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Abstract ─ In this paper we propose a novel 
method for solving the nonlinear problem of the 
radar target tracking. The algorithm consists of a 
Particle Filter (PF) which employs the Unscented 
Kalman Filter (UKF) to generate the importance 
proposal distribution, and adopts the Hybrid 
Differential Evolution (HDE) algorithm based on 
Simulated Annealing (SA) algorithm as the 
resampling scheme. Firstly, the Importance 
Distribution (ID) which contains the newest 
measurements is constructed by the UKF. In 
addition, the UKF generates proposal distributions 
that match the true posterior more closely. 
Secondly, to solve the particle degeneracy and 
impoverishment phenomenon, the sampling 
particles are resampled by the HDE algorithm. The 
mutation and crossover steps of the Differential 
Evolution (DE) algorithm are executed to generate 
the trial vectors. Then the selection step is replaced 
by the Metropolis criterion of the SA algorithm. 
The proposed algorithm combines the advantages 
of the SA algorithm with the DE algorithm. It not 
only has superior estimation performance, but also 
the convergence speed is fast. Simulation results 
demonstrate that the proposed algorithm 
outperforms the standard PF, the Auxiliary Particle 
Filter (APF), the Regularized Particle Filter (RPF) 
and the Particle Filter based on Differential 
Evolution (PFDE). 

Index Terms ─ Hybrid differential evolution, 
nonlinear filtering, particle filter, radar tracking, 
simulated annealing algorithm. 

I. INTRODUCTION 
As we know, most of the radar tracking 

filtering algorithms are linear filtering, such as 
Kalman filter. However, these linear filters are 

optimal only under the condition that the system is 
linear or the noise is Gaussian. Actually, the 
system model and the measurement equation of 
the target are nonlinear, and the noise is non-
Gaussian. In that situation, if we still use linear 
filter to track targets, the tracking performance 
will be reduced, or even worse, the targets will be 
lost. Therefore, it is necessary to employ the 
nonlinear filtering to solve the nonlinear problem 
of the radar tracking. 

Nonlinear filtering is a very active topic in
signal processing and control theory. There is a 
vast literature on this subject; see [1-5] for 
excellent references among others. Although the 
equations of the optimal nonlinear filter have been 
developed since the middle of the 1960s, the 
involved integrals are still intractable. Hence, 
many suboptimal nonlinear filters have been 
proposed. 

The simplest way to solve the problem of non-
Gaussian, nonlinear filtering is the Extended 
Kalman Filter (EKF) [6]. It linearizes the state 
transition and the measurement equations through 
Taylor series expansions. However, the series 
approximations in the EKF algorithm could cause 
large errors of the nonlinear functions and 
probability distributions. So, this filter would 
result in divergency. The convergence of the EKF
is studied in [7]. Later on, the UKF is proposed by 
Julier and Uhlmann, which uses several so-called 
sigma points to recursively calculate the mean and 
covariance used in the Kalman Filter [8]. The UKF 
could obtain more accurate results than the EKF, 
but it couldn’t adapt to general non-Gaussian 
distributions. Essentially, the EKF and the UKF 
have the same principle; both of them use the 
Gaussian distribution to approximate the true 
posterior distribution. 
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A different approach to the nonlinear filtering 
problem is the Bayesian approximation, which is 
detailedly described in [9]. This kind of filter is 
based on the principle of constructing the posterior 
probability density of the state by the prior
knowledge and the observation; and, the key point 
is to obtain a good approximation of the posterior 
density. 

