
Novel Mathematical Formulation of the Antenna Array Factor for Side Lobe 

Level Reduction 
 

 

Oussama Gassab and Arab Azrar 
 

Department of Electronic, Institute of Electrical & Electronics Engineering 

University of M’Hamed BOUGARA of Boumerdes, Boumerdes, 35000, Algeria 

oussamagassab@yahoo.com, take_azrar_2007@yahoo.com 

 

 

Abstract ─ In this article a new approach is used to 

improve the performance of antenna arrays. The antenna 

array performance is improved when its directivity is 

increased and its side lobes are decreased. To do this, a 

concept of array hybridization (mixing two distinct 

arrays) is presented and applied to uniform arrays to 

generate a new array for satisfying the requirement. Two 

new arrays are generated using the proposed principle. 

The first is obtained from two arrays with different 

number of elements (UUDNH). The second generated 

array is based on the use of two arrays with different 

spacing between their elements (UUDdH).  

The obtained arrays parameters (array factor, side 

lobe levels, directivity and excitation coefficients)  

are given in closed form expressions. Furthermore, 

performances of the proposed arrays exceed that of 

Tschebyscheff arrays with the same number of elements.  

 

Index Terms─ Antenna array, array factor, convolution, 

directivity, distance conversion, feeding currents, first 

null bandwidth, Fourier transform, hybridization, side 

lobe. 

 

I. INTRODUCTION 
In this modern era, the telecommunications become 

an important research field because all the new physical 

cosmological phenomena are happening in the far field. 

To collect the electromagnetic signals coming from these 

phenomena without any interference and any noise a 

high directive antenna with very low side lobes is 

needed. A single element antenna cannot be used to 

obtain the needed radiation pattern and the required 

results. For this reason an antenna array is used in order 

to have large number of controllable parameters to obtain 

the needed pattern that satisfies the desired specifications 

[1-2]. The uniform array is the simpler and the well-

known array that offers high directivity, but unfortunately 

with very high side lobes levels. Previously, many 

methods have been used to improve the antenna array 

performance [3]. In [3], the non-uniform arrays have 

been studied and the obtained distributions are quite 

complicated for practical implementation. Other works 

also exist for the same purpose and most of them are 

based on the use of Genetic Algorithm (GA) or other 

optimization techniques [4-9]. The results obtained by 

using optimization techniques are reasonably satisfactory 

but the feeding currents and the elements positions are 

randomly distributed and the implementation of the array 

using these distributions is very hard and costly. 

The present work is based on mathematical 

derivation of the array factor of linear antenna array 

based on linear systems techniques [10]. The idea may 

be viewed as hybridization of two distinct uniform 

antenna arrays; in which the current excitation for each 

element is viewed as one term that belongs to an overall 

discrete sequence in given coordinate system. By applying 

the Fourier transform and convolution properties the 

hybridization (mixing) can be performed between two 

different arrays yielding a new array (Fig. 1) having high 

directivity with very low side lobe levels. Furthermore, 

the feeding currents are given by closed form expression 

that can easily be practically implemented. 
 

 

Fig. 1. The Hybridization block diagram where (𝑁1, 𝑑1, 𝜓1) 
and  (𝑁2, 𝑑2, 𝜓2)  are the controllable parameters of the 

array 1 and the array 2 respectively; 𝑁𝑖  is the number of 

the elements, 𝑑𝑖 is the spacing distance, and 𝜓𝑖  is the 

array shifting (𝐴(𝜓 − 𝜓𝑖)) of array i (i = 1 or 2). 
 

II. MATHEMATICAL THEORY OF 

HYBRIDIZATION 
As already stated, the hybridization is performed 

between two distinct uniform arrays. The array factor of  
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a linear array is given by the following relation: 

 𝐴(𝜓) = ∑ 𝑎𝑛𝑒
𝑗𝜓𝑛

𝑛  , (1) 

where 𝑎𝑛 is complex sequence that represent the feeding 

current (excitation coefficients) of each antenna element, 

and 𝜓 is the array digital wave number ([2] at chapter 

18). A linear antenna aligned along the z-axis has a 

digital wave number 𝜓 = 𝑘𝑑𝑐𝑜𝑠(𝜃); where 𝑑 is the 

spacing distance and 𝜃 is the elevation angle. 

Now the proposed method starts by replacing the 

term 𝑎𝑛 by the term 𝑥[𝑛], which is more general than 𝑎𝑛, 

because 𝑛 can be negative, and it indicates the existence 

of coordinate. So, the array factor is written in the 

following form: 

 𝐴(𝜓) = ∑ 𝑥[𝑛]𝑒𝑗𝜓𝑛𝑛 . (2) 

The relation (2) represents the discrete Fourier transform 

𝐷ℱ: 

 𝐴(𝜓) = 𝐷ℱ{𝑥[𝑛]}𝜓→−𝜓. (3) 

The property of convolution given in the following 

equation is applied in the coming sections: 

 𝐷ℱ{𝑥1[𝑛] ∗ 𝑥2[𝑛]} = 𝐴1(𝜓)𝐴2(𝜓). (4) 
 

A. Application of convolution on the array elements 

We consider an array 𝐴1(𝜓) with five identical 

elements positioned along z-axis with equal spacing 𝑑 

between them. The total electric field �⃗� 𝑇1  is given as (�⃗� 0 

is the electric field of an individual element): 

 �⃗� 𝑇1 = �⃗�
 
0𝐴1(𝜓), (5) 

where the array factor is given by: 

 𝐴1(𝜓) = ∑ 𝑥1[𝑛]𝑒
𝑗𝜓𝑛+2

𝑛=−2 . (6) 

Let’s take a step further by considering the array as 

one antenna and we repeat the arraying process (using 

the array factor 𝐴2(𝜓)) over the first array and we obtain 

the following results: 

 The total electric field would be �⃗� 𝑇2 = �⃗�
 
𝑇1𝐴2(𝜓), 

where 𝐴2(𝜓) is the array factor of the second array. 

