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Abstract – A new gridless sparse method (GLSM) is 

proposed to estimate the direction of arrival (DOA) and 

gain-phase errors simultaneously for a uniform linear 

array (ULA). We convert angular space to frequency 

space and establish a data model in the frequency 

domain. First, the cost function based on the covariance 

fitting criterion is transformed into a semidefinite 

programming (SDP) problem to estimate DOA and 

noise variance without previous calibration information. 

Second, gain errors are calculated by the estimated 

noise variance and the covariance matrix. Third, phase 

errors are obtained by decomposition of the covariance 

matrix, which has been pre-processed by a space 

smoothing technique. Finally, DOA estimation is 

improved further after the array errors are fully 

calibrated. Compared with traditional methods, the 

proposed method is robust to correlations of signal 

sources, and parameters are estimated without joint 

iteration. Moreover, there is no need for discrete grid 

points in the angular space, which results in grid 

mismatches and computation loads, so the proposed 

method is more accurate and faster. Simulation results 

verify the effectiveness of the proposed method. 

 

Index Terms – Direction of arrival, gain and phase 

errors, gridless sparse method, semidefinite 

programming. 

 

I. INTRODUCTION 
The direction of arrival (DOA) estimation is one of 

the most important topics in array signal processing. 

Many high resolution DOA algorithms have been 

proposed, such as multiple signal classification 

(MUSIC) [1], estimation of signal parameters via 

rotational invariance techniques (ESPRIT) [2], maximum 

likelihood [3] and Capon [4]. Recently, DOA estimation 

performance has been further improved by sparse 

reconstruction algorithms. To study the sparsity of 

DOAs, a spatial domain is usually discretized to create 

a dictionary to sparsely represent the DOAs [5-7]. The 

1l -based singular value decomposition (L1_SVD) 

algorithm [5], based on an overcomplete basis, handles 

the DOA estimation problem through SVD and a 

second-order cone (SOC) framework. The method in 

[6] based on the covariance fitting criteria estimates the 

source power and the corresponding DOAs by an 

iteration process. However, those on-grid methods 

assume that the true DOAs are located on a fixed set of 

grid points, so grid mismatch is inevitable. The off-grid 

methods [8-10] and gridless methods [11-12] are used 

to solve the grid mismatch problem. Additionally, the 

latter completely overcome this problem by operating 

in the continuous domain. A novel off-grid method [10] 

is proposed via successive nonconvex sparsity 

approximation penalties on the sparse signals and 

jointly estimates the sparse signals and grid offset 

parameters. The method proposed in [11] is a grid-free 

sparse method. DOAs and noise variance are solved  

by semidefinite programming (SDP) and convex 

optimization. However, all those subspace and sparse 

methods have the common assumption of ideal array 

manifolds. In practice, the array manifold is often 

affected by unknown array perturbations, such as gain 

and phase uncertainties, mutual coupling and sensor 

location errors [13-15]. Our paper focuses on the gain 

and phase errors of antenna arrays. 

To deal with array gain-phase perturbations, array 

calibration algorithms are usually classified into two 

groups. The first group is called active calibration 

algorithms [16-18]. These methods require that all the 

DOAs are precisely known. With the use of calibration 

sources, the array can be calibrated well. However, it  

is hard to accurately determine the DOAs of the 

calibration sources in practice [19]. The second group  

is called self-calibration algorithms, which are more 

desirable. They can estimate both the array perturbations 

and DOA without knowing the exact locations of 

calibration sources. In [20], the method was proposed 

by Weiss and Friedlander and called the WF method for 

convenience. DOAs and gain-phase errors are estimated 
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by an alternative iteration method in the case of 

uncorrelated sources. However, convergence to the 

global optimum cannot be guaranteed when the phase 

error is large. In [21] and [22], non-iterative methods 

based on the WF method for phase errors are proposed. 

These methods have the benefit that the term of gain-

phase errors is eliminated from the array manifold by 

the Hadamard product, and DOAs and gain-phase 

errors are solved independently. However, they have 

the disadvantages that the computation is complicated, 

the case of coherent signals is not considered, and they 

are not applicable to a uniform linear array (ULA). The 

method in [23] is a sparse-based method to achieve a 

joint estimation of DOA and array perturbations, which 

is based on a spatial dictionary, so it encounters the 

following problems: increased computational loads and 

errors caused by discretization. In [24], an on-grid 

method (ONGM) based on the covariance fitting criteria 

is proposed to estimate the DOA and gain-phase error 

simultaneously by alternate iteration. It performs well 

in cases of uncorrelated sources and coherent sources. 

