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Abstract ─ Resonant frequency is a vital 
parameter in designing Microstrip Antenna 
(MSA). Artificial Neural Network (ANN) based 
on Particle Swarm Optimization (PSO) algorithm 
(PSO-ANN) has been used to model the resonant 
frequency of rectangular MSA. To deal with the 
problem of the long execution time when training 
PSO-ANN, its parallel implementation in the 
Graphic Processing Unit (GPU) environment is 
proposed in this paper. The presented approach 
uses the particle behavior parallelization of PSO to 
accelerate ANN training, and is applied to 
modeling the resonant frequency of rectangular 
MSA under Compute Unified Device Architecture 
(CUDA). Experimental results indicate that 
compared with CPU-based sequential PSO-ANN, 
more than 300 times of speedup ratio has achieved
in GPU-based parallel PSO-ANN with the same 
optimization stability. Furthermore, the network 
error can be significantly reduced with the very 
limited runtime increment when substantially 
enlarging the number of particles on GPU side. 

Index Terms ─ Artificial Neural Network (ANN), 
Compute Unified Device Architecture (CUDA),
Microstrip Antenna (MSA), Particle Swarm 
Optimization (PSO), resonant frequency. 

I. INTRODUCTION 
Microstrip Antenna (MSA) is used in a broad 

range of applications in communication systems, 
and this is primarily due to its thin profile, small 
size, light weight, and low manufacturing cost 
[1,2]. As is known to all, MSA has narrow 
frequency band and works effectively only in the 

vicinity of its corresponding resonant frequency, 
which is a vital parameter in designing MSA. So a 
model to determine the resonant frequency is 
helpful in antenna design. Many scholars have 
proposed some traditional methods with different 
accuracy and computing power to calculate the 
resonant frequency of the most commonly used 
rectangular MSA [3-13]. 

In the past several years, Artificial Neural 
Network (ANN) model has been used in antenna 
design, including modeling the resonant frequency 
of rectangular MSA [14,15] due to its excellent 
abilities of learning and generalization, little 
memory requirement and fast real-time operation. 
The related data of the antenna can be got by 
measurement or simulation. After training these 
data, the ANN related to the antenna design 
problem can be achieved, and this quickly 
provides solutions to the problem. Particle Swarm 
Optimization (PSO) algorithm [16,17] has been 
gradually applied to ANN training (PSO-ANN)
due to its simple concept, easy implementation, 
and strong abilities of convergence and global 
search. PSO-ANN has been used to model the 
resonant frequency of rectangular MSA and 
proved with better convergence precision and 
stronger predictive ability than common BP-based 
ANN (BP-ANN) [18-20]. However, PSO-ANN 
needs long computing time, especially for large 
scale problems, such as the problem of modeling 
the resonant frequency of rectangular MSA. 
Parallel optimization is an effective way to solve 
this problem. 

Besides ANN’s data parallelization and node 
parallelization [21], PSO’s natural particle 
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behavior parallelization is in PSO-ANN. There are 
many parallel ways to accelerate PSO algorithm. 
Compared with computer cluster [22,23], multi-
core CPU [24] or other professional parallel 
devices like FPGA [25,26], graphic processing 
unit (GPU) [27,28] has the most significant 
advantages in hardware cost. Since the NVIDIA
company introduced the Compute Unified Device 
Architecture (CUDA) in 2007, CUDA has become 
the most popular GPU programming architecture 
due to its excellent programmability. 

Ground on the existing research of GPU-based 
PSO algorithm, we design the CUDA-based 
parallel PSO-ANN scheme to fast model the 
resonant frequency of rectangular MSA in this 
paper. Experimental results show that when using 
the same number of particles on GPU side, the 
modeling runtime can be greatly reduced and more 
than 300 times of speedup ratio has obtained, 
while the modeling error is similar or same to the 
CPU-based program. When using substantially 
more number of particles on GPU side, the 
modeling error can be significantly reduced and 
better than the corresponding results in literatures. 

