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Abstract ─ The fast multipole method (FMM) for 
large-scale electromagnetic scattering problems is 
implemented on high performance computing 
(HPC) platforms and its performance is 
investigated in terms of accuracy, speedup, and 
scalability. The HPC platforms include a 13-node 
graphical processing unit (GPU) cluster, and a 
field programmable gate array (FPGA)-based high 
performance reconfigurable computer (HPRC). 
The details of the implementations and the 
performance achievements are shown and 
analyzed. We demonstrate a scalable 
parallelization while maintaining a good degree of 
accuracy.     
  
Index Terms - Electromagnetic scattering, fast 
multipole method (FMM), FPGA, GPU, high 
performance reconfigurable computer (HPRC), 
iterative solvers, and method of moments.  
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I. INTRODUCTION 
Modeling large-scale objects is a challenging 

problem in electromagnetics community due to the 
excessively heavy requirements of memory and 
computational resources. Since it has an important 
role in the research of target identification, or the 
stealth and anti-stealth technology, many 
numerical techniques have been developed over 
past two decades to reduce this burden without 
significant loss of accuracy, including adaptive 
integral method (AIM) [1], impedance matrix 
localization (IML) [2], and fast multipole method 
(FMM) [3]. Compared with the others, FMM is 
among the most suitable techniques for large-scale 
problems. It reduces the computational complexity 
of method of moments (MoM) from O(N3) to 

O(N3/2) where N denotes the number of unknowns, 
whereas AIM and IML have the complexity of 
O(N3/2logN) and O(N2

Many authors have investigated the 
parallelization of FMM and its multi-level version 
(MLFMA) 

logN), respectively.      

[4-12] on CPU clusters in solving 
problems of hundreds of thousands to millions of 
unknowns. Others used FMM to solve large 
acoustic problems on multi-node GPU systems 
[13-14], or implemented MLFMA on GPUs, [15].  

This paper is a continuation of our previous 
efforts [16, 17], and investigates the parallelization 
of FMM for electromagnetics structures on two 
HPC platforms. The first platform includes 13 
nodes populated with a Nvidia Tesla M2090 GPU. 
The second platform is an FPGA-based SRC-7 
system, which includes a single Altera Stratix 
EP4SE530 FPGA. In this paper, we enhance the 
GPU cluster implementation in [16] by the use of 
the two workload partitioning techniques among 
the computing nodes, namely group-based and 
direction-based distributions. The group-based 
distribution technique is applied for the calculation 
of the near components of the impedance matrix, 
while the direction-based distributions are used in 
the far component computation as will be 
discussed later in the implementation section. Our 
previous work in [16] utilized only the group-
based approach, which resulted in more 
communication overhead. Regarding the FPGA 
platform, this paper provides an entire FMM 
implementation whereas our previous work in [17] 
utilized the FPGA only for the near component 
calculations of the impedance matrix. More details 
of the entire FMM implementation on FPGA is 
provided in the implementation section.  
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For the sake of validation of accuracy with 
analytical methods, the work presented here 
focuses on canonical problems such as scattering 
from a sphere. The work can easily be extended to 
real-life problems involving complicated 
structures.  

The rest of the paper is organized as follows. 
Section II provides an overview of FMM. We 
present the implementation of FMM on HPC 
platforms in section III. 

II. OVERVIEW OF THE FAST 
MULTIPOLE METHOD (FMM) 

Performance metrics for 
evaluation are presented in section IV. The 
experimental results are discussed in section V, 
followed by the conclusions in section VI. 

 

The fundamental principles of FMM and its 
applications in electromagnetics have been well 
studied in literature [3-4]. In this section, we 
provide a brief overview to help our discussion on 
its parallel implementations discussed in section 
III. 