Consequently the following result is obtained: 

 �⃗� 𝑇2 = 𝐴1(𝜓)𝐴2(𝜓)�⃗�
 
0. (7) 

The resulted array factor is 𝐴𝑇(𝜓) = 𝐴1(𝜓)𝐴2(𝜓). 
The resulted feeding currents are simply obtained by 

convolution between the currents of the first and the 

second arrays. This process may be seen as the shift of 

the first array along the second one as represented by Fig. 

2 (for illustration the second array has three elements). 

The application of the shifting process produces 

superposition of some elements on each other as shown 

in Fig. 3. 

The superposed elements in one given position are 

replaced by one element antenna. This element is fed by 

all the currents of the superposed antennas. When the 

first array is translated along the second array elements 

positions, the first array is scaled by the second array 

coefficients at its corresponding position as shown in 

Fig. 4. 

The feeding current of the obtained array is: 

 𝑥[𝑛] = 𝑥1[𝑛] ∗ 𝑥2[𝑛]. (8) 

The obtained array has a total number of elements and is 

given by following equation: 

 𝑁𝑇 = 𝑁1 +𝑁2 − 1, (9) 

where 𝑵𝑻, 𝑵𝟏, 𝐚𝐧𝐝 𝑵𝟐 are the number of elements of 

the resulted, the first and the second arrays respectively. 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 2. The first array has five elements the second array 

has three elements. 
 

 

Fig. 3. Translating the first array along the positions of 

the second array’s elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 4. There is superposed element when the translation 

is performed. 
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B. Arrays with different spacing 

In this section, the hybridization is performed 

between two uniform arrays which have distinct spacing 

between their elements. For this case the multiplication 

of the array factors does not lead to the convolution of 

the feeding currents like the case of equidistance arrays. 

To overcome this problem, a mathematical trick is used 

and it is named, distance conversion [10]. 

When two array factors with different spacing 

(𝑑1 ≠ 𝑑2) are multiplied then, 

 𝐴(𝜓1, 𝜓2) = 𝐴1(𝜓1)𝐴2(𝜓2), (10) 

where {
𝜓1 = 𝑘𝑑1𝑐𝑜𝑠(𝜃)

𝜓2 = 𝑘𝑑2𝑐𝑜𝑠(𝜃)
, (11) 

where 𝑘 is the wave number 𝑘 =
2𝜋

𝜆
 and 𝜆 is the signal 

wavelength. 

The relation between 𝜓1 and 𝜓2 can be written as: 

 
𝜓2

𝜓1
=
𝑑2

𝑑1
=
𝑝

𝑞
, (12) 

where 𝑝 and 𝑞 are positive integers different from zero. 

The new value of 𝜓 and the new distance 𝑑 can be 

defined as: 

 𝜓 =
𝜓2

𝑝
=
𝜓1

𝑞
, (13) 

 𝑑 =
𝑑2

𝑝
=
𝑑1

𝑞
. (14) 

The feeding currents expression is obtained by performing 

the following analysis. 

The array factor of the first array is given by: 

 𝐴1(𝜓1) = ∑ 𝑥1[𝑛]𝑒
𝑗𝜓1𝑛

𝑛 , 

 ⇒ 𝐴1(𝜓1) = ∑ 𝑥1[𝑛]𝑒
𝑗
𝜓1
𝑞
(𝑞𝑛)

𝑛 . 

By putting 𝑚 = 𝑞𝑛, where 𝜓 =
𝜓1

𝑞
 the following result 

is obtained: 

 𝐴1(𝜓) = ∑ 𝑥1

𝑑1
𝑞 [𝑚]𝑒𝑗𝜓𝑚𝑚 , (15) 

where 𝑥1

𝑑1
𝑞 [𝑚] = {

𝑥1 [
𝑚

𝑞
] ;       𝑚 = 𝑘𝑞 

0          ;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (16) 

Similar result can be obtained for the case of the 

second array as: 

 𝑥2

𝑑2
𝑝 [𝑚] = {

𝑥2 [
𝑚

𝑝
] ;        𝑚 = 𝑘𝑝 

0         ;    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (17) 

where the notation 𝑥1

𝑑1
𝑞 [𝑚] denote the distance conversion 

𝑑1
𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑
→       

𝑑1

𝑞
. 

The equation (10) implies that 𝐴(𝜓1, 𝜓2) = 𝐴(𝜓) =
𝐴1(𝜓)𝐴2(𝜓): 

where {
𝐴1(𝜓) = ∑ 𝑥1

𝑑1
𝑞 [𝑛]𝑒𝑗𝜓𝑛𝑛

𝐴2(𝜓) = ∑ 𝑥2

𝑑2
𝑝 [𝑛]𝑒𝑗𝜓𝑛𝑛

. (18) 

The obtained array feeding currents will be the 

convolution between 𝑥1

𝑑1
𝑞 [𝑛], and 𝑥2

𝑑1
𝑝 [𝑛]: 

 𝑥𝑑[𝑛] = 𝑥1

𝑑1
𝑞 [𝑛] ∗ 𝑥2

𝑑2
𝑝 [𝑛]. (19) 

The distance conversion is explained in Fig. 5 by 

adopting some imaginary elements with feeding currents 

with amplitude of zero. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Elements positions of the first and second arrays 

after distance conversion. 
 

To apply the distance conversion, we propose the 

following definitions: 

1) Elements with zero excitation are called “imaginary 

elements”; their number denoted by 𝑁𝑖. 
2) Elements with non-zero excitation are called “real 

elements”; their number denoted by 𝑁. 

3) The total number of elements is called “theoretical 

elements”; 𝑁 ′ = 𝑁𝑖 + 𝑁. 

After applying the distance conversion, the theoretical 

number of elements is given by: 

 𝑁 ′ = 𝑞(𝑁 − 1) + 1, (20) 

where ′′𝑞′′ is the distance conversion factor. 