The rest of this paper is organized as follows.
Section II briefly discusses the calculation formula 
of the resonant frequency of rectangular MSA. 
Section III slightly introduces the implementation 
of PSO-ANN algorithm on CPU side. The CUDA-
based parallel implementation of PSO-ANN is
presented in Section IV. We use the GPU-based 
parallel PSO-ANN to rapidly model the resonant 
frequency of rectangular MSA, give the 
performance results, and provide some 
employment suggestions in Section V. Some 
concluding remarks of this work are finally 
reported in Section VI. 

II. RESONANT FREQUENCY OF 
RECTANGULAR MSA 

The model of rectangular MSA is shown in 
Fig. 1. Its length, width, dielectric substrate’s
thickness, and relative dielectric constant are W, L,
h and r� , respectively. The resonant frequency of 
rectangular MSA can be calculated as formulas
(1)~(3) [1,2]: 
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where e�  is the effective relative permittivity. c is 
electromagnetic wave propagation velocity in 
vacuum. m and n are integers. Le and We are 
effective length and width. When calculating the 
resonant frequency of rectangular MSA in main 
mode TM10, formula (1) can be written as: 
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The effective length can be defined as follows: 
2eL L L� � ! , (3)

where L!  is the boundary extension length, which 
is connected with dielectric substrate’s thickness 
h.

Obviously, the resonant frequency of 
rectangular MSA depends on h, r� , m, n, W and L.

Fig. 1. Model of rectangular MSA. 

III. PSO-BASED ANN 
A. Standard PSO algorithm

There have been many versions of PSO 
algorithm. The version introducing inertia weight 
[16] is used and called “Standard PSO” in this 
paper. The optimization problem dimension is D
and the number of particles is N. The positions of 
each particle represent a potential solution to the 
problem in the D-dimensional search space, and 
the velocities of each particle represent its 
movement. All particles have fitness values that 
are evaluated by the fitness function to be 
optimized. During each of the iteration, the 
positions and velocities of every particle are 
updated according to its Personal best positions 
(Pbest) and the Global best positions (Gbest). The 
velocities and positions updating in PSO can be 
formulated as follows: 
 Vid(t+1)=wVid(t)+c1r1(Pbestid(t)-Xid(t))

+c2r2(Gbestd(t)–Xid(t)), (4) 
 Xid(t+1)=Xid(t)+Vid(t+1). (5) 
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In equation (4) and equation (5), i=1,2,...,N and 
d=1,2,...,D. The learning factors c1 and c2 are 
nonnegative constants. r1 and r2 are random 
numbers uniformly distributed in [0,1]. Vid(t) [-
Vmax,Vmax], where Vmax limits the maximum 
velocity of each dimension of the particle.
Xid(t) [-Xmax,Xmax], where Xmax limits the 
maximum position of each dimension of the 
particle. Usually Vmax=kXmax, where 0 k 1. The 
inertia weight w is used to balance the ability 
between global exploration and local exploitation, 
and can be either a constant or a variable in [0,1]. 

B. ANN trained by PSO algorithm
PSO algorithm can be used to train ANN. 

ANN training includes optimization of ANN’s
structure and optimization of ANN’s weights and 
thresholds (hereinafter referred to as weights). 
This article only concerns the optimization of 
ANN’s weights under the condition of the given 
ANN’s structure. ANN’s weights must be encoded 
before training. There are two encoding strategies,
namely vector encoding and matrix encoding.
Vector encoding is chosen in this paper. For 
convenience, a feedforward ANN with 2 nodes in 
the input layer, 3 nodes in the hidden layer, and 1 
nodes in the output layer (13-dimensional), is 
shown in Fig. 2. 

Xi1

Xi2

Xi3

Xi4

Xi5
Xi6

Xi7 Xi8

Xi9
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Xi12

Xi13-1

-1

Fig. 2. Feedforward ANN model with 2-3-1
structure. 

In PSO-ANN, each particle is encoded to a 
vector, representing a solution of ANN’s weights 
[18]:

Pi =[Xi1 Xi2 Xi3 Xi11 Xi12 Xi13]. (6)

Each particle’s fitness value is set as its 
corresponding Mean Squared Error (MSE) of 
ANN’s output of training samples. All the 
particles revise their values by PSO algorithm. The 
final best solution Gbest is namely the well-trained 
ANN’s weights. It is easy to see that PSO-ANN is 
essentially the special PSO algorithm whose 
fitness value is ANN’s output error.

