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Abstract ─ The Levenberg-Marquardt algorithm is used 
to perform an efficient phase-only synthesis for shaped-
beam reflectarray antennas. A thorough analysis of the 
problem and algorithm allows to improve greatly its 
performance and its results with regard to those in the 
literature. Specifically, several optimizations in the 
Jacobian matrix computation are detailed, including its 
fully parallelization thanks to the fact that each column 
of the Jacobian can be independently computed. A 
Cholesky factorization based solver is used to obtain the 
updating vector at each iteration of the algorithm, which 
is the fastest exact solver for linear equation systems. 
Finally, some guidelines to choose proper values for the 
algorithm parameters are presented. Due to the high 
dimensionality of the problem, a good control in the 
algorithm evolution is important to guarantee good 
convergence and avoid non-desired local minima. The 
synthesis of a LMDS shaped beam for a dual-polarized 
reflectarray is proposed to test the developed algorithm 
and the results are compared with others in the literature, 
showing improvements in accuracy and time efficiency. 
The framework established for the phase-only synthesis 
can be used in a broader problem to directly optimize the 
geometry of the reflectarray through full wave analysis 
of the unit cell. 
 
Index Terms ─ Levenberg-Marquardt algorithm, local 
multipoint distribution system, parallelization, phase-
only synthesis, reflectarray antennas. 
 

I. INTRODUCTION 
Shaped-beam antennas are demanded in many 

applications that require non-canonical beams, such as 
direct broadcast satellite (DBS) missions, local multipoint 
distribution service (LMDS) technology or multibeam 
antennas [1]. Traditionally, parabolic reflectors and 
phased arrays have been used for these applications, 
although in recent years reflectarray antennas have 
proven to be a feasible solution while providing other  

benefits such as low cost, low weight and reduced 
physical dimensions [1]. As parabolic reflectors, they 
can be used in single configurations as well as dual-
reflector setups [2]. However, reflectarrays present 
limitations mainly in the bandwidth [1,3], which can be 
overcome by choosing an appropriate element topology 
[1,4,5]. 

In order to achieve the required specifications, a 
number of algorithms has been used to synthesize the 
radiation patterns, for instance, analytical [6], steepest 
descent [7], conjugate gradient [8], intersection approach 
[9], Levenberg-Marquardt (LMA) [10], genetic algorithms 
[11] or particle swarm optimization [12], among others. 
However, the analytical approach has limitations when 
applied to complex shaped patterns, although they can be 
used to generate a starting point for a more powerful 
synthesis algorithm [13]. The steepest descent has a very 
slow convergence rate [14,15], which makes it impractical 
to synthesize arrays with a moderate number of 
elements. Conjugate gradient methods can be adapted to 
solve non-linear optimization problems and are faster 
than the steepest descent [14], but they tend to be both 
less efficient and less robust than quasi-Newton methods 
[15]. The intersection approach is very efficient when 
using only the fast Fourier transform (FFT), but suffers 
from the problem of traps, due to the non-convexity of 
the sets dealt with [16]. One manner of dealing with the 
trap problem is working with the far field squared 
amplitude instead of just the amplitude [16,17]. 
However, this approach causes that one of the projectors 
of the intersection approach cannot be implemented with 
FFT (the projector which recovers the reflected field on 
the reflectarray surface), and a minimization algorithm 
based on optimization techniques has to be used, 
reducing greatly the efficiency of the intersection 
approach algorithm (in [17], the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is used, although 
other algorithms are also suitable, such as LMA). All 
these algorithms are local optimizers and depend  
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strongly on the starting point to converge with success. 
Genetic algorithms (GA) and particle swarm 

optimization (PSO) are global search algorithms, which 
in contrast with the previous local search algorithms, do 
not depend on the starting point. These algorithms are 
potentially able to find the global maximum at the 
expense of taking many iterations. However, as the 
number of variables increase, the search space size 
grows exponentially, making it harder for these 
algorithms to find a suitable solution. Another aspect of 
evolutionary algorithms is that due to their non-
deterministic approach, two instances using the same 
parameters will yield different results, in contrast with 
the deterministic approach of the local optimizers 
mentioned above. GA and PSO have been demonstrated 
capable of synthesizing phased arrays, although at the 
cost of several thousand iterations [18]. Each iteration 
involves several evaluations of the cost function, one for 
each member of the population, thus making their 
computing times very sensitive to the time cost of the 
cost function (also known as fitness in evolutionary 
algorithm terms). Both algorithms seem to have similar 
performance with small arrays, although PSO is easier to 
implement [18]. Recently, the PSO has been used to 
synthesize several reflectarray radiation patterns [12,19]. 
In [12], a single-fed reflectarray of 848 elements with 
asymmetric multiple beams was synthesized, taking 
more than 70000 iterations to converge and 44 hours. In 
[19], a reflectarray of 900 elements was synthesized, 
taking 5500 iterations to converge. Increasing the size of 
the antenna would dramatically increase computing 
times to achieve convergence with these algorithms 
because of their global search approach, unless a suitable 
starting point was used and the PSO was set up to 
prioritize local search. 