The convolution 𝑥𝑑[𝑛] = 𝑥1

𝑑1
𝑞 [𝑛] ∗ 𝑥2

𝑑2
𝑝 [𝑛] can be 

represented graphically as shown in Fig. 6. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6. (a) Translating the first array along the second 

array’s positions. (b) The real elements of the obtained 

array. 
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C. Array with even number of elements 

When the number of the elements in the array  

is even and the array is centered at the origin, the  

array elements are located at fractional numbers 

(−
3

2
 , −

1

2
 ,
1

2
 ,
3

2
  ) and the notation 𝑥[𝑛] cannot be used 

because 𝑛 is an integer. Consequently, the convolution 

cannot be applied between even array-even array 

elements, even array-odd array elements. To overcome 

this dilemma, the distance conversion can be performed 

(𝑑
𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑
→       

𝑑

2
). This conversion makes the notation 𝑥[𝑛] 

applicable and the convolution can be used. 

Let’s take 𝑥[𝑛], the relative feeding current with 

even number array elements. By applying the distance 

conversion, the theoretical number of the array elements 

will be odd as shown in Fig. 7. The expression of 

conversion is shown below: 

 𝑥
𝑑

2[𝑛] = {
𝑥 [

𝑛

2
] ;    𝑛 𝑖𝑠 𝑜𝑑𝑑

  0  ;         𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
. (21) 

 

 
 

Fig. 7. The distance conversion is applied to array with 

even number of elements to obtain an array with odd 

number of elements. 
 

III. APPLICATION OF THE 

HYBRIDIZATION CONCEPT 
Now the theory of hybridization discussed in the 

forgoing sections is applied to two uniform arrays with 

specified criteria to obtain new arrays with improved 

parameters. 
 

A. Array factor multiplication with different number 

of elements 

The hybridization will be performed by multiplying 

two uniform arrays. Each array has its own number of 

elements (𝑁1and 𝑁2) where the two arrays have the same 

spacing distance. To design the hybridized array with 

desired specification the ratio, 
𝑁1
𝑁2
⁄  should be chosen 

as explained below: 

 𝐴𝑇(𝜓) = 𝐴1(𝜓)𝐴2(𝜓), 

where 𝐴1(𝜓) =
𝑠𝑖𝑛(

𝑁1
2
𝜓)

𝑁1 𝑠𝑖𝑛(
𝜓

2
)
, and 𝐴2(𝜓) =

𝑠𝑖𝑛(
𝑁2
2
𝜓)

𝑁2 𝑠𝑖𝑛(
𝜓

2
)
. 

The total array factor is given by: 

 𝐴𝑇(𝜓) =
𝑠𝑖𝑛(

𝑁1
2
𝜓)

𝑁1 𝑠𝑖𝑛(
𝜓

2
)

𝑠𝑖𝑛(
𝑁2
2
𝜓)

𝑁2 𝑠𝑖𝑛(
𝜓

2
)
. (22) 

To minimize side lobes, 𝑁1 and 𝑁2 should be 

chosen so that the zeros of the first array eliminate the 

side lobes maxima of the second array and vice-versa as 

illustrated by Fig. 8. To achieve this requirement, the 

following condition must be satisfied: 

 
2𝜋

𝑁1
=
3𝜋

𝑁2
. (23) 

The condition (23) will adjust the first zero of the 

first array over the first minor lobe maximum of the 

second array yielding a hybridized array with very low 

side lobes. From Equation (23), the following relation 

can be deduced: 

 2𝑁2 = 3𝑁1 = 6𝑁. (24) 

This imply the following: 

 {
𝑁1 = 2𝑁
𝑁2 = 3𝑁

. (25) 

The total array factor of the obtained array can be 

written under the following relation: 

 𝐴𝑇(𝜓) =
𝑠𝑖𝑛(𝑁𝜓) 𝑠𝑖𝑛(

3𝑁

2
𝜓)

6𝑁2 𝑠𝑖𝑛2(
𝜓

2
)

. (26) 

The total number of elements in the hybridized array 

is found by using relation (9): 

 𝑁𝑇 = 5𝑁 − 1. (27) 

The side lobe will be minimized after the multiplication 

as shown in the Fig. 8. 

 

 
 

Fig. 8. Array factors in terms of 𝜓 (𝑁 = 2 , 𝑁𝑇 = 9). 
 

The hybridized array parameters are given below. 

 

Side Lobe Level (SLL) 

The first side lobe maxima position is located between 

the first and the second nulls. The minor lobe maxima 

position is approximated as 𝜓𝑆𝐿𝑀 ≅
𝜓𝑛𝑢𝑙𝑙1+𝜓𝑛𝑢𝑙𝑙2

2
, where 

𝜓𝑛𝑢𝑙𝑙1 =
2𝜋

𝑁1
=
𝜋

𝑁
, and 𝜓𝑛𝑢𝑙𝑙2 =

2𝜋

𝑁2
=
2𝜋

3𝑁
. The side lobe 

maxima position is 𝜓𝑆𝐿𝑀 ≅
5𝜋

6𝑁
. The side lobe level of the 

hybridized array is given under the following expression: 

 |𝐴𝑇(𝜓𝑆𝐿𝑀)| ≅
√2

24 𝑁2 𝑠𝑖𝑛2(
5𝜋

12𝑁
)
. (28) 
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Directivity 

The directivity of the hybridized array can be 

evaluated in terms of the parameter ′′𝑁′′. The radiated 

power is evaluated by 𝑃𝑟𝑎𝑑 = ∯ |𝐴𝑇(𝜓)|
2𝑑Ω

Ω
. By using 

Equation (26) we get the following: 

 𝑃𝑟𝑎𝑑 = 2𝜋 ∫ |
𝑠𝑖𝑛(𝑁𝜓)

2𝑁 𝑠𝑖𝑛(
𝜓

2
)

𝑠𝑖𝑛(
3𝑁

2
𝜓)