The steps of PSO-ANN algorithm used in this 
paper are as follows: 
(a) Load training samples and testing samples. 

Data preprocesses. Set the maximum iteration 
number Tmax. 

(b) Initialize all particles’ positions Xid(t) and 
velocities Vid(t) at random. 

(c) Initialize all personal best positions Pbestid(t)
and the global best positions Gbestd(t).

(d) Update all particles’ velocities Vid(t) and 
positions Xid(t) according to equation (4) and 
equation (5). 

(e) Evaluate all particles’ fitness values F(Xi).
(f) Update all personal best positions Pbestid(t)

and their corresponding fitness values 
F(Pbesti). Update the global best positions 
Gbestd(t) and their corresponding fitness value 
F(Gbest).

(g) If the iteration number reaches Tmax, go to step 
(h), else go to step (d). 

(h) Evaluate total output error of training samples 
and testing samples. 

IV. CUDA IMPLEMENTATION OF 
PARALLEL PSO-ANN

A. CUDA programming model
CUDA adopts the CPU+GPU heterogeneous 

cooperative computing platform. As the host, CPU 
takes responsibility for logic processing and serial 
computing. As the device or coprocessor, GPU 
takes responsibility for compute-intensive, highly 
parallel computing. CUDA uses similar C
language as its basic programming language to 
achieve good programmability and portability. A 
CUDA kernel is a parallel function, which follows 
the SIMT (Single Instruction, Multiple Threads) 
execution model on GPU. CUDA program process 
typically includes the following 6 steps: 
(1) Allocate and initialize CPU memory. 
(2) Allocate GPU memory. 
(3) Transfer data from CPU side to GPU side. 
(4) Perform parallel computing on GPU side. 
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(5) Transfer results from GPU side back to CPU 
side. 

(6) Process data obtained in step (5) on CPU side. 

B. Design scheme and specific realization
Currently, the parallel implementation of 

ANN training mainly uses two parallelization 
strategies, namely data parallelization and node 
parallelization. However, for a common ANN, the 
number of neuron nodes or training samples is 
often only from ten to several ten. Therefore, these 
two strategies are suitable for parallel ways like 
computer cluster [21,29], but somewhat unsuitable 
for GPU because they have not enough parallel 
degree. Besides ANN’s data parallelization and 
node parallelization, PSO’s natural particle 
behavior parallelization is in PSO-ANN. For some 
complex problems, the number of particles can be 
from hundred to several hundred or more. 
Therefore, particle behavior parallelization is quite 
suitable for GPU architecture, which needs as 
many threads as possible to make full use of its 
powerful parallel computing ability. 

In 2009, Veronese and Krohling firstly used 
CUDA to accelerate the PSO algorithm [27],

which raised the research upsurge in GPU-based 
parallel PSO algorithm [28]. Particle behavior 
parallelization in PSO-ANN can be reflected in 
three aspects: (a), (b), and (c), as follows. In 
addition, CUDA-based PSO-ANN can use 
CUDA’s unique parallelism, which can be 

reflected in aspect (d). 
(a) The process of updating particles’ velocities 

and positions is parallel. 
(b) The process of evaluating particles’ fitness 

values is parallel. 
(c) The process of updating personal best 

positions and their corresponding fitness 
values is parallel. 

(d) CUDA’s parallel reduction algorithm can 
accelerate the process of finding the minimum 
fitness value when updating the global best 
positions. 
According to the analyses above, the approach 

of GPU-based parallel PSO-ANN algorithm is 
designed in Fig. 3. The proposed approach 
corresponds one particle to one thread, and deals 
with a large number of GPU threads in parallel.
This greatly saves the computing time and 
improves the computing accuracy. 

Begin

Initialize all particles’ positions Xi and velocities Vi

Evaluate all personal best positions Pbesti and the global best positions Gbest

Update X1 and V1

Evaluate F(X1)

Update Pbest1

Update XN and VN

Evaluate F(XN)

Update PbestN

The best of all Pbest

Reach Tmax ?