Another popular method for nonlinear filtering 
is Monte Carlo methods, also known as Particle 
Filter (PF). Up to now, the PF is the most 
successful nonlinear filter, which goes back to the 
1950s, but it hadn’t been used in practical 
applications until 1993 when Gorden proposed the 
Sequential Importance Resampling (SIR) 
algorithm [10]. The PF utilizes some random 
particles with associated weights to approximate 
the true posterior density function. The PF has 
been used successfully in many domains; however, 
its performance depends heavily on the choice of 
the importance distribution function and the 
resampling algorithms. To improve the 
performance of the PF, choosing a good proposal 
distribution or modifying the resampling scheme 
are often adopted. For example, Pitt and Shephard 
[11] introduced the Auxiliary Particle Filter (APF), 
which uses an auxiliary variable to select the 
particles. In [12], the Regularized Particle Filter 
(RPF) is put forward, which resamples from a 
continuous approximation of the posterior density 
to reduce the particle impoverishment problem. In 
[13], the EKF Gaussian approximation is used as 
the importance distribution for a PF. In [14], the 
EKF proposal is replaced by UKF proposal, and 
the Unscented Particle Filter (UPF) is proposed. 
We will propose a new method in this paper which 
uses the HDE based on SA algorithm as 
resampling schemes for the PF, which regards the 
resampling process as an optimization problem. 
We refer to it as Hybrid Differential Evolution 
Particle Filter (HDEPF). In the HDEPF, the 
importance distribution is generated by the UKF. 

The remainder of this paper is organized as 
follows. At first, the problem statement and the 
principle of the basic PF are introduced in Section 
II. In Section III, we proposed the HDE algorithm 
and HDEPF. Then in Section IV, we discussed 
some experimental results. At last, conclusions 
and pointers for future research are presented in 
Section V. 

II. PROBLEM STATEMENT AND THE 
BASIC PARTICLE FILTER 

Many nonlinear filtering problems can be 
written in the form of the Dynamic State Space 
(DSS) model as follows: 

1 1( , ),k k kx f x u	 	�  (1)
( , ),k k kz h x v� (2)

where kx  and kz  are the state variable and 
observation at time k , respectively. k  is the time 
index. ( )f �  and ( )h �  are some known functions, 
system noise 1ku 	  and observation noise kv  are 
random variables at time of given distributions. 

1ku 	  and kv  are independent of past and current 
states. kv  is independent of system noise 1.ku 	  The 
objective of filtering is to recursively estimate the 
posterior density 1:( | )k kp x z  of the state kx  based 
on all available measurements � �1: 1 2, , .k kz z z z� ���

A recursive update of the posterior density as new 
observations arrive is given by the recursive 
Bayesian filter defined by: 

1: 1 1 1 1: 1( | ) ( | ) ( | ) ,k k k k k kp x z p x x p x z dx	 	 	 	� 6  (3) 
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where the conditional density 1: 1( | )k kp z z 	  can be 
calculated by: 

1: 1 1: 1( | ) ( | ) ( | ) .k k k k k k kp z z p z x p x z dx	 	� 6  (5) 
It can be seen that the integrals are intractable. 

So, the PF uses Monte Carlo methods to translate 
the integrals problems into the cumulative process 
of limited particles probability transition. The PF 
uses the transition density 1( | )k kp x x 	  as the 
importance distribution function 1( | , )i i

k k kq x x z	  to 
generate particles. Then the posterior density 

1:( | )k kp x z  at time k  can be described as: 

0: 1: 1 0: 1 1: 1( | ) ( | ) ( | ) ( | ).k k k k k k k kp x z p z x p x x p x z	 	 	R (6) 
Accordingly, the weights of the particles are 

called importance weight. We define the 
unnormalized weights as: 
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Then we normalize the weights and begin the
resampling process. The aim of resampling is to 
eliminate samples with low importance weights 
and copy samples with high importance weights. 
After the resampling process, the weights can be 
defined by 1/ .i

kw N�  The popular resampling 
algorithm is the multinomial resampling. 

Last the posterior density 1:( | )k kp x z  can be 
calculated by: 

1: 1
( | ) ( ),N i i

k k k k ki
p x z w x x?

�
7 	�  (8) 

where ( )? �  is the Dirac delta function, i
kx  is the 

i th particle with the normalized weight i
kw . N  is 

the particle number. 