3𝑁 𝑠𝑖𝑛(
𝜓

2
)
|

2

sin(𝜃)𝑑𝜃
𝜋

0
. (29) 

In the absence of grating lobes in the visible region,  

we can use the approximation 
𝑠𝑖 𝑛(𝑁

3𝜓

2
)

𝑁 𝑠𝑖𝑛(
𝜓

2
)
≅
𝑠𝑖 𝑛(𝑁

3𝜓

2
)

𝑁
𝜓

2

, and 

letting 𝑧 = 𝑁𝑘𝑑 𝑐𝑜𝑠(𝜃), the radiated power is written in 

the following form: 

 𝑃𝑟𝑎𝑑 =
2𝜋2

𝑁𝑘𝑑
∫ (

𝑠𝑖𝑛(𝑧)

𝑧
)
2

(
𝑠𝑖𝑛(

3

2
𝑧)

3

2
𝑧
)

2

𝑑𝑧
𝑁𝑘𝑑

−𝑁𝑘𝑑
. (30) 

This integral can be performed by using the properties of 

convolution and Fourier transform and the directivity 

expression is obtained as: 

 𝐷 =
27 𝑁𝑘𝑑

7 𝜋
. (31) 

When the relation (27) is used, the directivity is written 

in terms of the total number of element in the array, 𝑁𝑇 

as: 

 𝐷 =
27 (𝑁𝑇+1)𝑘𝑑

35 𝜋
. (32) 

 

Feeding Currents 

To implement this antenna array, the feeding current 

in each antenna must be determined. The hybridized 

array factor is found under the relation 𝐴𝑇(𝜓) =
𝐴1(𝜓)𝐴2(𝜓), where 

{
 
 

 
 𝐴1(𝜓) =

𝑠𝑖𝑛(
𝑁1
2
𝜓)

𝑁1 𝑠𝑖𝑛(
𝜓

2
)
   ;  𝑁1 = 2𝑁

𝐴2(𝜓) =
𝑠𝑖𝑛(

𝑁2
2
𝜓)

𝑁2 𝑠𝑖𝑛(
𝜓

2
)
   ;  𝑁2 = 3𝑁 

, since the first array 

has always an even number of elements, the position of 

the array elements will be located at fractional numbers. 

The notation 𝑥1[𝑛] cannot be used because 𝑛 must be 

integer. In this case the distance conversion will be 

applied. 

 𝑑
                     
→       𝑑′ =

𝑑

2 
  ⇔   𝜓

                       
→        𝜓 ′ =

𝜓

2
. 

The conversion is performed by adding zero imaginary 

elements between the real elements. 

Theoretically, the total number of elements will be, 

for the first array: 

 𝑁1
′ = 𝑁1 + 𝑁𝑖1 = 𝑁1 + (𝑁1 − 1) = 4𝑁 − 1; 

for the second array: 

 𝑁2
′ = 𝑁2 + 𝑁𝑖2 = 𝑁2 + (𝑁2 − 1) = 6𝑁 − 1. 

By applying the distance conversion the feeding 

current will have the following form. 

When 𝑁 is even: 

𝑥1
𝑑

2[𝑛] =

{
{
1

2𝑁
  ;  𝑛 𝑜𝑑𝑑

0   ;  𝑛 𝑒𝑣𝑒𝑛
 ; −(2𝑁 − 1) ≤ 𝑛 ≤ (2𝑁 − 1)

0                     ;            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

, (33) 

𝑥2
𝑑

2[𝑛] =

{
{
1

3𝑁
  ;   𝑛 𝑜𝑑𝑑

0  ;   𝑛 𝑒𝑣𝑒𝑛
  ; −(3𝑁 − 1) ≤ 𝑛 ≤ (3𝑁 − 1)

0                ;                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

. (34) 

The feeding current can be represented in its matrix 

form: 

 𝑥1

𝑑

2[𝑛] =
1

2𝑁
[1 0 1 0 1… 0⏟

−2,

1⏟
−1,

0⏟
𝑛=0,

1⏟
1,

0⏟
2

…1 0 1 0 1]

⏞                        
4𝑁−1

, 

 𝑥2

𝑑

2[𝑛] =
1

3𝑁
[1 0 1 0 1… 0⏟

−2,

1⏟
−1,

0⏟
𝑛=0,

1⏟
1,

0⏟
2

…1 0 1 0 1]

⏞                        
6𝑁−1

. 

When 𝑁 is odd: 

𝑥1
𝑑

2[𝑛] =

{
{
1

2𝑁
  ;  𝑛 𝑜𝑑𝑑

0   ;  𝑛 𝑒𝑣𝑒𝑛
 ;  −(2𝑁 − 1) ≤ 𝑛 ≤ (2𝑁 − 1)

0                      ;              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

, (35) 

𝑥2
𝑑

2[𝑛] =

{
{
1

3𝑁
  ;  𝑛 𝑒𝑣𝑒𝑛

0   ;   𝑛 𝑜𝑑𝑑 
;  −(3𝑁 − 1) ≤ 𝑛 ≤ (3𝑁 − 1)

0                      ;               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

. (36) 

The feeding current can be represented in its matrix 

form: 

 𝑥1

𝑑

2[𝑛] =
1

2𝑁
[1 0 1 0 1… 0⏟

−2,

1⏟
−1,

0⏟
𝑛=0,

1⏟
1,

0⏟
2

…1 0 1 0 1]

⏞                        
4𝑁−1

, 

 𝑥2

𝑑

2[𝑛] =
1

3𝑁
[1 0 1 0 1… 1⏟

−2,

0⏟
−1,

1⏟
𝑛=0,

0⏟
1,

1⏟
2

…1 0 1 0 1]

⏞                        
6𝑁−1

. 

The feeding currents of the hybridized array is 

determined by performing the convolution: 

 𝑥𝑇

𝑑

2[𝑛] = 𝑥1

𝑑

2[𝑛] ∗ 𝑥2

𝑑

2[𝑛]. (37) 

By evaluating the convolution (37), the following results 

are obtained. 

