GPU or FPGA, as well as the total
execution time, Ttotal, which is the sum of the
computation time and the overhead, Tcomm

.PE PE PE
total comp commT T T= +

, which
is associated with all communications between
processing elements (GPUs or FPGAs) and CPUs,
as given in equation (8),
 (8)

Two metrics are investigated for performance
comparisons between platforms: (i) speedup, and
(ii) scalability. The speedup, S, is defined as the
ratio of time required by a single CPU to carry out

the total workload, ()1CPUT ,D , to the time

required by multiple hardware processing
elements for their associated workload,

()PE
PE PET N ,D as in equation (9),

 () ()
()

1CPU

PE PE
PE PE

T D
S N ,

T N ,D
=

, (9)

where DPE is the workload for a single processing
element, NPE is the number of processing
elements, D is the total workload assigned. In the
fixed-workload model, the workload per element
DPE is adjusted with the number of processing
elements, DPE=D/NPE. In the fixed-time model,
the total workload D is adjusted with the number
of processing elements, D=DPE*NPE

() ()
()1

PE
PE

S N
N .

S
Ω =

.
Finally, the scalability factor, Ω, is defined as

the normalized speedup of multiple processing
elements in reference to a single processing
element, as given by equation (10),

 (10)

V. EXPERIMENTAL RESULTS

The implementation on both platforms is done
using single precision. The implementation for

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1194

GPU is parallelized using up to 13 nodes, while
the FPGA implementation is performed on a
single node due to the available configuration in
our lab.

We validate the accuracy of the
implementation on both platforms by calculating
the radar cross section (RCS) of a 5.4 λ diameter
(58 K unknowns) PEC sphere illuminated by an x-
polarized normally incident field. The RCS is
compared with the results using Mie scattering. It
can be observed from

In reviewing our experimental results, first
we verify the accuracy and then investigate the
performance in terms of the two metrics: speedup
and scalability.

A. Accuracy

Fig. 12 that the two HPC
results and the analytical solutions show a good
agreement.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

θs,deg

R
C

S,
 d

Bm
2

FMM-GPU
FMM-FPGA
Mie Scattering

Fig. 12. RCS of a 5.4λ diameter PEC sphere.

B. Performance evaluation for GPU cluster

Two experiments are conducted with a PEC
sphere following fixed-workload model and fixed-
time model as discussed in section IV. In the
fixed-workload model, the sphere diameter is
chosen as d = 15.75 λ corresponding to 506 K
unknowns. The size of the problem demands the
use of at least 8 nodes to satisfy the required GPU
memory. The speedup factor increases from

Fig. 13

755
for 8 nodes to 1,152 for 13 nodes as observed in

. Since each node processes less workload,
the GPU execution time decreases as the number
of nodes increases. The difference observed
between the speedup of total execution time and
computation time is due to the inter-node
communication overhead.

In the fixed-time model, the sphere diameter
for a single node is chosen as d = 7.45λ, which
fully utilizes the single GPU memory with 113 K
unknowns. As the number of nodes increases, the
workload at each node remains constant enabling
the solution for a 17.96 λ diameter sphere with
656 K unknowns for 13 nodes. We observe in Fig.
14 that the GPU implementation outperforms the
CPU by achieving a speedup of 1,133 for 13
nodes.

Fig. 13. Speedup of GPU cluster (Amdahl’s Law,
single CPU execution time ≈ 11 hours).

Finally, we compare the scalability of the

GPU cluster implementation for both experiments.
The scalabilities for the computation speedup and
the total speedup in comparison to the linear
theoretical scalability are demonstrated in Fig. 15
(fixed-workload model) and Fig. 16 (fixed-time
model). It can be seen in both figures that the
computation speedup scales identically to the
theoretical linear expectation demonstrating our
efficient hardware implementation. The total
speedup scales closely to the theoretical
expectation demonstrating our efficiency in
reducing the inter-node communication overhead.

Fig. 14. Speedup of GPU cluster (Gustafson’s
Law, single CPU execution time ≈ 1.26 hours).

1195 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

Fig. 15. Scalability of GPU implementation (fixed-
workload model).

Fig. 16. Scalability of GPU implementation (fixed-
time model).

C. Performance evaluation for FPGA
workstation

Due to our available configuration of the SRC-
7 MAPstation workstation, the experiment is
carried out on a single FPGA fully utilizing its
memory by choosing d = 5.4 λ (39 K unknowns).
Therefore, our performance analysis is limited to
the speedup of a single node, which is observed to
be a factor of 2. For the same problem size, the

GPU implementation achieves a total speedup
factor of 77.5, outperforming the FPGA
implementation. However, it should be noted that
in the current FPGA implementation, due to the
complex recursive nature as mentioned in section
III.B.2, the translation matrix calculation task is
handled on the CPU. This contributes to a
decreased performance compared to that of GPU
where all tasks are fully parallelized. Moreover,
the FPGA system has significantly more limited
resources in terms of clock speed and memory. In
particular, the FPGA operates at 200 MHz

whereas the GPU runs at 1.3 GHz, and the on-
board memory of FPGA is limited to a total
capacity of 64 MB compared with 6 GB of GPU
memory. The memory limit results in the fact that
each computational task can only be parallelized
in a chunk-wise manner, which is part of the
reason for the less impressive FPGA performance.
This is despite the fact that the pipelining
technique is efficiently utilized in each chunk.