III. HYBRID DIFFERENTIAL 
EVOLUTION PARTICLE FILTER 

A. Hybrid differential evolution algorithm 
DE algorithm, proposed by Price and Storn 

[15], is a population-based stochastic algorithm for 
global optimization, which has earned a reputation 
as a very effective global optimizer. DE algorithm 
has the following advantages over the traditional 
genetic algorithm: more efficient memory 
utilization, lower computational complexity, and it 
is much more easy to use. However, DE algorithm 
has insurmountable shortcomings. It has slower 
convergence rate in latter periods, even failing to 
local extremes [16]. Then Hybrid Differential 
Evolution Algorithm based on SA algorithm is 
proposed by [17]. The new algorithm utilizes the 
search capability of the SA algorithm to enhance 
the convergence capability of the DE in latter 
periods and improve the robustness of the DE 
algorithm. The HDE algorithm uses the 
Metropolis criterion of the SA algorithm to replace 
the section step of the DE algorithm. So it relies 
on the initial population generation, mutation, 
recombination and the new selection to probe 
search space through iterative progress until the 
terminate criteria are met. 

Detailed steps are presented accordingly in the 
subsequent sections. 

Step 1: Creating initial population 
The first step of HDE is to create the initial 

population samples (the number of generations is 
0g � ) in n  dimension space as follows: 

(0) (0,1)( ),L U L
ij ij ij ij ijx x rand x x� � 	  (9) 

where 1,2, ; 1,2, ,i NP j n� �1 2 ,j; 1,2,; 1,2;; NP is the 
population size. U

ijx and L
ijx denote the upper and 

lower limit of the j th variable in the population,
respectively. (0,1)ijrand represents a uniformly 
distributed random value within [0,1] .

Step 2: Mutation operation
The function of mutation in HDE is to 

maintain the diversity of population. A typical 
HDE mutation samples formulation is:

1 2( ) ( ) ( ( ) ( ))ij ij r j r jh g x g F x g x g� � � 	 , (10)
where g represents the g th generation, ( )ijh g are 
the mutated vector samples. 1 2r r iD D , and 1r ,

2r are randomly selected integers within NP ,
� �1, 2 1,2, ,r r NP! �, NP, . F is scaling factor.

Step 3: Crossover operation
The basic crossover process is a discrete 

recombination, which employs a crossover 
constant [0,1]CR! to determine whether the new
generated individual samples need to be 
recombined. The expression of the crossover 
process is given in (11):

( ) (0,1)
( ) ,

( ) (0,1)
ij

ij
ij

h g rand CR
v g

x g rand CR
��

� � @�
 (11)

where ( )ijv g are the trial vector samples.

Step 4: New selection operation
The HDE algorithm adopts the Metropolis 

criterion of the SA algorithm to select the trial 
vector samples.

Step 5: Cool-down operation
In this step, the cool-down operation of the SA 

algorithm is executed. We define ,T T 9� �
(0,1)9! as an annealing parameter.
When the new population is propagated, Step 

2 to Step 5 is repeated until the pre-specified
temperature 0T is reached.

B. Hybrid differential evolution particle filter
In the presented algorithm, the particles from 

using a UKF for importance distribution are 
regarded as the initial population of the HDE 
algorithm, and the corresponding weights are 
treated as the fitness functions of the target vectors, 
respectively. The HDE resampling scheme
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recombines the particles by using an iterative 
process of mutation, crossover and the simulated 
annealing operator. Then a new set of diverse 
particles are propagated.

The new filter proposed in this paper is called 
HDEPF, and the steps follows.

In the first step, we can obtain Gaussian 
importance distribution with the mean i

kx i
kx and the 

variance i
kP i
kPk by using UKF filter for all 

particles ( 1,2, ),i
kx i N� ), where N is the particle 

number. Then the sampling particles can be gained
by sampling the importance distribution, 
ˆ ~ ( , ),i i i

k k kx N x Pk ,i ,, ),i
k and their weights i

kw can be 
calculated and normalized by equation (7).

In the second step, the sampling particles ˆ i
kx

are regarded as the initial population of the HDE 
algorithm, and the corresponding weights i

kw are 
regarded as the fitness functions ( )ijf x . Then a 
mutation step and a crossover step are executed. 
Finally, the trial vector samples ( )ijv g can be 
obtain by equation (12), and the corresponding 
fitness function is calculated as 

1

1

( | ( )) ( ( ) | )
( ( ))

( ( ) | , )

i
k ij ij k

ij i
ij k k

p z v g p v g x
f v g

q v g x z
	

	

� and is 

normalized as ( ( )) ( ( )) / ( ),NP
ij ij iji

f v g f v g v g� �
where NP is population size and NP N� .