When 𝑁 is even: 

𝑥𝑇

𝑑

2[𝑛] =

(−1)𝑛+1

2
{

  −
1

12𝑁2
(|𝑛| − 5𝑁)  ; 𝑁 ≤ |𝑛| ≤ 5𝑁 − 2

    
1

3𝑁
                ;         |𝑛| ≤ 𝑁

          0                  ;         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

, (38) 

When 𝑁 is odd 
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𝑥𝑇

𝑑

2[𝑛] =

(−1)𝑛+1+1

2
{

−
1

12𝑁2
(|𝑛| − 5𝑁) ; 𝑁 ≤ |𝑛| ≤ 5𝑁 − 2

    
1

3𝑁
               ;        |𝑛| ≤ 𝑁

                0               ;       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

, (39) 

where 𝑁 =
𝑁𝑇+1

5
, 𝑁𝑇 is the total number of the array. 

Note that for 𝑁 is even 𝑎𝑛 = 𝑥𝑇
𝑑[𝑛] = 𝑥𝑇

𝑑

2[2𝑛], for 𝑛 ≥ 0, 

when 𝑁 is odd 𝑎𝑛 = 𝑥𝑇
𝑑[𝑛] = 𝑥𝑇

𝑑

2[2𝑛 − 1], for 𝑛 ≥ 1. 

The proposed array is named as UUDNH, which is 

the abbreviation of “Uniform with Uniform Different-

N Hybridization”. 

For illustration, the feeding currents of Equations 

(38) and (39) are drawn for N = 4 and 5 in Fig. 9 and the 

corresponding array factors are illustrated in Fig. 10. To 

avoid the appearance of the grating lobes in the visible 

region of (– 𝑘𝑑 ≤ 𝜓 ≤ 𝑘𝑑), the following condition 

should be satisfied: 

 𝑘𝑑 ≤ 2𝜋 − 𝜓𝑓𝑖𝑟𝑠𝑡 𝑛𝑢𝑙𝑙 . (40) 

For the proposed array case, the first null is situated 

at 𝜓𝑓𝑖𝑟𝑠𝑡 𝑛𝑢𝑙𝑙 =
2𝜋

3𝑁
, and this condition becomes 𝑘𝑑 ≤

2𝜋
3𝑁−1

3𝑁
. 

 

 

 
 

Fig. 9. Excitation coefficients of the hybridized array for 

N = 4 and 5. 
 

 

 
 

Fig. 10. Array pattern of the hybridized array (UUDNH) 

in terms of 𝜓 for N = 4 and 5, where the directivities is 

given in terms of the wave number 𝑘 and the distance 

between the elements 𝑑. 

 

B. Array factor multiplication with different spacing 

Previously, the hybridization between two uniform 

arrays with different number of elements is performed. 

Here, the hybridization between two uniform arrays with 

different spacing is proposed. To do this, a condition on 

the ratio of the two spacing is set as illustrated in coming 

sections. Similarly, the new array factor is simply given 

as: 

 𝐴(𝜓1 , 𝜓2) = 𝐴1(𝜓1)𝐴2(𝜓2),  
where 𝜓1 = 𝑘𝑑1 cos(𝜃) , 𝜓2 = 𝑘𝑑2 cos(𝜃), and by letting 

𝑠 = 𝑘𝑐𝑜𝑠(𝜃), 
then 𝐴𝑇(𝑠) = 𝐴1(𝑠𝑑1)𝐴2(𝑠𝑑2). (41) 

Therefore, the array factor is given by: 

 𝐴𝑇(𝑠) =
𝑠𝑖𝑛(𝑁

𝑠𝑑1
2
)

𝑁 𝑠𝑖𝑛(
𝑠𝑑1
2
)
×
𝑠𝑖𝑛(𝑁

𝑠𝑑2
2
)

𝑁 𝑠𝑖𝑛(
𝑠𝑑2
2
)
. (42) 

To minimize side lobes, 𝑑1and 𝑑2 should be chosen 

so that the zeros of the first array eliminate the side lobes 

maxima of the second array. To achieve this, 
3𝜋

𝑁𝑑1
=

2𝜋

𝑁𝑑2
, 

is required. By satisfying this condition and applying the 

multiplication, the graph in Fig. 11 is obtained. 

The condition 
3𝜋

𝑁𝑑1
=

2𝜋

𝑁𝑑2
 implies that: 
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 𝑑 =
𝑑1

3
=
𝑑2

2
. (43) 

By replacing it in relation (42) and 𝜓 = 𝑘𝑑𝑐𝑜𝑠(𝜃) = 𝑠𝑑 

then, 

 𝐴𝑇(𝜓) =
𝑠𝑖𝑛(3𝑁

𝜓

2
)

𝑁2 𝑠𝑖𝑛(
3𝜓

2
)
×
𝑠𝑖𝑛(𝑁𝜓)

 𝑠𝑖𝑛(𝜓)
. (44) 

Using the condition of Equation (20), the theoretical 

elements have a total number: 

 𝑁𝑇
′ = (3(𝑁 − 1) + 1) + (2(𝑁 − 1) + 1) − 1, 

⇒ 𝑁𝑇
′ = 5𝑁 − 4.  

Since there is two elements with zero feeding 

exactly as shown in Fig. 6, the actual number of elements 

in the array is 𝑁𝑇 = 𝑁𝑇
′ − 2, so that, 

 𝑁𝑇 = 5𝑁 − 6. (45) 

For 𝑁 = 5, the array pattern is given in Fig. 12. The 

visible region must be chosen to avoid the appearance of 

the side lobes with the highest level. This attained when 

≤
2𝜋

3
−
2𝜋

3𝑁
; where 

2𝜋

3
 is the period of the function 

𝑠𝑖𝑛(3𝑁
𝜓

2
)

𝑁 𝑠𝑖𝑛(
3𝜓

2
)
 

and 
2𝜋

3𝑁
 is its first zero. 