Like in MoM, FMM solves for the linear 
equation system created in the form of ZI = V 
where I represents the unknown currents, V 
depends on the incident field, and Z is the 
impedance matrix.  The main idea in FMM is the 
grouping concept as shown in Fig. 1, where the N 
edges in the mesh of a given structure are 
categorized into M localized groups based on their 
proximity. According to this approach, two 
interaction types can be defined: near and far, as 
depicted in Fig. 1. These different types allow the 
system matrix to be split into two components, 
Znear and Zfar

( )near farZI Z Z I V .= + =

, as shown in equation (1), 

 

 (1) 

The near term comprises of interactions 
between spatially close edges, and is computed 
and stored in a similar manner to MoM [18]. The 
interactions between the remaining edges that are 
spatially far from each other constitute the far 
term. The advantage of separating the Z matrix 
into two components is that the Zfar
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In the equations above, the prime syntax 
denotes the source points, and i and m are indices 
that refer to the edges and groups in the mesh, 
respectively. The vector rab  

implies the direction 

from point b to a. The unit vector k̂  denotes the K 
possible field directions in κ space, ( )f r  denotes 

the associated basis function, ( ) ( )2
lh x  is the 

spherical Hankel function of the second kind, and 

( )lP x  is the Legendre polynomial.  

At this stage, the Z matrix is known and the 
unknown values for I can be solved for iteratively 
using equation (1). Each component of the voltage 
term Vi

1 1 1

' ' ' ' ' '
' ' '

N N N
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i i i

V Z I Z I Z I ,
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 is calculated as in equation (6) using the 
matrix-vector multiplication (MVM), 

 

 (6)

 
where the near component is based on MoM and 
the far component is computed from equation (7) 
as, 
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where mG  denotes all elements in the mth

mB
 group, 

and  denotes all nearby groups of the mth group. 
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The details of the parallelization of FMM will be 
discussed in the following section.  

 

 
 

Fig. 1. Grouping in FMM (N edges, M groups). 
 
III. HPC IMPLEMENTATION OF FMM 

We consider two platforms for the parallel 
implementation of FMM; namely a GPU cluster 
and an FPGA-based HPRC system. In this section 
we first discuss the different architectures and 
programming models of these systems, and then 
provide the details of our HPC implementations on 
both platforms. 

 
A. HPC architectures and programming 
models 

The first platform utilized in our FMM 
implementation is the GPU cluster, which consists 
of 13 computing nodes. Each node has a dual 6-
core 2.66 GHz Intel Xeon processor, 48 GB RAM 
along with one Nvidia Tesla M2090 GPU running 
at 1.3 GHz with 6 GB of GPU memory. The nodes 
are interconnected through the InfiniBand 
interconnection, as shown in Fig. 2. The cluster 
populates CUDA v4.2 and MVAPICH2 v1.8.1 (a 
well-known implementation of message passing 
interface (MPI)). Two parallel programming 
approaches of CUDA and MPI are combined to 
provide the use of GPU programming across the 
cluster.  

The second platform is an SRC-7 MAPstation 
workstation, which consists of one general 
purpose microprocessor subsystem and one series 
J MAP reconfigurable processor subsystem, see 
Fig. 3. The microprocessor board, which is based 
on a dual-core 3.00 GHz Intel Xeon  processor and 
6 GB RAM, is connected to the MAP board 
through the series D SNAP interconnect. The 
SNAP card plugs into the memory DIMM slot on 
the microprocessor motherboard to provide a high 
data transfer rate between the boards. The MAP 

board is composed of one control FPGA (Altera 
Stratix EP2S130) and one user FPGA (Altera 
Stratix EP4SE530), which operate at 200 MHz. It 
also contains 16 on-board memory (OBM) banks 
with a total capacity of 64 MB, and two 
simultaneously accessible 1 GB global common 
memory (GCM) banks. SRC’s proprietary Carte-C 
programming environment is used in the FPGA-
based code development. The programming model 
offers a compromise between high-level languages 
(HLLs), e.g. C, and hardware description 
languages (HDLs), e.g. VHDL, to abstract 
underlying hardware design details and streamline 
the disparate design flows [19]. 

 

 
 

Fig. 2. System architecture of GPU cluster. 
 

 
 

Fig. 3. System architecture of SRC MAPstation. 
 

The two platforms utilize two different 
programming models. The CUDA used by the 
GPU follows the single program multiple data 
(SPMD) model [20], which allows data 
parallelism (wide parallelism). Under the SPMD 
scenario, thousands of threads execute the same 
program on different GPU cores, simultaneously 
operating on different data sets in parallel. On the 
other hand, FPGA programming mainly supports 
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task parallelism (deep parallelism) by utilizing 
pipelining technique. It is interesting to mention 
that data parallelism can also be allowed in FPGA 
programming. However, this depends on the 
availability of on-chip resources. The SRC’s Carte 
programming environment allows the user full 
control of data utilization in terms of pipelining 
and parallelization, whereas with the CUDA 
environment the user is oblivious to how the GPU 
is scheduled. Thus, CUDA is very easy to use 
whereas Carte 

The FMM algorithm comprises three main 
steps: pre-processing, processing, and post-
processing (see 

requires both software and 
hardware programming skills. 