In the third step, the new selection operator is 
proceeding. We construct the following parameter
about fitness function values,

( ( )) ( ( )),ij ijf f v g f x g� � 	 then we decide the trial 
vector samples by the Metropolis criterion.

In the fourth step, the cool-down operation of
the HDE algorithm is executed.

In the fifth step, the process is repeated until 
the optimum is found or a pre-specified 
temperature T is reached.

And at last, we obtain the optimal particles 
� �, : 1,2i i

k kx w i N� ,1 2i i
k k,x , : 1,2i
k , �N and estimate the system 

state
1

N i i
k k ki

x x w
�

�� i i
k kx wk kk .

IV. EXPERIMENT RESULTS AND 
DISCUSSIONS

To compare the performance of the proposed 
filters to those of the PF, the RPF, the PFDE and 
the APF, where the PFDE combines particle filter 

with differential evolution [19]. We choose the 
same model as Merwe, et al. used in his 
experiments [14]. This model is very 
representative due to its strong nonlinearity. And it 
has been used before in many publications [18-
21]:

1 11 sin( ) ,k k kx w k x v� �� � � � �  (12) 
2

2

3

30
,

2 30
k k

k
k k

x n k
z

x n k
�
�
� � �

� �
	 � @�

(13)

where kv  is a Gamma(3,2) random variable 
modeling the process noise, 4 2,w e� 	

1 3 0.5,� �� �  and 2 0.2� �  are scalar parameters. 
The observation noise kn  is drawn from a Gaussian 
distribution 4 50,0.00001N . Different filters are used 
to estimate the state sequence kx  for 1,2, ,k T� ,
the total observation time is 50T � . The UKF 
parameters were set to 1,< � 0� �  and 2S �
[14]. In the proposed filters, 0.9F � , 0.6Cr �  and 
the maximum number of generations is 20,G �
the annealing initial temperature 0 100,T �  and the 
annealing parameter 0.99 �  [17,19]. All of the 
particle filters used 10N �  particles and 
systematic resampling. The experiment was 
repeated 200M �  Monte Carlo simulations to 
demonstrate the performance of the proposed 
algorithm. 

To measure the performance of the algorithms, 
we introduce the Root Mean Squared Error 
( RMSE ) and its mean RMSE , RMSE for M
simulations with observation time RMSE3 are 
shown as follows: 

4 52
1

1
ˆ ,

T

k k
k

RMSE x x
T �

� 	�  (14) 

2

1 1

1 1
ˆ( ) ,

M T
m m
k k

m k
RMSE x x

M T� �

� �
� 	# $� �

� � (15) 

2

1

1
ˆ( ) ,

M
m m
k k

m
RMSE x x

M �

3 � 	� (16) 

where m
kx  is the true value of target state and ˆm

kx  is 
defined as the estimation of target state. 

A. Simulation results of the estimation 
Figure 1 compares the estimates of the 

different filters generated from a single run of the 
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state estimates. From Fig. 1, we can see that the 
tracking trajectory of the HDEPF is much closer to 
the true trajectory than other filters. 
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Fig. 1. Plot of estimates generated by the different 
filters for a simulation. 

For clearly, the estimation RMSE with 
observation time and the estimation RMSE with 
simulation number of different filters are shown in 
Figs. 2 and 3, respectively. We can see that both 
two kinds of the RMSE curves of the proposed 
method are lower than other algorithms. Moreover, 
it can be found that the RMSE of HDEPF is higher 
than other methods before 2s or so in Fig. 2. That 
is because the UKF and HDE algorithms both 
need initialized process, but this time is shorter, as 
a whole, the result of the experiment proves that 
the new algorithm has good optimization effect. 
Meanwhile, Fig. 3 also illustrates this point. 
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Fig. 2. RMSE’ of PF, APF, RPF, PFDE and 
HDEPF with observation time for 200 MC 
simulations, where N=10. 
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Fig. 3. RMSE of PF, APF, RPF, PFDE and 
HDEPF with simulation number, where N=10,
T=50. 