 

 
 

Fig. 11. Array factors and the hybridized array in terms 

of ''s''. 
 

 
 

Fig. 12. Array factors in terms of ''𝜓′' for N = 5. 

 

The hybridized array parameters are given below. 

 

Side Lobe Level (SLL) 

The side lobe maxima position is given by 𝜓𝑆𝐿𝑀 ≅
𝜓𝑛𝑢𝑙𝑙1 + 𝜓𝑛𝑢𝑙𝑙2

2
 yielding: 

 𝜓𝑆𝐿𝑀 ≅
5𝜋

6𝑁
. (46) 

Consequently, the side lobe level is given by the 

following expression: 

 |𝐴𝑇(𝜓𝑆𝐿𝑀)| ≅
√2

4𝑁2|sin(
5𝜋

4𝑁
) sin(

5𝜋

6𝑁
)|

. (47) 

 

Directivity 

The radiated power is given as: 

 𝑃𝑟𝑎𝑑 = 2𝜋 ∫ |
𝑠𝑖𝑛(3𝑁

𝜓

2
)

𝑁2 𝑠𝑖𝑛(
3𝜓

2
)

𝑠𝑖𝑛(𝑁𝜓)

 𝑠𝑖𝑛(𝜓)
|

2

sin(𝜃)
𝜋

0
𝑑𝜃. (48) 

Then the directivity is given under the following 

expression: 

 𝐷 =
27 𝑁𝑘𝑑

7 𝜋
. (49) 

Since  𝑁 =
𝑁𝑇+6

5
, the directivity is expressed in 

terms of the total number of the elements in the array as: 

 𝐷 =
27 (𝑁𝑇+6)𝑘𝑑

35 𝜋
. (50) 

 

Feeding Currents 

Since the proposed array factor is multiplication of 

𝐴1(𝜓) =
𝑠𝑖𝑛(3𝑁

𝜓

2
)

𝑁 𝑠𝑖𝑛(
3𝜓

2
)
, and 𝐴2(𝜓) =

𝑠𝑖𝑛(𝑁𝜓)

 𝑁 𝑠𝑖𝑛(𝜓)
, and using 𝑑 =

𝑑1

3
=
𝑑2

2
, the feeding currents may be expressed, for 𝑁 is 

odd, as: 

 𝑥𝑇
𝑑[𝑛] = 𝑥1

𝑑1
3 [𝑛] ∗ 𝑥2

𝑑2
2 [𝑛], (51) 

where 

𝑥1

𝑑1
3 [𝑛] = ℱ−1{𝐴1(𝜓)} 

 = {
{
1

𝑁
  ;   𝑛 = 3𝑝 

0    ; 𝑛 ≠ 3𝑝
; −

3

2
(𝑁 − 1) ≤ 𝑛 ≤

3

2
(𝑁 − 1)

      0       ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

, (52) 

    ℱ−1{𝐴2(𝜓)} = 𝑥2

𝑑2
2 [𝑛]  

   = {
{
1

𝑁
  ;   𝑛 = 2𝑝 

0    ; 𝑛 ≠ 2𝑝
;−(𝑁 − 1) ≤ 𝑛 ≤ (𝑁 − 1)

      0          ;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

, (53) 

𝑥1

𝑑1
3 [𝑛] and  𝑥2

𝑑2
2 [𝑛] can be represented in their matrix 

form as shown below: 

𝑥1

𝑑1
3 [𝑛] =

1

𝑁
[1 0 0 1 0 0 1… 1⏟

−3,

0⏟
−2,

0⏟
−1,

1⏟
𝑛=0,

0⏟
 1,

0 ⏟
 2,

1⏟
3

…1 0 0 1 0 0 1]

⏞                                
3(𝑁−1)+1

,  

 𝑥2

𝑑2
2 [𝑛] =

1

𝑁
[1 0 1 0 1… 1⏟

−2,

0⏟
−1,

1⏟
𝑛=0,

0⏟
1,

1⏟
2

…1 0 1 0 1]

⏞                        
2(𝑁−1)+1

. 

For the case of 𝑁 even, the distance conversion must 

be applied leading to the following results (with the 

number of ones in each matrix remain equal to 𝑁): 
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𝑥1

𝑑1
6 [𝑛] =

1

𝑁
[1 0 0 0 0 0 1… 1⏟

−3,

0⏟
−2,

0⏟
−1,

0⏟
𝑛=0,

0⏟
 1,

0 ⏟
 2,

1⏟
3

…1 0 0 0 0 0 1]

⏞                                
6(𝑁−1)+1

, 

 𝑥2

𝑑2
4 [𝑛] =

1

𝑁
[1 0 0 0 1… 1⏟

−2,

0⏟
−1,

0⏟
𝑛=0,

0⏟
1,

1⏟
2

…1 0 0 0 1]

⏞                        
4(𝑁−1)+1

. 

Consequently, the feeding currents for that case are 

given as: 

 𝑥𝑇

𝑑

2[𝑛] = 𝑥1

𝑑1
6 [𝑛] ∗ 𝑥2

𝑑2
4 [𝑛]. (54) 

The resulted array may be named as UUDdH, which 

is the abbreviation of “Uniform with Uniform 

Different-d Hybridization”. Evaluation of these 

equations reveals that the excitation coefficients of the 

proposed array are distributed simply in a countable 

number of discrete levels. This number is found to be M 

whose values is given by: 

 𝑀 = ⌈
𝑁

3
⌉, (55) 

where ⌈
𝑁

3
⌉ denotes the ceiling function and it is defined 

as: 

 ⌈𝑥⌉ = 𝑛     𝑖𝑓     𝑛 − 1 < 𝑥 ≤ 𝑛. (56) 

The levels of the coefficients are given by: 

 
𝐿

𝑁2
         ;      𝐿 ∈ {1 , 2 , 3 , …𝑀}, (57) 

where 𝐿 denotes the level state. 