 
B. HPC implementations 

Fig. 4). The pre-processing step 
involves reading the geometry mesh and dividing 
edges into localized groups. The processing step 
involves five tasks as shown in Fig. 4. The matrix 
components for near interactions, the 
radiation/receive functions, the translation matrix, 
and the V vector are calculated and stored. 
Iterative methods, such as biconjugate gradient 
stabilized method (BiCGSTAB) [21], are 
employed for solving the linear system. Finally, 
the electromagnetic quantities of interest, e.g. 
scattered fields, are calculated in the post-
processing step. Based on our profiling results, the 
processing step consumes the most execution time 
in the algorithm. Hence, it is selected as the 
candidate for hardware parallelization, while the 
other steps are handled on the CPU. 

 

 
 

Fig. 4. FMM processing step flowchart. 
 
B.1. GPU cluster implementation 

The geometry mesh data resulting from the 
pre-processing step in Fig. 4 is transferred to the 
GPU memory once at the beginning of the 
processing step and the entire computation is 
performed on the GPU afterward. The 
parallelization of the processing step in GPU 
cluster implementation is performed at two levels: 

(i) among computing nodes using MPI library, and 
(ii) within GPU per node using CUDA 
programming model. The workload of 
computational tasks in the processing step, as 
shown in Fig. 4, are equally distributed to 
computing nodes such that each node holds the 
same amount of workload and the inter-node 
communication is minimized. Two partitioning 
techniques, which are defined as group-based 
distribution and direction-based distribution, are 
exploited to achieve the balanced workload 
distribution among the computing nodes. The first 
technique involves the uniform distribution of M 
groups among n computing nodes. The second 
technique, which was suggested in [5], involves 
the distribution of independent computation for 
each sample in κ space among the nodes. Within 
each node, the CUDA thread-block model is 
utilized to calculate the workload assigned to that 
node. The remaining parts of this section highlight 
the implementation details of each computational 
task in the processing step. 

  

Our earlier work 
1) Near interaction calculations 

[22] on implementing MoM 
on multiple GPUs is leveraged for the first task of 
the processing step (see Fig. 4), namely 
calculation of Znear, which utilizes conventional 
MoM. Using the group-based partitioning 
technique, the rows of the Znear matrix are 
assigned to the computing nodes with the 
assumption that each node has approximately an 
equal number of Zmn Fig. 5 elements, as shown in , 

where groupN denotes the average number of edges 

per group, and nodeM is defined as the average 
number of groups per node [16]. At a given node, 
each sparse row is handled by a CUDA block in 
which a CUDA thread calculates one element, 
Zmn

[16-

, of that row. For further details of the GPU 
cluster implementation, the readers are referred to 
our previous work in 17]. 

 

The second task is the calculation of the far 
interactions, which consists of the calculations of 
three functions: radiation, T

2) Far interaction calculations 

E, receive, RE, and 
translation, TL. As seen in equations (3) and (4), 
the radiation and receive functions are in the form 
of complex conjugate of each other. Thus their 
implementations are identical. In contrast to our 
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previous work in [16-17] in which the group-based 
partitioning was used for far interactions, the 
direction-based partitioning strategy is applied to 
the GPU implementation of this task due to the 
fact that each sample in κ space is completely 
independent of other samples. This efficient 
workload distribution guarantees the minimum 
communication at the end of the matrix-vector 
multiplication as discussed later in the next 
section. As shown in Fig. 6, following the κ space 
distribution, each node handles calculations of M 
groups for Knode (≈K/n) directions. Given this 
amount of workload per node, the CUDA kernel is 
launched with M•Knode blocks such that each block 
performs Ngroup radiation/receive function 
calculations at a given direction and each thread 
evaluates a single function. 

 

 
 

Fig. 5. Workload distribution and CUDA 
implementation of the Znear

 
 matrix. 

 
 

Fig. 6. Workload distribution and CUDA 
implementation of the radiation/receive functions. 