(GPU thread-level parallelism)

Y

N

Update Gbest

Parallel reduction

Load training samples and testing samples. Set Tmax

Update ANN’s weights

Evaluate ANN’s output error

Put training samples and testing samples into the well-trained ANN

Output results

End

Fig. 3. CUDA-based parallel PSO-ANN algorithm flowchart. 
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The steps of GPU-based parallel PSO-ANN 
algorithm are as follows: 
(1) Load the training samples and testing samples 

on CPU side. Data preprocesses. 
(2) Call the malloc() function and cudaMalloc() 

function on CPU side. Allocate variable space 
on CPU side and GPU side. 

(3) Initialize particles’ positions and velocities on 
CPU side. 

(4) Call the cudaMemcpy() function on CPU side,
and transfer the data of particles from CPU 
side to GPU global memory. Call the 
cudaMemcpyToSymbol() function on CPU 
side, and transfer training samples from CPU 
side to GPU constant memory. 

(5) Call the kernel() function on CPU side.
Perform parallel computing tasks (ANN 
training) on GPU side. 

(6) Call the cudaMemcpy() function on CPU side,
and transfer the useful data (well-trained 
ANN) from GPU side back to CPU side. 

(7) Evaluate the output results on CPU side by 
training samples, testing samples and well-
trained ANN. 

(8) Call the free() function and cudaFree() 
function on CPU side. Release variable space 
on CPU side and GPU side. 
The step (5) is used to accelerate ANN 

training, and it is the core step of the whole 
algorithm. The pseudo-code of step (5) is as 
follows: 
for (i=0; i<generationsNumber; i++) 
{ 
<Update velocities and positions of each particle>   
     // kernel 1 
<Compute fitness of each particle>          // kernel 2 
<Update Pbest of each particle>            // kernel 3 
<Update Gbest of all particles>              // kernel 4 
} 

V. MODELING RESONANT 
FREQUENCY OF RECTANGULAR MSA 

USING CUDA-BASED PARALLEL 
ANN-PSO 

In this section, we use CPU-based sequential 
PSO-ANN and the designed GPU-based parallel 
PSO-ANN, respectively, to model the resonant 
frequency of rectangular MSA and test their
acceleration performance. The computing platform 

used in our experiments is shown in Table 1. The 
input sets of samples # $, , , rW L h �  are the related 
parameters of rectangular MSA. The output set of 
samples (fME) is the corresponding measured 
resonant frequency. The well-trained ANN can 
establish the mapping between the related 
parameters of the rectangular MSA and its 
corresponding measured resonant frequency. The 
training samples and testing samples used in this 
paper are from previous works [12,30]. Column 1-
6 of Table 2 gives the total 33 sets of data, in 
which 26 sets of data are used for ANN training 
and the remaining 7 sets of data marked with 
asterisks are used for ANN testing. Column 2-5 of 
Table 2 shows the related parameters of 
rectangular MSA. Column 6 (“Theoretical fME”) of 

Table 2 shows the actual measured resonant 
frequency of rectangular MSA in mode TM10 
(“theoretical values”). Tables 3 and 4 give the sum 
of the absolute error between experimental and 
theoretical values of the resonant frequency from 
traditional methods and CPU-based ANN models 
in different literatures. The fEDBD, fDBD, fPTS, fPSO-BP

and fBiPSO in Table 4 represent, respectively, the 
experimental resonant frequency calculated by 
using the ANN model trained by EDBD (Extended 
Delta-Bar-Delta), DBD (Delta-Bar-Delta), PTS 
(Parallel Tabu Search), PSO-BP (PSO and BP 
together), and BiPSO (Binary PSO). It’s worth 
noting that the “theoretical values” mean the 
actual measured resonant frequency (Column 6 of 
Table 2), while the “experimental values” mean 
the experimental resonant frequency from 
traditional methods [3-13], CPU-based ANN 
models [14-15,18-20], or our GPU-based parallel 
PSO-ANN model. 