Now, the values of excitation coefficients of the 

proposed array are determined analytically as:  

 𝑤 =
5𝑁+7

2
− 6 ⌈

𝑁

3
⌉.  

When 𝑁  is odd: 

𝑥𝑇
𝑑[𝑛] =

{
 
 
 
 
 

 
 
 
 
 

𝑓[𝑛]               ;        |𝑛| ≤ 𝑤 

⌈
𝑁

3
⌉−1

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (𝑤 + 5)]   ;  |𝑛|𝜖 𝐼1 

⌈
𝑁

3
⌉−2

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (𝑤 + 11)]   ;  |𝑛|𝜖 𝐼2  

⋮
⌈
𝑁

3
⌉−𝑚

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (𝑤 + 6𝑚 − 1)]   ;  |𝑛|𝜖 𝐼𝑚  

⋮
1

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (𝑤 + 6(𝑀 − 1) − 1)]   ;  |𝑛|𝜖𝐼𝑀−1

, 

 (58) 

where 𝐼𝑚 = [𝑤 + 6𝑚 − 5 ; 𝑤 + 6𝑚], and  

𝑓[𝑛] =

{
 
 

 
 
⌈
𝑁

3
⌉

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (𝑤 − 1)]         ;      𝑁 = 3𝑃         

1

𝑁2
(1 −

2

√3
|𝑠𝑖𝑛 (

2𝜋

3
𝑛)|) +

⌈
𝑁

3
⌉−1

𝑁2
 ;  𝑁 = 3𝑃 + 1  

1

𝑁2
|
2

√3
𝑠𝑖𝑛 (

2𝜋

3
𝑛)| +

⌈
𝑁

3
⌉−1

𝑁2
   ;     𝑁 = 3𝑃 + 2         

. 

When 𝑁 is even: 

𝑥
𝑇

𝑑
2[𝑛]

=
1 − (−1)𝑛

2

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑔[𝑛]               ;          |𝑛| ≤ 2𝑤                            

⌈
𝑁

3
⌉ − 1

𝑁2
−
1

𝑁2
𝛿[|𝑛| − (2𝑤 + 10)]   ; |𝑛|𝜖 𝐼1                        

⌈
𝑁

3
⌉ − 2

𝑁2
−
1

𝑁2
𝛿[|𝑛| − (2𝑤 + 22)]   ; |𝑛|𝜖𝐼2                  

⋮

⌈
𝑁

3
⌉ − 𝑚

𝑁2
−
1

𝑁2
𝛿[|𝑛| − (2𝑤 + 12𝑚 − 2)]  ; |𝑛|𝜖𝐼𝑚     

⋮
1

𝑁2
−
1

𝑁2
𝛿[|𝑛| − (2𝑤 + 12(𝑀 − 1) − 2)]  ; |𝑛|𝜖𝐼𝑀−1

, 

 (59) 

where 𝐼𝑚 = [2𝑤 + 12𝑚 − 11 ; 2𝑤 + 12𝑚], and  

𝑔[𝑛] =

{
 
 

 
 
⌈
𝑁

3
⌉

𝑁2
−

1

𝑁2
𝛿[|𝑛| − (2𝑤 − 2)]          ;          𝑁 = 3𝑃         

1

𝑁2
(1 −

2

√3
|𝑠𝑖𝑛 (

2𝜋

3
×
|𝑛|+3

2
)|) +

⌈
𝑁

3
⌉−1

𝑁2
 ;  𝑁 = 3𝑃 + 1

1

𝑁2
|
2

√3
𝑠𝑖𝑛 (

2𝜋

3
×
|𝑛|+3

2
)| +

⌈
𝑁

3
⌉−1

𝑁2
     ;   𝑁 = 3𝑃 + 2   

, 

 (60) 

𝑃 is positive integer and 𝛿[𝑛] is the discrete Dirac  

delta function. For illustration, the feeding currents of 

Equations (58) and (59) are drawn for 𝑁 =  4 and 5 in 

Fig. 13 with their corresponding array factors in Fig. 14. 

The visible region is taken for (𝑘𝑑 =
2𝜋(𝑁−1)

3𝑁
  ⇔  𝑑 =

𝜆

3

𝑁−1

𝑁
), which is the maximum value of 𝑑 so that there is 

no high side lobes in the visible region. 
 

IV. RESULTS AND DISCUSSION 
To see the evidence of the proposed arrays, a 

comparison with Tschebyscheff array is carried out in 

this section. In this comparison, the chosen total number 

of elements in each array is 𝑁𝑇 = 19. The obtained 

feeding coefficients distributions for the both proposed 

arrays are shown in Fig. 13 (for UUDNH case) and Fig. 

9 (for UUDdH case). These coefficients in addition to 

their calculation, which is easy, they are not highly 

varying; this makes the realization in the electronic 

circuit generating these amplitudes simple and 

inexpensive and economical.  

The obtained array factors are also drawn in Fig. 15 

together with the Tschebyscheff array factor with 𝑆𝐿𝐿 =
−28 𝑑𝐵. The figure shows clearly that the proposed 

array obtained from hybridization between two uniform 

arrays with different spacing has performances exceeding 

that of Tschebyscheff array with simplicity in realization. 

For deeper comparison using numerical values, in 

addition to the two proposed arrays, two Tschebyscheff 

arrays are considered. The first Tschebyscheff array with 

side lobe level of −27 𝑑𝐵, whereas the second one with 

−28 𝑑𝐵. The obtained numerical results are summarized 

in the Table 1 below. Form this table, it is clear that the 

proposed UUDdH has highest directivity with side lobe  

ACES JOURNAL, Vol. 31, No.12, December 20161459



level comparable to Tschebyscheff. Furthermore, the 

very interesting result is that the excitation coefficients 

of UUDdH are constructed from only few levels as 

shown in Fig. 13; and in case of 19 elements, there are 

only two levels (0.0400 and 0.0800) as shown in the table 

and the Fig. 13. This result gives us the opportunity to 

implement the feeding circuit of the array using simply a 

digital circuit.  
 