 
The next task for the far interactions is the 

calculation of the translation matrix, TL, which 
contains all the translation operators among far 
groups. The workload of the TL matrix 
calculations is also distributed across the nodes 
following the direction-based technique since it 
has to be evaluated for the entire κ space. Each 
CUDA block is assigned to compute one sparse 

row of the TL
Fig. 

7

 matrix for a given direction and each 
thread computes one element in that row, see 
. 

 

 
 

Fig. 7. Workload distribution and CUDA 
implementation of the translation matrix. 
 

The V vector calculations are simply the 
evaluations of incident electric fields at each 
triangle in the geometry mesh. The details of the 
computation, which render itself to parallel 
implementation can be found in 

3) V vector calculations 

[18].  
 

The final task is the solution for the linear 
equation using iterative solver, i.e., BiCGSTAB 
algorithm 

4) Solution of the linear equation 

[21]. In this algorithm, each iteration 
involves matrix-vector multiplications (MVMs), 
i.e., Z.I, which constitute the most time consuming 
part of the solution. The calculation of Zfar

[3]

I 
comprises three stages: aggregation, translation, 
and disaggregation, (the readers are referred to  
for further details), while ZnearI is simply a regular 
sparse MVM. This section only discusses the GPU 
cluster parallelization of Zfar Fig. 8I, as shown in . 
It should be noted that the other parts of the 
BiCGSTAB are also performed on GPU. They 
involve 

The unknown currents are distributed across 
the computing nodes using the group-based 
partitioning technique.  During the iterative linear 
solution, each node calculates the estimated values 

basic linear algebra operations leveraged 
from the CUBLAS library [23]. 
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of its assigned unknowns and updates all nodes. In 
the aggregation stage, each node computes the 
radiated fields for all M groups for the Knode 
directions by multiplying the unknowns with their 
corresponding radiation functions, TE, and 
accumulating within each group. The CUDA 
execution model assigns one group for a specific 
direction to each block in which each thread 
performs one multiplication. The CUDA kernel 
also requires parallel reductions within every 
block to sum the per-thread results to give the 
radiated fields for each group. 

 

 
 
Fig. 8. Parallelization of the far MVM. 
 

In the translation stage, the received fields for 
each associated direction are calculated from the 
multiplication of the translation matrix, TL, and the 
radiated fields. Since the translation matrix is 
sparse, the CUDA implementation simply 
performs Knode normal sparse MVMs. 

In the disaggregation stage, the received field 
quantities of all M groups are multiplied with the 
corresponding receive functions, RE, and 
integrated over the partitioned κ space in each 
node. Similar to the aggregation stage, the CUDA 
kernel is invoked with M blocks each thread of 
which computes one disaggregation followed by 
the integration for one partial result of the far term 
Vi

The 

 as presented in equation (6). Finally, at the end 
of the MVM, the partial results from all nodes are 
summed together and all nodes are updated. This 
is accomplished through the reduce-scatter 
communication.  

solution of the linear equation requires 
communication only at two steps: (i) before 
starting the MVM to update the estimated values 

for the unknowns among the nodes; (ii) after the 
disaggregation stage of the MVM to update the 
ZfarI results among the nodes. Due to the efficient 
use of the group-based and direction-based 
distribution schemes, the inter-node 
communication overhead among the nodes is 
reduced. This overhead is further reduced as it is 
performed directly among GPU memory spaces 
using MVAPICH2’s GPU-to-GPU feature. 

 
B.2. FPGA implementation 

The SRC-7 MAPstation contains a single user 
FPGA, thus in this paper the FPGA parallelization 
is performed on a single node. However, this work 
can be easily extended to work on a multi-node 
system using MPI librabry. 

