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Abstract ─ A fast wideband electromagnetic scattering 

analysis method based on the interpolation technique and 

fast generating matrix method is proposed. By factoring 

out the dominant phase term, the matrix element is 

transformed into the element which fluctuates slowly 

with frequency. The matrices over the frequency band 

are fast generated via interpolation technique. Instead  

of employing different meshing grids at different 

frequencies, this new method requires only one mesh 

generated at the highest frequency of the given 

bandwidth. This approach not only saves much work in 

geometrical modeling but also leads to less time for 

wideband scattering problem. The proposed algorithm is 

implemented in the platform of FGG-FG-FFT, which is 

not sensitive to both the grid spacing and the expansion 

order. A method for fast generating matrix also is 

introduced to speed up filling the near matrix. 

Consequently, it can not only reduce the impedance 

matrix filling time in the whole frequency band but  

also accelerate the matrix filling process at frequency 

interpolation sampling points. Several numerical 

examples are provided to demonstrate the correctness 

and the efficiency of the proposed method for the 

wideband scattering analysis. 

 

Index Terms ─ Electromagnetic scattering, FGG-FG-FFT, 

frequency sweeps, interpolation technique, near matrix. 
 

I. INTRODUCTION 
Wideband electromagnetic (EM) scattering analysis 

has been widely applied to the area of noncooperative 

radar target identification and radar imaging. Since 

frequency sweep is always needed in these applications, 

one has to calculate the scattering at a number of 

frequency sample points in a given bandwidth. For the 

analysis of electrically large objects, even a single 

calculation is very time-consuming, let alone one has to 

calculate many times. Therefore, it is urgent to accelerate 

the process of wideband electromagnetic analysis. 

Integral equation combined with the method of 

moments (MoM) is one of the most popular method  

in computational electromagnetic [1]. In order to over-

come the shortcomings of the method of moments in 

both computation time and storage memory, many  

fast algorithms have been developed, such as the fast 

multipole method (FMM) [2], the multilevel fast 

multipole algorithm (MLFMA) [3]-[6], and the FFT-

based methods (Adaptive integral method (AIM), 

Precorrected-FFT method (P-FFT), IE-FFT, Fitting the 

Green's function method (FGG-FG-FFT), etc. [7]-[12]). 

When analyzing broad-band electromagnetic character-

ristics of the target, the features of the fast algorithms  

are different. The FMM is based on the addition theorem 

of Green's function. Therefore, there exists the sub-

wavelength breakdown [13]. The FFT-based methods 

can be applied to all over frequency band [8], [9]. 

However, one still has to calculate the scattering at each 

frequency sample point for frequency sweep. Besides the 

computational load, different meshes are required for 

different frequencies. This leads to tremendous work  

in geometrical modeling. In order to save time for 

preliminary treatment, the surface of the PEC object  
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is discretized with triangular patches at the highest 

frequency. The discrete grid is scale-changing in the 

whole frequency band. Therefore, a single fast multipole 

method is difficult to complete computation of frequency 

sweep. 

The promising and interesting approach to the 

broadband electromagnetic response over a frequency 

band without the direct calculation is the data 

reconstruction method. Asymptotic waveform estimation 

(AWE) [14], [15], model-based parameter estimation 

(MBPE) [16]-[18], model order reduction [19], 

interpolation methods [20]-[24], extrapolation methods 

[25], and Stoer-Bulirsch algorithm [26], etc., have  

been developed. However, on the one hand, the above 

methods in the formulation-domain modeling are based 

on the fully filled impedance matrix. On the other hand, 

the methods in the solution-domain modeling suffer 

from the difficulty of keeping accuracy due to the fast 

oscillating of the data. For example, AWE is accurate 

only around the frequency of expansion and is difficult 

to adaptively choose the expansion points. Furthermore, 

its accuracy deteriorates beyond a certain bandwidth [27], 

[28]. Some of these methods in the solution-domain are 

not suitable for the electrically large targets, nor are they 

suitable for general targets with complex structure in the 

real world. 

In this paper, a method based on the interpolation 

technique and fast generating matrix method is 

developed to solve the wideband scattering problem. In 

this method, only one fixed mesh grid of the target at the 

highest frequency is required for all frequency samples 

at which the scattering will be calculated. The proposed 

algorithm is implemented in the platform of FGG-FG-

FFT to enhance its capability for large problems. 