 

 
 

Fig. 13. Excitation coefficients of the hybridized array 

for N = 4 and 5. 
 

 

 
 

Fig. 14. Array pattern of the hybridized array (UUDdH) 

in terms of 𝜓 for N = 4 and 5 where the directivities is 

given in terms of the wave number 𝑘 and the distance 

between the elements 𝑑. 

Table 1: Excitation coefficients, side lobe levels and 

directivity of the proposed arrays and two Tschebyscheff 

arrays with 19 elements in each (note that 𝑥𝑑[9] = 0 is 

not counted as an elements because it has zero feeding) 

Tschebyscheff Array 1 Tschebyscheff Array 2 

𝑁𝑇 = 19 𝑁𝑇 = 19 

𝑥𝑑[0] = 0.0777 𝑥𝑑[0] = 0.0763 

𝑥𝑑[1] = 0.0765 𝑥𝑑[1] = 0.0752 

𝑥𝑑[2] = 0.0730 𝑥𝑑[2] = 0.0719 

𝑥𝑑[3] = 0.0675 𝑥𝑑[3] = 0.0666 

𝑥𝑑[4] = 0.0602 𝑥𝑑[4] = 0.0598 

𝑥𝑑[5] = 0.0518 𝑥𝑑[5] = 0.0518 

𝑥𝑑[6] = 0.0428 𝑥𝑑[6] = 0.0431 

𝑥𝑑[7] = 0.0337 𝑥𝑑[7] = 0.0343 

𝑥𝑑[8] = 0.0251 𝑥𝑑[8] = 0.0259 

𝑥𝑑[9] = 0.0304 𝑥𝑑[9] = 0.0333 
SLL = −28 dB 𝑆𝐿𝐿 = −27 𝑑𝐵 

𝒅 =
𝝀

𝟒
 𝐷 = 8.50 𝐷 = 8.62 

𝒅 =
𝝀

𝟑
 𝐷 = 11.31 𝐷 = 11.47 

𝒅 =
𝝀

𝟐
 𝐷 = 16.89 𝐷 = 17.10 

Our Array 1 

UUDNH 

Our Array 2 

UUDdH 

𝑁𝑇 = 19 𝑁𝑇 = 19 

𝑥𝑑[0] = 0.0833 𝑥𝑑[0] = 0.0400 

𝑥𝑑[1] = 0.0833 𝑥𝑑[1] = 0.0800 

𝑥𝑑[2] = 0.0833 𝑥𝑑[2] = 0.0800 

𝑥𝑑[3] = 0.0729 𝑥𝑑[3] = 0.0400 

𝑥𝑑[4] = 0.0625 𝑥𝑑[4] = 0.0800 

𝑥𝑑[5] = 0.0521 𝑥𝑑[5] = 0.0400 

𝑥𝑑[6] = 0.0417 𝑥𝑑[6] = 0.0400 

𝑥𝑑[7] = 0.0313 𝑥𝑑[7] = 0.0400 

𝑥𝑑[8] = 0.0208 𝑥𝑑[8] = 0.0400 

𝑥𝑑[9] = 0.0104 
𝑥𝑑[9] = 0.0000 

𝑥𝑑[10] = 0.0400 

𝑺𝑳𝑳 = −𝟐𝟖. 𝟗𝟔 𝒅𝑩 𝑺𝑳𝑳 = −𝟐𝟕. 𝟗𝟔 𝒅𝑩 

𝒅 =
𝝀

𝟒
 𝑫 = 𝟕. 𝟔𝟖 𝑫 = 𝟗. 𝟒𝟓 

𝒅 =
𝝀

𝟑
 𝑫 = 𝟏𝟎. 𝟐𝟒 𝑫 = 𝟏𝟐. 𝟑𝟕 

𝒅 =
𝝀

𝟐
 𝑫 = 𝟏𝟓. 𝟑𝟔 𝑫 = 𝟏𝟔. 𝟗𝟎 

 

For the case of the proposed UUDNH array, the 

table indicates the very low level of the side lobes 

compared to other arrays with relatively acceptable 

directivity. The importance of this array resides in the 

very simple expressions of the excitation coefficients 

that simple at the same time the calculations of these 

coefficients and their practical implementation. 
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Fig. 15. Comparison between Tschebyscheff array (𝑆𝐿𝐿 = −28 𝑑𝐵) and the proposed arrays for 19 elements each. 

 

V. CONCLUSION 
In this work a concept of array hybridization 

(mixing two distinct arrays) is presented and applied to 

uniform arrays to generate a new array that presents good 

compromise between its directivity and the level of the 

secondary lobes. The choice uniform array is dictated by 

its high directivity; and also restricting the generation 

problem to only reduction of the side lobes levels. As 

compared to the existing techniques for solving such 

problem which are based on optimization approaches, 

the proposed ones are solely based on mathematical 

procedures using known analytical expressions which 

are presented in details.  

The hybridization is applied twice on two uniform 

arrays. At the beginning the two hybridized arrays are 

chosen to have different number of elements (UUDNH). 

The resulted array has good compromise between the 

directivity and its side lobe level as required. In addition 

to this the excitation coefficients are not highly varying. 

The second generated array is based on the use of two 

uniform arrays with different spacing between their 

elements (UUDdH). The obtained array satisfies also the 

requirements. Furthermore, the excitation coefficients 

are distribution in very few levels. 

The obtained arrays are compared with 

Tschebyscheff arrays having the same number of 

elements. The UUDNH generated array has comparable 

performances with respect to Tschebyscheff array 

whereas, the second, UUDdH arrays has better 

performances. In addition to this, the excitation 

coefficients of the generated arrays are not highly 

varying as compared to Tschebyscheff ones and this 

simplifies their realization.  

It should also be noted that all the arrays parameters 

(array factor, side lobe levels, directivity and excitation 

coefficients) are expressed in very elegant closed form 

expressions leading to easy use of the proposed arrays. 
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