Regarding memory usage, the LMA presents a 
disadvantage with regard to other synthesis algorithms. 
The LMA needs to store a Jacobian matrix, which is 
generally bigger than the Hessian matrix (or its 
approximation) used by Newton and quasi-Newton 
methods. Additionally, the LMA also needs to store the 
approximation of the Hessian. In contrast, the conjugate 
gradient only needs to store a smaller matrix (same size 
as the Hessian) and a few vectors, while the steepest 
descent only stores vectors. The intersection approach 
uses one to four small matrices with dimension the 
number of samples of the radiation pattern. (When an 
optimization algorithm is introduced in the intersection 
approach, the storage needs would be the same as the 
ones of the optimization algorithm plus the needs of the 
intersection approach.) Evolutionary algorithms, such as 
GA or PSO, store one solution per member of the 
population. In the phase-only synthesis case, the solution 
is a vector or matrix with the number of elements equal 
to the number of unknowns. Exact storage needs for the 
mentioned algorithms will vary according to their 

implementations, although they have been roughly laid 
out for the main data structures. The LMA trades more 
memory usage for a more robust algorithm for non-linear 
optimization when compared with other gradient 
methods, and a more flexible framework when compared 
with the intersection approach. It is also simpler and 
easier to implement than other quasi-Newton methods, 
and is faster than evolutionary algorithms due to its local 
search nature. 

As an example, a reflectarray of 𝑀 × 𝑁 elements 
(which correspond to the unknowns of the problem) is 
considered, computing the radiation pattern only for one 
polarization in a grid with 𝑈 × 𝑉 points. The evolutionary 
algorithms are considered to have 𝐿 members in their 
population. Note that, in general, 𝑀 ⋅ 𝑁 ≤ 𝑈 ⋅ 𝑉. In this 
case, the size of the Jacobian matrix is 𝑀 ⋅ 𝑁 ⋅ 𝑈 ⋅ 𝑉, the 
size of the Hessian or its approximation is 𝑀2 ⋅ 𝑁2 and 
the size of a solution is 𝑀 ⋅ 𝑁. Then, the memory usage is 
𝑂(𝑀 ⋅ 𝑁 ⋅ 𝑈 ⋅ 𝑉 + 𝑀2 ⋅ 𝑁2) for the LMA, corresponding 
to the Jacobian and approximation of the Hessian; 
𝑂(𝑀2 ⋅ 𝑁2) for quasi-Newton methods and the conjugate 
gradient, corresponding to the Hessian; 𝑂(𝑈 ⋅ 𝑉 + 𝑀 ⋅ 𝑁) 
for the intersection approach, corresponding to a solution 
and the computed far field; and 𝑂(𝐿 ⋅ 𝑈 ⋅ 𝑉 + 𝐿 ⋅ 𝑀 ⋅ 𝑁) 
for the GA and PSO, corresponding to one solution and 
one computed far field per member of the population. 
Auxiliary vectors and matrices might be used depending 
on the implementation, but the main data structures 
shown above take up most of the memory used by the 
algorithm. 

In this work, an optimization framework based on 
the LMA described in [10], is presented with a number 
of improvements derived from a deeper insight into the 
problem and the algorithm itself that allows to improve 
both the performance and results, yielding a faster and 
more robust method for the synthesis of shaped radiation 
patterns. Specifically, the proposed improvements focus 
on accelerating the computing times by parallelizing 
different operations, which makes the algorithm scale 
well with the number of available processors, taking 
advantage of farm servers and new desktop computers to 
perform faster synthesis for a given problem size, or to 
increase the size for the same computing times. Also, a 
faster method for solving the equation system is used, 
taking advantage of the nature of the problem. The 
algorithm accuracy and convergence is improved 
yielding better results in less iterations, which also leads 
to further reduction in computing times. Finally, a 
general phase-only framework based on the LMA is 
established, which can be further extended to include 
direct optimization of the geometry through full wave 
analysis of the unit cell. This last feature can 
dramatically increase the computing times of the cost 
function, which makes it impractical to implement in 
evolutionary algorithms such as GA or PSO. Some of the 
improvements in the implementation of the LMA for 
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reflectarray synthesis can be used in other optimization 
algorithms, such as BFGS. The resulting framework 
based on the LMA is able to further optimize previous 
synthesis performed by other algorithms, or to carry out 
new ones in a more efficient way, provided a suitable 
starting point. 

This paper is organized as follows. Section II 
describes how the reflectarray is analyzed to obtain the 
radiation pattern from the optimization variables, and 
also presents the approximations considered in the 
phase-only synthesis case along with their justification. 
Section III details the algorithm and all the optimizations 
implemented as well as a description of its parameters 
and implementation. Section IV shows some results for 
different synthesis. Finally, Section V has the conclusions. 
 