Table 1: Computing platform 
Name Type
CPU Intel Core i3-2100, 3.1 GHz

GPU
NVIDIA Tesla K20c, 706 MHz, 
2496 CUDA Cores, Compute 
Capability 3.5

Operating 
System

Windows 7 SP1 32 bit 
Professional

Programming 
Environment

Microsoft Visual C++ 2010, 
CUDA 5.0
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Table 2: Experimental values of the resonant frequency of rectangular MSA in mode TM10 from the 
GPU-based PSO-ANN model 

 
 
Data with * are the sets of testing samples. The unit of frequency in this table is MHz. 



Table 3: Sum of the absolute error between 
experimental and theoretical values of the resonant 
frequency of rectangular MSA in mode TM10 
from traditional methods 
Traditional 
Method

Sum of the Absolute Error/MHz

[3] 13136
[4] 24097
[5] 11539
[6] 12322
[7] 30996
[8] 8468
[9] 22572
[10] 18148
[11] 30504
[12] 56698
[13] 1393

Table 4: Sum of the absolute error between 
experimental and theoretical values of the resonant 
frequency of rectangular MSA in mode TM10 
from CPU-based ANN models 
ANN Model Sum of the Absolute Error/MHz
fEDBD [14] 2392
fDBD [14] 2427
fBP [14] 2372
fPTS [15] 2239
fPSO [18] 1049
fPSO-BP [19] 1777
fBiPSO [20] 863

In our experiment, the structure of ANN is 
designed as 4-10-1 and its corresponding particle 
dimension is 61. The number of particles is equal 
to the number of threads and is generally more 
than particle dimension (61 in our experiment). A 
warp is a group of 32 neighboring threads 
executed physically in parallel on a Stream 
Multiprocessor (SM) in CUDA. Therefore, the 
number of particles is designed to the multiples of 
32. The activation function in the hidden layer is 
chosen as Bi-polar sigmoid function (formula (7)). 
The activation function in the output layer is 
chosen as Uni-polar sigmoid function (formula 
(8)). The inertia weight w decreases linearly from 
0.9 to 0.4 during the whole process. The learning 
factors c1 and c2 are set to 2.8 and 1.3 respectively. 
The maximum iteration number Tmax is set to 1000. 

# $ # $
2 1, ,

1 exp 2
f u u

u
� � �� 
 
 ��

� � 6
 (7) 

# $ # $
1 , .

1 exp
f u u

u
� �� 
 
 ��

� �
 (8) 

Speedup ratio S is the most commonly-used 
index to measure the acceleration performance. S
is defined as the ratio of TCPU (the running time of 
the CPU-based program) and TGPU (the running 
time of the GPU-based program) under the 
condition of the same number of particles and the 
same number of iterations in the PSO-ANN 
algorithm: 

CPU

GPU

= TS
T

. (9) 

To get the running time, clock() function is 
used on CPU side and cudaEventElapsedTime() 
function based on “Events” is used on GPU side. 

Considering the influence caused by randomness, 
the program is run 20 times repeatedly under the 
circumstance of the same number of particles 
whenever on CPU or GPU side, and the result is 
their average value. To ensure the computing 
precision, all decimals use double precision on 
both CPU side and GPU side. 

The experimental results are shown in Table 5
and Column 7-17 of Table 2. It’s worth noting that 
the meanings of the “sum of the absolute error” (in 
Table 3 and Table 4) and the “average sum of the 
absolute error” (in Table 5) are different. The 
“sum of the absolute error” means the sum of the 
absolute error of the average of the experimental 
values and the theoretical values. The “average 
sum of the absolute error” means the average of 
the sum of the absolute error of the experimental 
values and the theoretical values. We believe that 
compared to the “sum of the absolute error”, the 

“average sum of the absolute error” can be easily 
got by calculation, objectively reflects the results 
in each experiment, and is greater than the “sum of 

the absolute error” under the same conditions. In 
other words, if the “average sum of the absolute 
error” in Table 5 is superior to the “sum of the 

absolute error” in Table 4, the “average sum of the 
absolute error” in Table 5 is certainly superior to 
the “average sum of the absolute error”

corresponding in Table 4. In Column 7-17 of 
Table 2, each column gives particular 
experimental values from GPU-based algorithm, 
the “sum of the absolute error” of which is closest 

to the “average sum of the absolute error” in Table 
5.
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Table 5: Speedup ratio achieved by parallel PSO-ANN when modeling the resonant frequency of 
rectangular MSA 