Table 1 displays and summarizes the 
performance of the five filters, where the means 
and variances of the state estimates are shown. It 
can be clearly seen that the Mean RMSE of the 
HDEPF is lower than others, as well as, the 
Variance RMSE is obviously low. From Figs. 1, 2, 
3 and Table 1, we can realize that the estimation 
accuracy of the proposed algorithm (HDEPF) is 
much higher than other filters. 

Table 1: Mean and variance of RMSE of PF, APF, 
RPF, PFDE and HDEPF for 200 MC simulations 
with N=10 
Algorithm Mean (RMSE) Variance (RMSE)
PF 1.1132 0.0178
PFDE 0.7422 0.0103
APF 1.1049 0.0247
RPF 0.9543 0.0213
HDEPF 0.5574 0.0047

It is shown in Fig. 2 that the proposed 
algorithm has better estimation accuracy when 

30k � . According to equation (13), we can find 
that the observation function is a quadratic 
function in the first 30 seconds, and it becomes a
linear function after 20 seconds. Before 30 
seconds, the nonlinear degree of system is greater 
than later time. From Table 2 we can see that the 
RMSE of the proposed algorithm has decreased by 
around 50% over the PF when 30k � . This shows 
that the proposed algorithm has better performance 
for nonlinear filtering than the PF algorithm. 
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Table 2: RMSE mean of PF and HDEPF for 200 
MC of different observation time periods 
Algorithm 0<k<30 30<k<50
PF 1.1232 0.7131
HDEPF 0.5654 0.3895
The percentage of 
improvements 49.66% 45.38%

B. Analysis of the runtime of the algorithms 
Table 3 compares the run time for a simulation 

of different algorithms, where 10N �  except the 
bracket, there 100.N �  It can be seen that the 
proposed algorithm has much more run time than 
others, except RPF and PFDE; because the 
proposed algorithm not only has the UKF filter but 
also combines the HDE, it wastes much time. The 
HDE uses the search capability of the SA 
algorithm, which improves its convergence speed. 
So the proposed algorithm has less run time than 
the PFDE algorithm. 

Table 3: Comparison of the run time 
Algorithm Run Time
PF 0.031027 (0.137454/N=100)
PFDE 0.339256
APF 0.072424
RPF 0.372693
HDEPF 0.112712

Then we increase the particle number of the 
PF, here 100,N �  and kept the other particle 
numbers. It can be calculated that the RMSE mean 
of the PF with 100N �  is 0.87414. From Table 1, 
we can see that the estimation accuracy of the PF 
with 100N � is also not as good as the proposed 
algorithm. However, Table 3 shows that the run 
time of the PF with 100N �  is as much as the 
proposed algorithm. This represent that the 
estimation performance of the proposed algorithm 
is higher than the PF algorithm with the same run 
time. In addition, the proposed algorithm uses only 
10 particles to reach the precision of the PF with 

100N � , it shows that the proposed algorithm has 
better efficiency. In the future, it will be 
interesting to investigate how to choose the 
parameters of the new algorithm. 

V. CONCLUSION 
In this paper, a new particle filter algorithm 

was developed for nonlinear filtering. Firstly, we 

use the experience of the UPF algorithm for 
reference to generate the importance proposal 
distribution though the UKF. Since the generated 
distribution matches the true posterior more 
closely. Secondly, the Hybrid Differential 
Evolution (HDE) based on SA is employed as the 
resampling scheme and is the major new 
contribution of this paper. The proposed 
resampling algorithm can effectively reduce the 
particle degeneracy and impoverishment problem, 
and improves the state estimation accuracy. In 
addition, the convergence performance of the HDE 
is better than the DE by utilized search capability 
of the SA [17]. Therefore, the proposed algorithm 
yields a better performance than the particle filter 
which based on the DE. Moreover, it has less run 
time. The numerical simulations were conducted 
to attest that the proposed algorithm has better 
estimation performance and higher particle 
utilization than the previous method. Future works
will concentrate on the nonlinear no Gaussian
radar target tracking using the proposed algorithm.
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