II. ANALYSIS OF THE REFLECTARRAY 

A. Computing co-polar far fields for phase-only synthesis 

The scheme of an offset printed reflectarray is 
shown in Fig. 1. The reflectarray is illuminated by a feed 
which generates an incident electric field, �⃗� inc, on the 
surface of the reflectarray. This field can be expressed 
for both polarizations as: 

 �⃗� inc
𝑋/𝑌(𝑥, 𝑦) = 𝐸inc,𝑥

𝑋/𝑌(𝑥, 𝑦)�̂� + 𝐸inc,𝑦
𝑋/𝑌 (𝑥, 𝑦)�̂�, (1) 

where the superscripts indicate the polarization of the 
feed and the subscripts the component of the field with 
regard to the reflectarray coordinate system (𝐸𝑥

𝑋 would 
be the �̂� component of the projected field over the 
reflectarray surface when the feed radiates in X-
polarization). Note that each polarization has, in general, 
two components of incident field, the desired and the 
cross-polar, due to the feed not being ideal and the 
projection of the field over the reflectarray surface. In a 
similar way, the field reflected on the reflectarray surface 
can be written as: 

 �⃗� ref
𝑋/𝑌(𝑥, 𝑦) = 𝐸ref,𝑥

𝑋/𝑌(𝑥, 𝑦)�̂� + 𝐸ref,𝑦
𝑋/𝑌(𝑥, 𝑦)�̂�. (2) 

The relation between the incident and reflected 
fields at each element (𝑚, 𝑛) of the reflectarray is given 
by a matrix of reflection coefficients that characterize 
that element: 

 �⃗� ref
𝑋/𝑌(𝑥𝑚 , 𝑦𝑛) = 𝑅𝑚𝑛 ⋅ �⃗� inc

𝑋/𝑌(𝑥𝑚 , 𝑦𝑛), (3) 
where 

 𝑅𝑚𝑛 = (
𝜌𝑥𝑥

𝑚𝑛 𝜌𝑥𝑦
𝑚𝑛

𝜌𝑦𝑥
𝑚𝑛 𝜌𝑦𝑦

𝑚𝑛), (4) 

and (𝑥𝑚, 𝑦𝑛) are the coordinates of the (𝑚, 𝑛)th element. 
The components of 𝑅𝑚𝑛 are complex numbers and 

fully characterize the behaviour of the element. This 
method of analysis takes into account three sources of 
cross-polarization: the feed, the projection of the incident 
field over the reflectarray surface and the reflectarray 
elements through the use of 𝑅𝑚𝑛. However, considering 
lossless ideal phase shifters instead of real elements, the 
cross-polarization generated by them is not taken into 

account and the amplitude of 𝜌𝑥𝑥
𝑚𝑛 and 𝜌𝑦𝑦

𝑚𝑛 is set to one. 
Therefore, the synthesis is defined as a phase-only array 
synthesis where only the co-polar patterns are considered 
[20]. In this case, the reflected field in the aperture can 
be expressed as [13]: 

 𝐸ref,𝑥
𝑋 (𝑥𝑚 , 𝑦𝑛) ≈ 𝜌𝑥𝑥

𝑚𝑛 ⋅ 𝐸inc,𝑥
𝑋 (𝑥𝑚 , 𝑦𝑛), 

(5) 
 𝐸ref,𝑦

𝑌 (𝑥𝑚, 𝑦𝑛) ≈ 𝜌𝑦𝑦
𝑚𝑛 ⋅ 𝐸inc,𝑦

𝑌 (𝑥𝑚 , 𝑦𝑛). 
Once the tangential electric field has been obtained 

using (5), the co-polar far field can be efficiently 
computed using the FFT [1], obtaining �⃗� cp

𝑋/𝑌(𝑢, 𝑣), with: 
 𝑢 = sin 𝜃 cos 𝜑   ;    𝑣 = sin 𝜃 sin𝜑. (6) 

The far field pattern specifications can be given in form 
of masks with upper and lower bounds [1,9,10], 
𝑀𝑈(𝑢, 𝑣) and 𝑀𝐿(𝑢, 𝑣), which can be defined in the 
whole UV grid or in the area of interest. 
 

 
 
Fig. 1. Geometry of an offset printed reflectarray. 
 
B. Phase-only synthesis considerations 

When performing phase-only synthesis, the only 
variables to be optimized are the phases of the reflection 
coefficients 𝜌𝑥𝑥

𝑚𝑛 and 𝜌𝑦𝑦
𝑚𝑛. The approximations made to 

obtain the co-polar far field patterns using the tangential 
field of (5) have proven to be valid in the case of 
reflectarray antennas [20], providing a co-polar pattern 
which is very close to the exact one. 