Fig. 4

As in the GPU 
implementation, the FPGA implementation in this 
work also focuses on the parallelization of the 
processing step of . However, only four tasks 
of the processing step, namely calculating matrix 
components for near interactions, calculating the 
radiation/receive functions, calculating the V 
vector, and iterative linear solution, are fully 
pipelined on FPGA. Due to its complex recursive 
computation relating to the evaluations of 
spherical Hankel functions and Legendre 
polynomials, as shown in equation (5), the 
remaining task, which is calculating the translation 
matrix, is not a good candidate for the FPGA 
implementation and thus is handled by the CPU. 
Since the on-board memory (OBM) is limited to a 
total capacity of 64 MB, the entire workload 
cannot fit on a single FPGA chip. Therefore, the 
workload of each computational task is equally 
divided in a group-wise manner into sequential 
chunks. Each chunk is then computed using the 
pipelining technique. Currently, the FPGA logic 
resource of our SRC-7 computer limits the number 
of pipelines in each task to one. In spite of that, 
our implementation can be modified with minimal 
effort to work with fewer chunks and more 
pipelines on larger resource FPGA systems. The 
remaining parts of this section highlight the FPGA 
implementation details of each computational task.  
 

The first task is the calculation of Z
1) Near interaction calculations 

near
Fig. 4

, see 
, which utilizes conventional MoM. Using 

the group-wise partitioning technique, the 
computation of Znear’s rows are divided into 
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Nchunknear Fig. 9 chunks (see ) where MAX_OBM is 
the maximum size of a single OBM bank. At the 
beginning of the calculation, the geometry mesh 
data is transferred from the CPU memory to the 
OBM. Per chunk, the row and column indices of 
the corresponding Zmn elements are transferred to 
OBM followed by fully pipelined computations. 
The evaluation of each Zmn [18], , is separated into 
two loops running concurrently. The first loop 
computes the elements under the integration sign. 
For the second loop, we leverage our earlier work 
in [22] on the integration implementation. The 
streaming technique is exploited, as shown in 
yellow blocks in Fig. 9, to enable computation and 
data transfer overlapped. Accordingly, each result 
of Zmn is streamed out to CPU memory 
immediately as soon as it is computed. The 
process is continued for the rest of chunks. 

 

 
 

Fig. 9. Workload distribution and FPGA 
implementation of the Znear matrix. 
 

The second task is the far interaction 
calculations. As mentioned before, for the FPGA 
implementation we only consider the radiation, T

2) Far interaction calculations 

E, 
and receive, RE, functions, and their 
implementations are identical since they are 
complex conjugates of each other. For the sake of 
simplicity, the group-wise partitioning technique is 
also used to divide the radiation/receive functions 
to Nchunk Fig. 10 chunks (see ). The 
radiation/receive functions must be evaluated at all 
K directions. Before calculations, the group and 
direction data are transferred from the CPU 
memory to the OBM. Per chunk, the geometry 
mesh data is transferred to OBM before the fully 

pipelined computation starts. The use of 
streaming, as shown in yellow blocks in Fig. 10, 
allows the computations to continue while the data 
is being transferred out. The results are stored in 
the global-common memory (GCM) instead of the 
CPU memory to avoid the overhead of 
communication through SNAP card. 
 

 
 
Fig. 10. Workload distribution and FPGA 
implementation of the radiation/receive functions. 
 
3) V vector calculations 

As in the GPU cluster implementation, the 
calculations of the V vector are parallelized on the 
hardware. The FPGA implementation details are 
not discussed in this paper due to its simplicity. 

 

Similar to the GPU implementation, this 
section focuses on the Z

4) Solution of the linear equation 

farI matrix-vector 
multiplication (MVM) in BiCGSTAB algorithm. 
The calculation of Zfar

Fig. 8

I comprises three stages: 
aggregation, translation, and disaggregation. The 
parallelization of far MVM follows the flowchart 
presented in , except one node is available to 
us in the HPRC system and is used to handle the 
entire computation. Thus, communication is not 
required at the end of the MVM. In terms of 
FPGA pipelining, it can be observed in equation 
(7) that these three stages are similar and involve 
multiplications and accumulations (integrations). 
Hence, a generic implementation, as shown in Fig. 
11, can be applied to all stages. The symbols 
Input_A, Input_B, and Output_C are used to 
represent the input and output variables, and 
acc_length is the length of the accumulation for 
each stage (see Table I).  
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Before calculations, the Input_A is transferred 
to the OBM from the CPU memory. Using the 
group-wise partitioning technique, per chunk, the 
Output_C are then computed by multiplying each 
value of Input_A with its corresponding value of 
Input_B, and accumulating on acc-length 
sequences. All computation loops are fully 
pipelined such that Input_B is streamed in from 
the GCM while Output_C are streamed out to the 
GCM. 

 
Table I: General symbols for each stage in the far 
MVM. 