Furthermore, the near matrix of FGG-FG-FFT over the 

frequency band are fast generated via interpolation 

technique, denoted by FGG-FG-FFT-NMI. In order  

to fast generate the modified matrices at the three 

normalized frequency samples and the derivative of the 

modified matrix at the internal sample, a method for fast 

filling the near matrix is adopted. It can not only reduce 

the impedance matrix filling time in the whole frequency 

band but also accelerate the matrix filling process at 

frequency interpolation sampling points. Therefore, the 

speed of the wideband scattering analysis is greatly 

accelerated. 

 

II. FORMULATIONS AND EQUATIONS 

A. Impedance matrix form of the normalized 

frequency 

The radiation and scattering problem of an arbitrary 

shaped perfectly electric conducting (PEC) object can be 

formulated by the SIEs such as the electric field integral 

equation (EFIE) and the magnetic field integral equation 

(MFIE). Assume that the surface current is expanded in 

terms of the Rao-Wilton-Glisson (RWG) functions [29]. 

After applying the Galerkin’s procedure, the SIEs are 

converted into the matrix systems. 

The frequency range is [ , ]l hf f , i.e., the lowest 

frequency 
lf  and the highest frequency 

hf . The object 

surface is supposed to be discretized at 
hf . 

h  is the 

wavelength at 
hf . The element with the normalized 

frequency of the impedance matrix for the EFIE and 

MFIE is, respectively, expressed as: 
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where, ( , ')G r r  denotes the Green’s function of free 

space, which can be expressed as: 
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where 2r rk f . The normalized frequency /r hf f f  

varies within  / ,1l hf f . 

Usually, 
iS  consists of two triangle subdomains; 

that is, i i iS S S  
 
and, ( )iJ r  is defined on a pair of 

triangles as: 
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For more details of RWG basis functions, readers 

can refer to the literature [29]. 

The element for the combined field integral equation 

(CFIE) can be expressed as: 

 0(1 )C E M

ij ij ijZ Z Z     , (5)
 

where, 0 1  . 

Here, the following modified matrix element is 

adopted: 

 
0

0

r ijjk RS

ij r i jS

ij S

ij r i j

Z f e S S
Z

Z f S S

  
 

 
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where, the superscript , ,S E M C represents EFIE, 

MFIE and CFIE. 
ij i jR r r   is the distance between  

the centers of the RWG elements iS  and jS . The 

interpolation scheme requires three frequency samples 

within [ , ]l hf f , i.e., the lowest frequency lf , the highest  
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frequency 
hf , and an internal frequency 

inf . 

For the integrity of this paper, the interpolation 

method is introduced briefly [22]. For convenience, let

0x ,
1x ,

2x , and x denote the normalized frequencies

/l hf f , /in hf f , 1, and / hf f , respectively. ( )iy x

denotes the modified matrix elements at 
ix , 0,1,2i  ; 

1'( )y x  is the first order derivative of 
1( )y x  with respect 

to the normalized frequency. The modified matrices  

for any normalized intermediate frequencies x are then 

approximated by a cubic polynomial: 
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B. The frame of the FGG-FG-FFT 

Impedance matrix can be split into two parts: 

 ( )S S near S far S far S corr S farZ Z Z Z Z Z        ,

  

(13) 

where S corrZ   is a sparse matrix, which is obtained by 

letting the “far elements” of S near S farZ Z   become zero. 

The detail of the matrix S farZ   can be written as: 

 2

0

1
( )

T
EFIE far T

h r d d

r

Z j k G G
k

        , (14) 

 2
T

MFIE far
ghZ G     , (15)

 
where  , 

d  and g  are all sparse matrices, where 

the head mark “ ” implies matrix elements being 3D 

vectors; G is a triple Toeplitz matrix related to the 

Green’s function and may be simply called the discrete 

Green’s function; the superscript “T” indicates the 

matrix transpose. The detail of choice for (14) and (15) 

in the literatures [11], [12]. 

 
C. Fast filling the near matrix 

As can be seen from the above, in the FFT-based 

methods, near matrix elements are calculated directly. It 

is well known that the calculation of the near matrix 

accounts for most of solution time for large-scale EM 

problems. When the RWG function is adopted, it can be  

found that every integral in (1) and (2) for a matrix 

element 
S

ijZ  includes a lot of calculations shared by other 

matrix elements. As is shown in Fig. 1, since a RWG 

function is defined on a pair of triangles with a common 

edge, the interaction between the two triangles is in close 

relation to 9 matrix elements. In the widely used RWG-

RWG interaction scheme [29], 9 RWG-RWG interactions 

over a pair of triangles are independently calculated  

for generating the corresponding 9 matrix elements. 