VI. CONCLUSIONS
In this paper, the FMM algorithm is

implemented on two HPC platforms, a 13-node
GPU cluster and a single FPGA SRC workstation,
for large-scale electromagnetic scattering
problems. It is shown that for the same degree of
accuracy, the GPU implementation outperforms
the CPU implementation in terms of speedup by a
factor of 1,133 for problem sizes with more than
half million unknowns. Currently, the maximum
problem size that can be handled by our GPU
cluster implementation is limited by the GPU
memory, which is 6 GB per node in our cluster.
Larger problem sizes can be handled by the cluster
by fully utilizing all available system resources
including the CPU and GPU memories. We also
observe that the GPU cluster implementation
demonstrates a favorable scalability characteristic
as the number of nodes increases, which proves a
highly efficient parallelization scheme, which
reduces the inter-node communication overhead.
The paper also demonstrates a speedup factor of
two for the FPGA implementation. Although, the
comparison of performance in terms of speedup
reveals that the GPU implementation surpasses the
FPGA implementation, it should be noted that the
FPGA system has significantly more limited
resources than GPU in terms of frequency (200
MHz versus 1.3 GHz) and on-board memory (64
MB versus 6 GB). In the near future, when FPGA
computers are equipped with larger resources and
operate at higher frequencies, the authors believe a
comparable performance with GPU can be
achieved.

ACKNOWLEDGMENT

This material is based upon work supported
by, or in part by, the U.S. Army Research
Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-09-1-0123.

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1196

REFERENCES
[1] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz,

“AIM: Adaptive integral method for solving
large‐scale electromagnetic scattering and
radiation problems,” Radio Science, vol. 31, no. 5,
pp. 1225-1251, 1996.

[2] F. Canning, “The impedance matrix localization
(IML) method for moment-method calculations,”
IEEE Antennas Propagat. Mag., vol. 32, no. 5,
pp. 18-30, 1990.

[3] R. Coifman, V. Rokhlin, and S. Wandzura, “The
fast multipole method for the wave equation: a
pedestrian prescription,” IEEE Antennas
Propagat. Mag., vol. 35, no. 3, pp. 7-12, June
1993.

[4] J. Song and W. Chew, “Multilevel fast multipole
algorithm for solving combined field integral
equations of electromagnetic scattering,” Microw.
Opt. Tech. Lett., vol. 10, pp. 14-19, Sep. 1995.

[5] C. Waltz, K. Sertel, M. Carr, B. Usner, and J.
Volakis, “Massively parallel fast multipole
method solutions of large electromagnetic
scattering problems,” IEEE Trans. Antennas
Propag., vol. 55, no. 6, pp. 1810-1816, 2007.

[6] S. Velamparambil, J. Schutt-Aine, J. Nickel, J.
Song, and W. Chew, “Solving large scale
electromagnetic problems using a Linux cluster
and parallel MLFMA,” in IEEE Antennas Propag.
Soc. Int. Symp., vol. 1, pp. 636-639, 11-16 July
1999.

[7] S. Velamparambil and W. Chew, “Analysis and
performance of a distributed memory multilevel
fast multipole algorithm,” IEEE Trans. Antennas
Propag., vol. 53, no. 8, pp. 2719-2727, August
2005.

[8] E.-L. Lu and D. Okunbor, “A massively parallel
fast multipole algorithm in three dimensions,” in
Proc. IEEE High Perform. Distrib. Comput. Int.
Symp., pp. 40-48, August 1996.

[9] E.-L. Lu and D. Okunbor, “Parallel
implementation of 3d FMA using MPI,” in Proc.
MPI Developer’s Conf., pp. 119-124, July 1996.

[10] S. Velamparambil, W. Chew, and M. Hastriter,
“Scalable electromagnetic scattering
computations,” in IEEE Antennas Propag. Soc.
Int. Symp., vol. 3, pp. 176-179, 2002.

[11] G. Sylvand, “Performance of a parallel
implementation of the FMM for electromagnetics
applications,” Int. J. Numer. Meth. Fluids, vol. 43,
no. 8, pp. 865-879, Nov. 2003.

[12] O. Ergul and L. Gurel, “Efficient parallelization
of the multilevel fast multipole algorithm for the
solution of large-scale scattering problems,” IEEE
Trans. Antennas Propag., vol. 56, no. 8, pp. 2335-
2345, August 2008.

[13] M. López-Portugués, J. López-Fernández, J.
Ranilla, R. Ayestarán, and F. Las-Heras,
“Parallelization of the FMM on distributed-
memory GPGPU systems for acoustic-scattering
prediction,” J. Supercomput., vol. 64, no. 1, pp.
17-27, April 2013.