 Aggrega-
tion 

Translation Disaggrega
-tion 

Input_A unknown 
currents 

radiated 
fields of M 
groups 

received 
fields of M 
groups 

Input_B radiation 
functions 

translation 
matrix 

receive 
functions 

Output _C radiated 
fields of 
M groups 

received 
fields of M 
groups 

ZfarI 

acc-
length 

number 
of edges 
per group 

number of 
elements per 
TL

K 

 matrix’s 
row 

   

 
 

Fig. 11. Generic FPGA implementation of three 
stages of the 

IV. PERFORMANCE METRICS 

far MVM. 
 

In our performance analysis, we assume two 
models. The first model is the fixed-workload 
model (Amdahl’s Law) [24] where the 
computational workload is fixed and equally 

distributed among the processing elements (PE) 
(i.e., computing nodes for GPU implementation 
and MAP cards for FPGA implementation) as the 
number of processing elements increases. The 
second model is the fixed-time model (Gustafson’s 
Law [24])  where larger computational workloads 
(larger problem size) are used while maintaining 
the same performance as the number of processing 
elements is increased. 

The performance of our HPC implementations 
is evaluated in reference to its single CPU 
implementation. In our analysis, we consider the 
computation time, Tcomp, which is defined as the 
time spent on GPU or FPGA, as well as the total 
execution time, Ttotal, which is the sum of the 
computation time and the overhead, Tcomm

.PE PE PE
total comp commT T T= +

, which 
is associated with all communications between 
processing elements (GPUs or FPGAs) and CPUs, 
as given in equation (8), 
   (8) 

Two metrics are investigated for performance 
comparisons between platforms: (i) speedup, and 
(ii) scalability. The speedup, S, is defined as the 
ratio of time required by a single CPU to carry out 

the total workload, ( )1CPUT ,D , to the time 

required by multiple hardware processing 
elements for their associated workload, 

( )PE
PE PET N ,D as in equation (9), 

 ( ) ( )
( )

1CPU

PE PE
PE PE

T D
S N ,

T N ,D
=

,  (9) 

where DPE is the workload for a single processing 
element, NPE is the number of processing 
elements, D is the total workload assigned. In the 
fixed-workload model, the workload per element 
DPE is adjusted with the number of processing 
elements, DPE=D/NPE. In the fixed-time model, 
the total workload D is adjusted with the number 
of processing elements, D=DPE*NPE

( ) ( )
( )1

PE
PE

S N
N .

S
Ω =

.  
Finally, the scalability factor, Ω, is defined as 

the normalized speedup of multiple processing 
elements in reference to a single processing 
element, as given by equation (10), 

 (10) 

 
V. EXPERIMENTAL RESULTS 

The implementation on both platforms is done 
using single precision. The implementation for 
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GPU is parallelized using up to 13 nodes, while 
the FPGA implementation is performed on a 
single node due to the available configuration in 
our lab. 

We validate the accuracy of the 
implementation on both platforms by calculating 
the radar cross section (RCS) of a 5.4 λ diameter 
(58 K unknowns) PEC sphere illuminated by an x-
polarized normally incident field. The RCS is 
compared with the results using Mie scattering. It 
can be observed from 

In reviewing our experimental results, first 
we verify the accuracy and then investigate the 
performance in terms of the two metrics: speedup 
and scalability. 

 
A. Accuracy 

Fig. 12 that the two HPC 
results and the analytical solutions show a good 
agreement. 

 

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

θs,deg

R
C

S,
 d

Bm
2

    

 

 

FMM-GPU
FMM-FPGA
Mie Scattering

 
 
Fig. 12. RCS of a 5.4λ diameter PEC sphere. 

 
B. Performance evaluation for GPU cluster  

Two experiments are conducted with a PEC 
sphere following fixed-workload model and fixed-
time model as discussed in section IV. In the 
fixed-workload model, the sphere diameter is 
chosen as d = 15.75 λ corresponding to 506 K 
unknowns. The size of the problem demands the 
use of at least 8 nodes to satisfy the required GPU 
memory. The speedup factor increases from 

Fig. 13

755 
for 8 nodes to 1,152 for 13 nodes as observed in 

. Since each node processes less workload, 
the GPU execution time decreases as the number 
of nodes increases. The difference observed 
between the speedup of total execution time and 
computation time is due to the inter-node 
communication overhead. 