Therefore, that leads to repeated calculations, because 

the triangle-triangle interactions already calculated are 

not reusable for the RWG-RWG interactions. Removing 

these redundant calculations can greatly improve the 

efficiency of generating matrix. A triangle-triangle 

scheme was proposed to accelerate filling MoM matrix 

[30]. However, the method adopted by this paper is 

different from the method in the literature [30]. 
 

 
 

Fig. 1. Triangle-triangle interactions of RWG functions. 

 

The matrix elements of (1) and (2) are both in form 

of the RWG-RWG interaction. The triangle-triangle 

interactions of the matrix element of (1) and (2) can be 

calculated as: 

 
, , , ,i j i j i j i j

ij S S S S S S S S
Z Z Z Z Z           . (16) 

For convenience, the calculation formulae of the 

four terms in the right hand of (16) are very analogous, 

so only one needs to be provided. Here, we present a 

detailed expression of the main parts: 
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Note that basic integral terms of (17) and (22) which 

include 
1Q , 2

Q , 3
Q , 

4Q , 
1P , 2P , 3P , 4P  are irrelevant 

with information of common edge. These integral items 

can be easily obtained by Gaussian triangle quadrature, 

and can be shared by multiple matrix elements, which  

is the reason why the redundant calculations can be 

removed. Generally, the interactions between a pair of 

triangles associate with up to 9 matrix elements. 

 

III. NUMERICAL RESULTS 
In this section, several numerical examples are 

given to demonstrate the efficiency and accuracy of 

FGG-FG-FFT-NMI. The grid spacings are selected to be 

equal, i.e., 0.25x y z hh h h     at the highest frequency 

hf . The expansion order is 2M  . When necessary, the 

direct (no interpolation) FGG-FG-FFT, MoM with out-

of-core LU solver and IE-ODDM [31] are also employed 

as the reference. 

 

Example A: A PEC Rectangular Block 

Here, we consider the electromagnetic scattering  

by a PEC rectangular block with dimensions 10 ( )h x   

3 ( ) 0.5 ( )h hy z  , as shown in Fig. 2. The incidence 

angle is o o0 , 0in in   . In such cases, the frequency 

varies from 6 to 30 GHz. The rectangular block surface 

is modeled by with 16,644 triangle patches with the 

average edge size of 0.1 h , yielding 24,966 unknowns. 

The frequency increment of 1f  GHz is considered. 

Plotted in Fig. 3 are the RCS results at the scattering 

direction o o( , ) (60 ,0 )S S    obtained from FGG-FG-

FFT-NMI, direct FGG-FG-FFT, and MoM, respectively. 

It is also worth mentioning that MoM is used. The result 

at each frequency point is calculated rigorously. It shows 

that the RCS results computed by FGG-FG-FFT-NMI 

agree very well with those by direct FGG-FG-FFT and 

MoM. 

 

 
 

Fig. 2. Geometry of a PEC rectangular block with 

10 ( ) 3 ( ) 0.5 ( )h h hx y z    . 

 

 
 

Fig. 3. The RCS of the PEC rectangular block at  

the scattering direction o o( , ) (60 ,0 )S S    at different 

frequencies. 

 

As observed from Table 1, the triangle-triangle 

scheme reduces the CPU time to 12.89% of the time 

required by the RWG-RWG scheme at 30 GHz. The 

statistics on the filling time of near matrix are listed in 

Table 2 at 20 GHz. As shown in Table 2, the CPU time 

to fill this matrix is cut down. In this example, it costs 

about 1.27 hours using FGG-FG-FFT-NMI at the whole 

frequency band, and 3.23 hours using direct FGG-FG-

FFT. 

 

Table 1: CPU time for directly calculating the near 

matrix for the three examples at 30 GHz (in seconds) 

Ex. Method 
Time 

Cost 

Time 

Ratio 

Reduced 

By 



RWG-RWG 
7.76 87.11% Triangle-

Triangle 




RWG-RWG 
8.36 88.03% Triangle-

Triangle 


C

RWG-RWG 
7.94 87.41% Triangle-

Triangle 

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Table 2: CPU time spent of the filling time (in seconds) 

Ex. Method near
Z  

Near part 

In far
Z  



Direct Calculation 300.3 25.5 

Interpolation 

Scheme 

0.24 
24.3 



Direct Calculation 304.7 26.3 

Interpolation 

Scheme 

8.02 
26.6 

C

Direct Calculation 1130.6 70.4 

Interpolation 

Scheme 

10.3 
72.2 

 

Example B: A Metallic 90º Dihedral Corner Reflector 
The example deals with a flat metallic structure. The 

scattering from a metallic o90  dihedral corner reflector 

as shown in Fig. 4 is considered in a bandwidth from  

6 GHz to 30 GHz. The two plates, with the sharing edge 

being 16 h  long in z-direction, are 8 h  long in both x- 

and y-directions. The RCS is computed for a plane wave 

incident from o0in   and o0in   with the electric 

field x-direction polarized as is shown in Fig. 4. The 

surface of the metallic o90  dihedral corner reflector is 

discretized with about 10 elements per wavelength, 

yielding 88,045 unknowns. The frequency increment of 

1f  GHz is considered. 