Usually, the reflectarray is placed at far field 
distance of the feed, in which case can be modelled as a 
𝑐𝑜𝑠𝑞 𝜃 function [21], with very accurate results [22,23]. 
This feed model can also be used in the preliminary steps 
of the synthesis process and later use full wave 
simulations of the feed in order to accurately predict the 
far field [24-26]. However, the co-polar far fields 
obtained using both methods are very similar between 
each other. In any case, the algorithm described in the 
present work allows to use the real incident field from 
the feed, either by full wave simulations or near field 
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measurements. The incident field is fixed throughout the 
synthesis process and only the phase shift that the 
reflectarray elements have to introduce is optimized in 
order to obtain the required co-polar pattern. 

Due to the simplifications made on the 𝑅𝑚𝑛 matrix, 
the cross-polar pattern that could be computed using (5) 
would not take into account the cross-polarization 
introduced by the reflectarray elements, which in practise 
is an important contribution to the cross-polar pattern. As 
it is explained in detail in [13,20], the co-polar pattern 
obtained with the simplifications made on the 𝑅𝑚𝑛 
matrix is still accurate. However, the cross-polar pattern 
is not [13], hence a phase-only synthesis only deals with 
co-polar requirements. 

Once the synthesis is finished and the phases of 𝜌𝑥𝑥
𝑚𝑛 

and 𝜌𝑦𝑦
𝑚𝑛 are obtained, a design can be carried out that 

takes into account the real element behaviour. By using 
full wave simulations based on local periodicity [27-29], 
the full 𝑅𝑚𝑛 is computed, taking into account mutual 
coupling between elements. During this step, a zero 
finding routine is used that calls iteratively a full wave 
simulator to adjust the required phase shift for each 
element. Because the synthesized phases are accurately 
adjusted using this procedure, the resulting phase 
distribution will have a small error with regard to those 
obtained after the phase-only synthesis, and hence the 
co-polar pattern will be very close to the one synthesized. 
 

III. IMPROVED SYNTHESIS BASED ON 

LMA 

A. Cost function definition 

In order to use the LMA, a proper cost function to 
be minimized has to be defined. The same cost function 
as in [10] will be used, where the residuals are defined 
as: 

 

𝐹𝑡
𝑋/𝑌

= 𝐶(𝑟 𝑡) [(𝑀𝑈
2(𝑟 𝑡) − |𝐸cp

𝑋/𝑌(𝑟 𝑡)|
2
)

⋅ (𝑀𝐿
2(𝑟 𝑡) − |𝐸cp

𝑋/𝑌(𝑟 𝑡)|
2
)

+ |𝑀𝑈
2(𝑟 𝑡) − |𝐸cp

𝑋/𝑌(𝑟 𝑡)|
2
|

⋅ |𝑀𝐿
2(𝑟 𝑡) − |𝐸cp

𝑋/𝑌(𝑟 𝑡)|
2
|], 

(7) 

and thus, the cost function is: 

 𝐹𝑋/𝑌 = ∑(𝐹𝑡
𝑋/𝑌

)
2

𝑇

𝑡=1

. (8) 

In (7) and (8), each 𝑡 = 1, … , 𝑇 describes a 𝑟 𝑡 = (𝑢, 𝑣)𝑡 
point in which the UV grid is discretized; 𝐶(𝑟 𝑡) is a 
weight function; 𝐸cp

𝑋/𝑌(𝑟 𝑡) can be either of both co-polar 
far fields, which are synthesized independently; and 
𝐹𝑋/𝑌 is the total error, contributed by all the far field 
samples that lay outside the specified masks. This cost 
function penalizes the samples that lie outside the 
specified bounds (upper and lower) while it sets the error 
to zero when the samples are within bounds. It represents 

a non-convex search space [30] due to the non-convexity 
of the lower bound [31] and multiple solutions are 
possible. There are potentially a large number of 
solutions with minimum error. If the lower and upper 
bounds are too confined, the specifications might be too 
stringent and the algorithm might not find a solution, 
either because it does not exist or because the starting 
point is too far off from the solution. In that case, the 
specifications should be relaxed and/or the antenna 
optics redefined. 

In order to alleviate the notation, from here on a 
generic 𝐹𝑡 will be used, avoiding the superscripts and 
knowing that it can represent the residual of either of 
both polarizations (𝐹𝑡

𝑋 or 𝐹𝑡
𝑌). 

 
B. Jacobian matrix calculation 

The LMA requires the calculation of a Jacobian 
matrix, which is a 𝑇 × 𝑃 matrix, where 𝑃 is the number 
of variables to be optimized. Any element (𝑡, 𝑝) of the 
Jacobian is calculated as: 

 𝐽(𝑡, 𝑝) =
𝜕𝐹𝑡(𝛼)

𝜕𝛼𝑡
, (9) 

where 𝛼 = [𝛼1, … , 𝛼𝑃] is an array with the optimization 
variables. Now, Equation (9) can be evaluated 
analytically, as in [10], as long as the analytical 
expression of the far field as a function of the 
optimization variables is provided. In [10], the partial 
derivatives are obtained deriving the cost function with 
respect to the tangent of the phases. However, in this 
work derivation is done with respect to the phases 
themselves, improving the performance of the algorithm 
greatly by making it converge faster, as it will be shown 
later. 