In the fixed-time model, the sphere diameter 
for a single node is chosen as d = 7.45λ, which 
fully utilizes the single GPU memory with 113 K 
unknowns. As the number of nodes increases, the 
workload at each node remains constant enabling 
the solution for a 17.96 λ diameter sphere with 
656 K unknowns for 13 nodes. We observe in Fig. 
14 that the GPU implementation outperforms the 
CPU by achieving a speedup of 1,133 for 13 
nodes. 

 
 

Fig. 13. Speedup of GPU cluster (Amdahl’s Law, 
single CPU execution time ≈ 11 hours). 

 
Finally, we compare the scalability of the 

GPU cluster implementation for both experiments. 
The scalabilities for the computation speedup and 
the total speedup in comparison to the linear 
theoretical scalability are demonstrated in Fig. 15 
(fixed-workload model) and Fig. 16 (fixed-time 
model). It can be seen in both figures that the 
computation speedup scales identically to the 
theoretical linear expectation demonstrating our 
efficient hardware implementation. The total 
speedup scales closely to the theoretical 
expectation demonstrating our efficiency in 
reducing the inter-node communication overhead. 
 

 
 

Fig. 14. Speedup of GPU cluster (Gustafson’s 
Law, single CPU execution time ≈ 1.26 hours). 
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Fig. 15. Scalability of GPU implementation (fixed-
workload model). 
 
 

 
 

Fig. 16. Scalability of GPU implementation (fixed-
time model). 
 
C. Performance evaluation for FPGA 
workstation 

Due to our available configuration of the SRC-
7 MAPstation workstation, the experiment is 
carried out on a single FPGA fully utilizing its 
memory by choosing d = 5.4 λ (39 K unknowns). 
Therefore, our performance analysis is limited to 
the speedup of a single node, which is observed to 
be a factor of 2. For the same problem size, the 

 

GPU implementation achieves a total speedup 
factor of 77.5, outperforming the FPGA 
implementation. However, it should be noted that 
in the current FPGA implementation, due to the 
complex recursive nature as mentioned in section 
III.B.2, the translation matrix calculation task is 
handled on the CPU. This contributes to a 
decreased performance compared to that of GPU 
where all tasks are fully parallelized. Moreover, 
the FPGA system has significantly more limited 
resources in terms of clock speed and memory. In 
particular, the FPGA operates at 200 MHz 

whereas the GPU runs at 1.3 GHz, and the on-
board memory of FPGA is limited to a total 
capacity of 64 MB compared with 6 GB of GPU 
memory. The memory limit results in the fact that 
each computational task can only be parallelized 
in a chunk-wise manner, which is part of the 
reason for the less impressive FPGA performance. 
This is despite the fact that the pipelining 
technique is efficiently utilized in each chunk.  

VI. CONCLUSIONS 
In this paper, the FMM algorithm is 

implemented on two HPC platforms, a 13-node 
GPU cluster and a single FPGA SRC workstation, 
for large-scale electromagnetic scattering 
problems. It is shown that for the same degree of 
accuracy, the GPU implementation outperforms 
the CPU implementation in terms of speedup by a 
factor of 1,133 for problem sizes with more than 
half million unknowns. Currently, the maximum 
problem size that can be handled by our GPU 
cluster implementation is limited by the GPU 
memory, which is 6 GB per node in our cluster. 
Larger problem sizes can be handled by the cluster 
by fully utilizing all available system resources 
including the CPU and GPU memories. We also 
observe that the GPU cluster implementation 
demonstrates a favorable scalability characteristic 
as the number of nodes increases, which proves a 
highly efficient parallelization scheme, which 
reduces the inter-node communication overhead. 
The paper also demonstrates a speedup factor of 
two for the FPGA implementation. Although, the 
comparison of performance in terms of speedup 
reveals that the GPU implementation surpasses the 
FPGA implementation, it should be noted that the 
FPGA system has significantly more limited 
resources than GPU in terms of frequency (200 
MHz versus 1.3 GHz) and on-board memory (64 
MB versus 6 GB). In the near future, when FPGA 
computers are equipped with larger resources and 
operate at higher frequencies, the authors believe a 
comparable performance with GPU can be 
achieved. 
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