 

 
 

Fig. 4. Geometry of a metallic o90  dihedral corner 

reflector. 

 

The bistatic RCS at 11 GHz and 25 GHz are 

compared to the results from direct FGG-FG-FFT, FGG-

FG-FFT-NMI and MOM in Fig. 5, respectively. The 

good agreement in these two figures shows the accuracy 

of the proposed method in this paper. The variation  

of RCS with frequency at the scattering direction 
o150S  , o0S  , as shown in Fig. 6. It shows that the 

RCS results computed by FGG-FG-FFT-NMI agree very 

well with those by direct FGG-FG-FFT and MoM.   

Seen from Table 1, the triangle-triangle scheme 

reduces the CPU time to 11.97% of the time required by 

the RWG-RWG scheme at 30 GHz. The statistics on the 

filling time of near matrix are listed in Table 2 at 20 GHz.  

As shown in Table 2, the CPU time to fill this matrix is 

cut down by a factor of 37.99. In this example, it costs 

about 8.17 hours using FGG-FG-FFT-NMI at the whole 

frequency band, and 10.2 hours using direct FGG-FG-

FFT. 
 

 
 (a) The bistatic RCS curves at 11 GHz    

 
  (b) The bistation RCS curves at 25 GHz 

 

Fig. 5. The bistatic RCS curves of a metallic o90  dihedral 

corner reflector. 

 

 
 

Fig. 6. The RCS of the metallic o90  dihedral corner 

reflector at the scattering direction o o( , ) (150 ,0 )S S    

at different frequencies. 
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Example C: A Missile Model 

At last, as an example, we consider a missile model. 

The missile model, 41 h  long and 12 h  width in the 

largest dimension as shown in Fig. 7, is simulated using 

102,282 unknowns. The frequency is swept from 6 GHz 

to 30 GHz under the stepping of 1f  GHz. 
 

 
 

Fig. 7. The PEC missile model. 
 

 
 (a) The bistatic RCS curves at 9 GHz   

 
 (b) The bistatic RCS curves at 27 GHz 

 

Fig. 8. The bistatic RCS curves of the missile model. 

 

The bistatic RCS at 9 GHz and 27 GHz are compared 

to the results from direct FGG-FG-FFT, FGG-FG- 

FFT-NMI and IE-ODDM in Fig. 8, respectively. The 

good agreement in these two figures shows the accuracy 

of the proposed method. Figure 9 presents the RCS 

results at the direction of o o( , ) (80 ,0 )S S    at different 

frequencies. It shows that the RCS results computed by 

FGG-FG-FFT-NMI agree very well with those by direct 

FGG-FG-FFT. Table 1 lists the CPU time for calculating 

the near matrix required by the triangle-triangle scheme 

and RWG-RWG scheme, respectively. At 30GHz, the 

triangle-triangle scheme reduces the CPU time to 

12.59% of that required by the RWG-RWG scheme. The 

statistics on the filling time of near matrix are listed in 

Table 2 at 20 GHz. As shown in Table 2, the CPU time 

to fill this matrix is cut down by a factor of 109.77. In 

this example, it costs about 7.87 hours using FGG-FG-

FFT-NMI at the whole frequency band, and 15.5 hours 

using direct FGG-FG-FFT. If the frequency increments 

are smaller, the difference between efficiency of the two 

methods will be greater. This can also be verified from 

Table 2. 
 

 
 

Fig. 9. The RCS of the missile model at the scattering 

direction o o( , ) (80 ,0 )S S    at different frequencies. 

 

VI. CONCLUSION 
A new fast frequency sweeps method using both the 

interpolation technique and the fast generating matrix 

method is proposed. It fuses both the benefits of FGG-

FG-FFT and the fast frequency sweeping method based 

on the interpolation technique and the triangle-triangle 

scheme. It can not only reduce time in geometrical 

modeling, but also accelerate the impedance matrix 

filling process. Thus, it can efficiently accelerate the 

process of frequency sweeps. The proposed algorithm is 

not sensitive to both the grid spacing and the expansion 

order. Numerical experiments validate the accuracy and 

efficiency. 
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