In the case where the analytical expressions cannot 
be used, the derivative can be calculated using finite 
differences of the form [14]: 

 
𝜕𝐹𝑡(𝛼)

𝜕𝛼𝑝

≈
𝐹𝑡(𝛼 + ℎ𝑒𝑝) − 𝐹𝑡(𝛼 − ℎ𝑒𝑝)

2ℎ
, (10) 

where ℎ is a small positive scalar and 𝑒𝑝 is the 𝑝th unit 
vector. Because the evaluation of the cost function (8) 
can be computationally expensive, a one-sided-difference 
can be used instead of the central difference of (10) in 
order to reduce by half the number of evaluations 
required. Also, a proper choice of ℎ can minimize the 
error of the evaluation of the derivative in (10). For the 
central difference the optimum choice of ℎ [14] is: 

 ℎ = √𝑢𝑟
3 , (11) 

with 𝑢𝑟 being the unit roundoff, whose value will depend 
on the precision of the real numbers used in the 
implementation of the algorithm. The optimum choice 
for a lateral difference would be the value ℎ = √𝑢𝑟. Note 
that, for the central difference there is an error of 𝑂(ℎ2), 
while for the lateral one, the error is 𝑂(ℎ). Since ℎ ∈
(0, 1), the error will be lower for the central difference, 
although the evaluation of the derivative will be twice as  

1249 ACES JOURNAL, Vol. 30, No. 12, December 2015



expensive, in time consuming terms. 
An important point to consider when computing the 

Jacobian matrix is the fact that the columns of 𝐽 are 
independent from each other because the derivatives are 
calculated with respect to one variable. Hence, the 
evaluation of the Jacobian can be fully parallelized by 
means of OpenMP [32], computing one column per 
available thread. Furthermore, each column can be 
obtained by just two calls to the cost function when the 
central difference is used (one call for the lateral 
difference). Also, the far field is computed efficiently by 
means of the FFT, and only one FFT is needed per cost 
function call. This way, one of the most time-consuming 
operations of the algorithm is performed efficiently and 
will scale well with the number of available processors, 
allowing the optimization of large problems. 
 
C. Solving the matrix equation 

Once the Jacobian matrix is calculated, the LMA 
can be applied iteratively as: 

 [𝐽𝑖𝑇 ⋅ 𝐽𝑖 + 𝜇𝑖 ⋅ diag(𝐽𝑖𝑇 ⋅ 𝐽𝑖)] ⋅ 𝛿𝑖 = −𝐽𝑖
𝑇 ⋅ 𝐹𝑡,𝑖 , (12) 

which can be compactly written as: 
 𝐴𝑖 ⋅ 𝛿𝑖 = 𝑏𝑖 . (13) 

In (12), the subindex 𝑖 represents the current iteration, 
diag(·) is the diagonal matrix, 𝛿𝑖 is the updating vector 
which satisfies the equality and 𝜇𝑖 is a real positive 
number. The choice of diag(𝐽𝑖

𝑇 ⋅ 𝐽𝑖) instead of any other 
positive diagonal matrix, such as the identity, is to reduce 
the effects of poor scaling in the optimization variables 
by using an ellipsoidal trust region. This way, the 
algorithm is invariant under diagonal scaling of the 
components of α [14]. 

The matrix multiplication 𝐽𝑖𝑇 ⋅ 𝐽𝑖 and other matrix-
vector operations can be computationally very expensive 
if the dimension is large. Nevertheless, these operations 
can be performed by routines from libraries such as 
OpenBLAS [33] or MKL [34], which take advantage of 
highly optimized and fully parallelized algorithms and 
low-level hardware operations in order to improve their 
performance and computing times. Also, since the 
resulting matrix is symmetric, only the upper or lower 
triangular part of it can be computed, further reducing 
computing times. 

In [10], (13) is solved by forming its normal equation 
applying the Conjugate Gradient Squared (CGS) method. 
This is unnecessary because (13) is already a square 
matrix system, and the CGS additionally solves another 
system of normal equations, thus squaring the condition 
number of matrix 𝐴𝑖, which can lead to poor convergence 
of the CGS depending on the initial Jacobian matrix. 

Nevertheless, because 𝐴𝑖 is at least positive semi-
definite, a Cholesky factorization based solver can be 
used [35], which is the fastest exact solver for this type 
of problems [36] since it takes advantage of the 
symmetric nature of the matrix. Compared with other 

methods, the Cholesky factorization involves 𝑃3 3⁄  
floating-point operations, while LU takes 2𝑃3 3⁄  and 
SVD 12𝑃3 [36]. Although SVD is more robust, in this 
case the Cholesky factorization is enough, being 26 
times faster than SVD and twice as fast as LU. 