[14] M. López-Portugués, J. López-Fernández, J.
Menéndez-Canal, A. Rodríguez-Campa, and J.
Ranilla, “Acoustic scattering solver based on
single level FMM for multi-GPU systems,” J.
Parallel Distrib. Comput., vol. 72, no. 9, pp.
1057-1064, Sep. 2012.

[15] M. Cwikla, J. Aronsson, and V. Okhmatovski,
“Low-frequency MLFMA on graphics
processors,” IEEE Antennas Wireless Propag.
Lett., vol. 9, pp. 8-11, 2010.

[16] Q. Nguyen, V. Dang, O. Kilic, and E. El-Araby,
“Parallelizing fast multipole method for large-
scale electromagnetic problems using GPU
clusters,” IEEE Antennas Wireless Propag. Lett.,
vol. 12, pp. 868-871, July 2013.

[17] V. Dang, Q. Nguyen, O. Kilic, and E. El-Araby,
“Fast multipole method for large-scale
electromagnetic scattering problems using high
performance computers,” in The 29th
International Review of Progress in Applied
Computational Electromagnetics (ACES 2013),
Monterey, CA, USA, 24-28 March 2013.

[18] S. Rao, D. Wilton, and A. Glisson,
“Electromagnetic scattering by surfaces of
arbitrary shape,” IEEE Trans. Antennas Propag.,
vol. 30, no. 3, pp. 409-418, May 1982.

[19] E. El-Araby, O. Kilic, and V. Dang, “Exploiting
FPGAs and GPUs for electromagnetics
applications: interferometric imaging in random
media case study,” The Applied Computational
Electromagnetics Society (ACES) Journal

[20]

, vol.
27, no. 2, Feb. 2012.
F. Darema, “The SPMD model: past, present and
future,” in Proc. 8th European PVM/MPI Users'
Group Meeting on R ecent Advances in Parallel
Virtual Machine and M essage Passing interface,

[21] R. Barrett, M. Berry, T. Chan, J. Demmel, J.
Donato, J. Dongarra, V. Eijkhout, R. Pozo, C.
Romine, and H. van der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for
Iterative Methods, Philadelphia, PA: SIAM, 1994.

Lecture Notes In Computer Science, vol. 2131,
pp. 1, Sep. 2001.

[22] O. Kilic, E. El-Araby, Q. Nguyen, and V. Dang,
“Bio-inspired optimization for electromagnetic
structure design using full-wave techniques on
GPUs,” Int. J. Numer. Model., vol. 26, no. 6, pp.
649-669, November/December 2013.

[23] NVIDIA Corporation, CUDA Toolkit 4.2
CUBLAS Library, Santa Clara, CA, Feb. 2012.

1197 ACES JOURNAL, VOL. 28, No. 12, DECEMBER 2013

[24] K. Hwang and Z. Xu, Scalable Parallel
Computing: Technology, Architecture,
Programming, New York, NY: McGrawHill,
1998.

Vinh Dang received his B.Sc.
(2003) and M. Eng. (2006)
degrees in Electrical Engineering
from the Posts and
Telecommunications Institute of
Technology and the University of
Technology, in Vietnam,
respectively. Prior to 2010, he was

a Lecturer at the School of Electrical Engineering,
International University. He is currently a PhD.
candidate and a Graduate Research Assistant in the
Department of Electrical Engineering and Computer
Science, the Catholic University of America (CUA).
His research interests include high performance
computing, numerical electromagnetics with
applications to radiation, scattering and remote sensing.

Quang Nguyen received his
B.Sc. (2009) and M.Eng. (2011)
degrees in Electrical Engineering
from the International University,
Vietnam, and the Catholic
University of America, USA,
respectively. He is currently a
PhD. student and a Graduate

Research Assistant in the Department of Electrical
Engineering and Computer Science, Catholic
University of America. His research interests include
bio-inspired optimization methods, numerical
electromagnetics with applications to radiation,
scattering and remote sensing.

Dr. Ozlem Kilic is an Associate
Professor in the Department of
Electrical Engineering and
Computer Science of the Catholic
University of America. Prior to
joining CUA, she was an
Electronics Engineer at the U.S.
Army Research Laboratory,

Adelphi MD. Dr. Kilic has over five years of industry
experience at COMSAT Laboratories as a Senior
Engineer and Program Manager with specialization in
satellite, link modeling and analysis. Her research
interests include numerical electromagnetics, antennas,
wave propagation, satellite communications systems,
and microwave remote sensing. She is an Associate
Editor of IEEE Antennas and Propagation Magazine
and Applied Computational Electromagnetics Society
Journal. She serves as Member at Large for USNC-
URSI.

DANG, NGUYEN, KILIC: FAST MULTIPOLE METHOD FOR LARGE-SCALE ELECTROMAGNETIC SCATTERING 1198