Number of Particles Running Time/s Average Sum of the Absolute Error/MHz Speedup RatioCPU GPU CPU GPU
32 1.309 1.680 3171.6 3259.4 0.8
64 2.495 1.672 2559.1 2534.0 1.5
128 4.839 1.672 2189.3 2200.4 2.9
256 9.659 1.680 1694.5 1697.4 5.7
512 19.141 1.686 1331.9 1352.5 11.4
1024 38.267 1.717 1215.0 1267.6 22.3
2048 77.445 1.920 1098.7 1103.3 40.3
4096 155.406 2.186 974.2 997.5 71.1
8192 309.941 2.636 863.9 895.2 117.6
16384 620.352 2.824 795.1 885.7 219.7
32768 1241.120 5.647 722.8 840.1 219.8
65536 2481.003 8.768 689.4 792.9 283.0
131072 4958.867 15.160 674.7 765.0 327.1

We make some analysis on Table 3, Table 4
and Table 5:
(a) Generally, ANN models have obvious 

advantages over traditional methods in 
calculation precision. GPU-based parallel 
PSO-ANN has obvious advantages over CPU-
based sequential PSO-ANN in running speed. 

(b) The more number of particles, the higher 
speedup ratio. Compared with CPU-based 
sequential PSO-ANN, 327 times of maximum 
speedup ratio has achieved in GPU-based 
parallel PSO-ANN. When the number of 
particles doubles, the speedup ratio roughly 
doubles if the number of particles is less than 
16384 (The maximum number of resident 
threads on this GPU is 26624.), and increases 
at a relatively slow rate if the number of 
particles is more than 32768. 

(c) Compared with CPU-based sequential PSO-
ANN, GPU-based parallel PSO-ANN has the 
same optimization stability. When the number 
of particles increases, the error of CPU-based 
program and the error of GPU-based program 
both decreases. The error of CPU-based 
program and the error of GPU-based program 
are similar or same under the condition of the 
same number of particles. 

(d) Substantially increasing the number of 
particles on GPU side is a special method, 
which adapts to the CUDA programming 
model. The runtime increases very limitedly 
when substantially increasing the number of 

particles on GPU side. The error of GPU-side 
parallel PSO-ANN is superior to the results of 
[14,15] when the number of particles is greater 
than or equal to 128, superior to the results of 
[19] when the number of particles is greater 
than or equal to 256, superior to the results of 
all the traditional methods including [13] 
when the number of particles is greater than or 
equal to 512, superior to the results of [18] 
when the number of particles is greater than or 
equal to 4096, and superior to the results of all 
the literatures including [20] when the number 
of particles is greater than or equal to 32768. 
We provide the following suggestions as 

reference for GPU-based parallel PSO-ANN 
algorithm: 
(1) For the standard PSO-ANN algorithm in this 

study, the network error can be significantly 
reduced with the very limited runtime 
increment when substantially increasing the 
number of particles on GPU side. 

(2) Other types of improved PSO-ANN algorithm 
do not always adapt to the GPU parallel 
architecture. The algorithm performance can 
be further improved if the improved PSO-
ANN algorithm is suitable to parallelize on 
GPU side. 

VI. CONCLUSION 
The CUDA-based parallel PSO-ANN scheme 

is designed to rapidly model the resonant 
frequency of rectangular MSA. The proposed 
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approach corresponds one particle to one thread, 
and deals with a large number of GPU threads in 
parallel to greatly save computing time and 
improve computing accuracy. The experiments 
show that the modeling runtime can be greatly 
reduced when parallelizing the PSO-ANN
algorithm on GPU side. Furthermore, the network 
error can be significantly reduced with the very 
limited runtime increment when substantially 
enlarging the number of particles on GPU side. 
The proposed GPU-based parallel PSO-ANN in 
this paper can be extended to other similar 
microwave engineering designs easily. 
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