After the matrix system is solved, the solution is 
updated as: 

 𝛼𝑖+1 = 𝛼𝑖 + 𝛿𝑖. (14) 
 
D. Choice of 𝝁𝟎 

The parameter 𝜇 in (12) is used to control the 
convergence of the algorithm. It controls the behaviour 
of the algorithm ranging from the steepest descent when 
𝜇 → ∞ and the Gauss-Newton method when 𝜇 = 0 [15]. 
A small value of 𝜇 when the current solution is not near 
the minimum may cause the algorithm to diverge. Hence, 
it is recommended to start with a high value of 𝜇 and 
decrease it as the error diminishes. Conversely, if the 
error increases, it could be necessary to increase the 
value of 𝜇 to control the algorithm and prevent it from 
diverging to non-desired solutions. A new real parameter 
𝛽 > 1 is defined to control 𝜇. If the last 𝑘𝑑 iterations 
have decreased the error, 𝜇 is updated as 𝜇𝑖+1 = 𝜇𝑖 𝛽⁄ . 
On the other hand, if the last 𝑘𝑖 iterations have increased 
the error, 𝜇 is updated as 𝜇𝑖+1 = 𝜇𝑖𝛽. If neither of both 
conditions are fulfilled, 𝜇 remains the same. 

Parameters 𝛽, 𝑘𝑑 and 𝑘𝑖 are artificially introduced 
in the algorithm in order to control 𝜇. On the one hand, 
𝛽 controls how fast 𝜇 is decreased when the error 
diminishes and vice versa. A high value of 𝛽 causes 𝜇 to 
decrease initially very fast, and could lead the algorithm 
to diverge, hence rapidly increasing the value of 𝜇. These 
swings in 𝜇 can cause the algorithm to either diverge or 
converge to non-desired local minima. A low value of 𝛽 
(close to 1) causes the algorithm to converge slowly, 
specially when 𝜇 is high. It has been found that values of 
𝛽 between 1.05 and 1.5 provide a good trade-off for a 
good rate of convergence while keeping the algorithm 
from diverging. On the other hand, 𝑘𝑑 and 𝑘𝑖 control 
how tolerant the algorithm is to changes in 𝜇 when the 
error oscillates. When the algorithm reaches a flat valley 
in the search space, the error might behave irregularly 
due to the low gradient of the hypersurface around the 
current position. In order to control 𝜇 in this situation, 𝑘𝑑 
and 𝑘𝑖 come into play, having complementary roles. If 
the error starts decreasing, 𝑘𝑑 prevents 𝜇 from decreasing 
too much if previously the error had increased. This tries 
to prevent the algorithm from diverging because it 
ensures that 𝜇 remains constant until the error decreases 
𝑘𝑑 consecutive iterations. Conversely, the error has to 
increase during 𝑘𝑖 consecutive iterations in order to 
increase 𝜇. This prevents 𝜇 from increasing too much 
making the converge slower once the error begins to 
decrease again. Some reasonable values for these two 
parameters are within the range from 2 to 5. 
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However, the problem of choosing 𝜇0 remains. 
Nevertheless, there is a suitable strategy to choose it. The 
optimization variables are the reflection coefficient 
phases. Hence, in order to have a reliable design, the 
phase distribution should be as smooth as possible, 
because that way, the physical dimensions of the 
elements of the reflectarray would vary smoothly from 
one element to the next (which is necessary because the 
reflectarray analysis is based on a full-wave analysis 
assuming local periodicity [1,26-29]). Following this, 𝜇0 
should be high enough to allow the phase at the initial 
iterations to vary smoothly and not to make jumps to 
valleys of the search space with noisy phase distributions. 
Due to the dimensionality of the problem being 𝑃 (usually 
of the order of hundreds or thousands of optimization 
variables, at least one per element of the reflectarray), it 
is very easy to make false steps into non-desired 
solutions during the first iterations of the algorithm from 
which it will be virtually impossible to escape. For that 
reason a high value of 𝜇0, about the same order of 
magnitude of 𝑃 (for instance, between 0.5𝑃 and 5𝑃), is 
a good choice. 
 
E. Starting point 

Another important issue is the starting point for the 
optimization process, which has been widely discussed 
in the literature [9,20]. As the LMA is a local optimizer, 
the starting point is of the utmost importance, since it 
will determine if the achieved solution is good enough. 
It has been determined [20] that a good initial point is 
that of a pencil beam pattern properly focused. Also, a 
pencil beam pattern can provide a smooth enough initial 
phase distribution in the center of the reflectarray, where 
the field amplitude is higher [1], depending on the placing 
of the feed antenna. 
 
F. Seeking the correct solution 

In the previous sections, different aspects of the 
algorithm have been discussed that can prevent it from 
converging to a solution. First, the specifications should 
be reasonable; i.e., not too stringent, to allow the algorithm 
to converge from the first iteration. Also, the starting 
point should be good enough and 𝜇0 high to ensure a soft 
descend towards the solution. In practise, the final 
solution should not only have a low error, but also a 
smooth phase distribution. With regard to having a low 
error, it means that the co-polar pattern is close to meet 
the specifications, which is the main goal of the 
synthesis. However, a smooth phase distribution is also 
needed for a real reliable design. Due to the local 
periodicity assumption when analysing the reflectarray 
unit cell [1], the design will perform better when the 
physical size of the reflectarray elements will vary 
smoothly across the surface of the antenna. The 
smoothness of the phase distribution is more critical in 
the centre of the reflectarray were the illumination level  

is higher. 
 
G. Numerical implementation 

A homemade version of the algorithm including all 
the described optimizations has been implemented in 
Fortran using the Intel Fortran Compiler and MKL 
library [34]. Double precision is used for real numbers, 
which implies a unit roundoff of: 

 𝑢𝑟 = 2.22… · 10−16. (15) 
This means that the error for the lateral difference would 
be of the order of 𝑂(10−8), while for the central 
difference would be 𝑂(10−11). The difference between 
both errors is not as impressive due to the optimum 
choice of ℎ to minimize the error in the derivative taking 
into account errors produced in floating-point arithmetic 
[14]. Since the rest of the operations are performed in 
double precision, the error in the evaluation of the 
Jacobian will propagate and will be the limiting factor in 
the minimum achievable error. However, since a phase-
only synthesis is done, the evaluation of the cost function 
is fast, and the central difference is used in the 
optimization. 
 

IV. VALIDATION 

A. Antenna specifications 

An outline of the reflectarray is shown in Fig. 1. It 
consists of a planar rectangular reflectarray with dual 
linear polarization formed by 900 elements (30 × 30) 
and a feed horn modelled as a cosq 𝜃 function with a  
q-factor of 37, which produces an illumination taper of 
−19.5 dB on the surface of the reflectarray. The feed horn 
points to the centre of the reflectarray and its phase 
centre is placed at 𝑟 𝑓 = (−94, 0, 214) mm with regard to 
the centre of the reflectarray. The working frequency is 
25.5 GHz and the periodicity of the elements is 
5.84 mm × 5.84 mm, which is approximately half a 
wavelength [37]. Also, the far fields are discretized in a 
128 × 128 UV grid, being 𝑇 = 16384. Note that, 
according to Fig. 1, the X-polarization corresponds to the 
vertical polarization (V) because the electric field in  
�̂�-direction is vertical, while Y-polarization corresponds 
to the horizontal polarization (H). 

The chosen pattern is a LMDS, which presents a 
30º-sector beam in azimuth and a square cosecant beam 
in elevation [13]. Templates in the main cuts will be 
presented along with the results of the optimization in the 
next section. 
 
B. Optimization of previous synthesis 

In order to test the described procedure, a synthesis 
for a LMDS pattern was carried out. The first example 
uses as a starting point the final result of [13] for both 
polarizations. This constitutes an excellent initial radiation 
pattern since it is very close to the final specification. 
The geometry of the antenna is the same as in [37], with 
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the LMA parameters set to 𝜇0 = 1800, 𝛽 = 1.05, 𝑘𝑑 = 3, 
𝑘𝑖 = 2 and 𝐶(𝑟 𝑡) = 1. The initial error is 2.99 and 2.95 
for vertical and horizontal polarizations, according to (8). 
The convergence is very similar for both polarizations. In 
the case of vertical polarization, after 500 iterations of 
the LMA, the error was 7.8 × 10−10. The algorithm was 
left to complete 999 iterations. However, after iteration 
500, approximately, it stagnates. The lowest error was 
5.57 × 10−10 at iteration 990. For the horizontal 
polarization, the lowest error was 3.78 × 10−10 at 
iteration 995, stagnating around iteration 650. 

The simulated radiation pattern for vertical 
polarization is shown in Fig. 2. The main cuts for 
horizontal polarization are shown in Fig. 3 along with the 
results of [13]. With a global error of the order of 10−10, 
the radiated fields fit very well to the masks, improving 
back lobes and the coverage zone with regard to [13] 
while maintaining a similar shape of the synthesized 
phases, which are shown in Fig. 4. 
 

 
 
Fig. 2. Three dimensional synthesized radiation pattern 
in directivity (dB) for vertical polarization. 
 

 
 (a) 

 
 (b) 
 
Fig. 3. Radiation pattern of the synthesized reflectarray 
considering an ideal model of the feed horn in dual 
polarization. Main cuts for horizontal polarization in (a) 
elevation and (b) azimuth. 
 

 
 
Fig. 4. Synthesized phase distribution of the reflection 
coefficient for the vertical polarization (degrees). 
 
C. Synthesis with a pencil beam as starting point 

In order to compare more faithfully the results with 
[10], a new synthesis was carried out employing the 
same initial point; i.e., the phases of a pencil beam pattern 
pointing to (𝜃, 𝜑) = (5.4°, 0.0°), which corresponds to 
the area of maximum directivity in the masks. The LMA 
parameters for this case were 𝜇0 = 500, 𝛽 = 1.1, 𝑘𝑑 = 3, 
𝑘𝑖 = 2 and 𝐶(𝑟 𝑡) = 1. First, the H-polarization was 
synthesized from the phase distribution of the pencil 
beam. The initial error was 53.00 and after the iteration 
450 (where the error was 5.05 × 10−7) it stagnates. The 
lowest error achieved was 3.87 × 10−7 at iteration 998, 
out of 999. After the synthesis of the H-polarization, the 
V-polarization was synthesized starting with the 
synthesized phases of the H-polarization. This resulted 
in an initial error of 7.03 × 10−3 because the pattern is 
closer to the masks than the pencil beam, although higher 
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than the final error for the H-polarization because the 
incident field is different for both polarizations. The 
lowest error achieved was 2.97 × 10−9 at iteration 471. 
As comparison, the final error in [10] is 5.60 × 10−3, 
which is several orders of magnitude higher than the 
error obtained in this work. 

Figure 5 shows the main cuts for the horizontal 
polarization of the new synthesized radiation pattern. 
Because the starting point is not as good as in the 
previous case, the final pattern obtained now is slightly 
worse, although it greatly improves the results of [10]. In 
particular, the back lobes are reduced by about 6 dB and 
the coverage zone improves for large angles. Also, the 
results were obtained in less iterations (less than 500 vs. 
3900, for each polarization) and with a final error several 
orders of magnitude lower, which accounts for the better 
results in the radiation patterns. Finally, Fig. 6 shows the 
synthesized phase distribution when using a pencil beam 
pattern as starting point. 
 

 
 (a) 

 
 (b) 
 
Fig. 5. Radiation pattern of the synthesized reflectarray 
considering an ideal model of the feed horn in dual 
polarization with starting point a pencil beam pattern. 
Main cuts for horizontal polarization in (a) elevation and 
(b) azimuth. 

 
 
Fig. 6. Synthesized phase distribution of the reflection 
coefficient for the vertical polarization using a pencil 
beam as starting point (degrees). 
 
D. Improvements in computing times 

With the optimizations detailed in previous sections, 
the computing times were greatly reduced. In [10], it is 
reported that each iteration takes less than a minute. 
Here, each iteration takes about 5.7 seconds using the 
same computer (Intel Core 2 Duo with a 2.4 GHz 
processor), which along with the improved convergence 
of the LMA, reduces significantly the computing times 
of the synthesis process. The time for each iteration is 
reduced approximately by a factor of 10. Moreover, 
taking into account that the synthesis process took less 
than 500 iterations for each polarization (about eight 
times faster), the overall improvement in computing 
times is by a factor of 80. 
 

V. CONCLUSION 
An improved phase-only synthesis for reflectarrays 

based on the Levenberg-Marquardt algorithm with an 
ellipsoidal trust region has been developed, improving 
the accuracy and efficiency with regard to other works in 
the literature. By optimizing each building block of the 
algorithm, a great computational efficiency is achieved 
that will allow for more powerful synthesis techniques 
implemented with the same algorithm. For instance, it 
will be possible to implement a direct optimization of the 
geometry of the reflectarray through full wave analysis 
of the reflectarray unit cell [27-29] within reasonable 
computing times. 

In particular, the Jacobian matrix is obtained 
through finite differences which allows to avoid using 
the analytical expressions for complex problems. By 
choosing the appropriate value of the increment in the 
finite difference equation, the error evaluating the 
derivative is minimized. Also, the columns of the Jacobian 
can be computed independently from each other, which 
allows to fully parallelize its evaluation. By deriving 
with respect to the reflection coefficient phases instead 
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of the tangent of the phases, the convergence of the 
algorithm is improved. 

Further improvements were made regarding the 
choice of the solver for the equation system, where a 
Cholesky factorization based solver was selected to take 
advantage of the symmetry of the resulting matrix. Also, 
computationally expensive operations such as matrix 
and matrix-vector multiplications were performed using 
highly optimized and parallelized routines. Since the 
result of the matrix multiplication is symmetric, only the 
lower or upper triangular part needs to be computed. 

In addition, due to the intrinsic high dimensionality 
of the problem, a few guidelines have been laid out in 
order to control the evolution of the synthesis, which 
allows for a better control of the obtained solution. In 
particular, it has been shown how the initial point of the 
synthesis is a key factor in a local search optimizer such 
as the LMA. Also, a suitable choice of the parameters of 
the LMA is important in order to control the speed of 
convergence as well as the initial evolution of the 
algorithm, which can determine the path to a good or bad 
solution. 

Finally, two test cases of a LMDS pattern were 
shown to validate the proposed solution. The performance 
of the algorithm has proven to be better than others in the 
literature. The results are more accurate, reducing back 
lobes and better controlling the coverage zone, while 
reducing the computing times by a factor of 80. 
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