However, the main drawbacks of ONGM are converging 

to suboptimal solutions in the case of large phase errors 

and high computational complexity. 

Inspired by [24], we propose a gridless sparse 

method (GLSM) to deal with the DOA estimation 

problem of gain-phase errors. The covariance fitting 

criteria have sound statistical motivation and are robust 

to coherent signal sources [6, 25]. Moreover, according 

to [26], covariance fitting is related to the 
1l _norm 

minimization, which is robust to correlation. We 

consider the same covariance fitting criteria as the 

ONGM method, but the covariance fitting problem is 

transformed into an SDP problem and solved by SDPT3 

or other SDP solvers [27-28] for estimating DOA and 

noise variance in the frequency domain. Then, the gain 

perturbations are estimated by using the covariance 

matrix and the estimated noise covariance, and phase 

errors are estimated by a common method with 

estimated DOAs. Finally, we use SDP solvers again to 

further improve DOA estimation after the gain-phase 

errors are compensated. Compared with the ONGM 

method [24], the proposed method overcomes some 

drawbacks. First, no discretization scheme is adopted, 

which avoids grid mismatch. Second, parameters are 

estimated with no iteration, so it does not fall into local 

optimality in the case of large phase errors and has 

better estimation performance. Third, the proposed 

method does not depend on the grid size and the 

number of iterations; thus, it can be faster than the 

ONGM method when a dense sampling grid is used  

in ONGM for high estimation precision. Simulation 

results show the effectiveness of the proposed method. 
 

II. DATA MODEL 
Consider that K narrowband far-field signals 

impinge on M isotropic sensors from different incident 

angles 
T

1[ , , ] .K   The array spacing is half-

wavelength and N is the number of snapshots. We 

convert the angular domain to the frequency domain to 

avoid discretizing the spatial angles.  

We denote  (sin 1) / 2 [0,1), 1, ,k kf k K     

and the relation  f is one-to-one. We assume that 

1K M  in the following discussion. The steering matrix 

can thus be represented as 
1( ) [ ( ), , ( )],Kf fA f a a  

with j2 j2( 1) T( ) [1,e , ,e ] .k kf M f

kf
  

=a  
kf  is the frequency 

of the uniformly sampled complex sinusoid ( ),kfa so 

T

1[ , , ]Kf ff is the frequency parameter. Considering 

the gain-phase errors, the received signals at the ULA 

along the x-axis can be expressed as: 

( ) , Y A f S N                         (1) 

where T

1 2diag([ , , ] )M   denotes the gain-phase 

error diagonal matrix. Define mj

m me
  , and m  and 

m  denote the gain error and phase error, respectively, 

of the mth sensor. In addition, we assume that 1 1,   

1 0,   the noise N is additive white Gaussian noise 

and that the source signal S is independent of the noise. 

The covariance matrix R can be written as: 

 
H H( , , ) ( )diag( ) ( ) diag( ), R f p A f p A f     

(2) 

where 
T

1[ , , ]Kp pp  is the source power and 
2 2 T

1[ , , ]M    denotes the noise variance. 

For simplicity, note, 
H( , ) ( )diag( ) ( ).C f p A f p A f              (3) 

The (m, l)th element of C is: 

2 (m )2 * 2

m,

1 1

( ) ( ) .k

K K
j l f

l k m k l k k

k k

C p a f a f p e
 

 

 =       (4) 

It is easy to see that 0C  and C is a (Hermitian) 

Toeplitz matrix. 

The sample covariance matrix can be expressed as: 

ˆ / .H NR YY                            (5) 
 

III. THE PROPOSED METHOD 

A. Robust DOA estimation 

We consider the following cost function based on 

covariance fitting criterion [6, 25]: 
2

1 2 1 2

F

ˆ ˆ( , , ) ( ) ,g   f p R R R R           (6) 

where F  represents the Frobenius norm for matrices 

and the 
2l _norm for vectors. According to [11], the  
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minimization of the criterion in (6) is a large-snapshot 

realization of the ML estimator. A simple calculation is 

as follows: 
1/2 1 1/2

1 1

1 1

ˆ ˆ ˆ( , , ) tr[ ( ) ( ) ]

ˆ ˆ= tr[( )( )]

ˆ ˆ= tr( ) tr( ) 2 ,

g

M

  

 

 

  

 

 

f p R R R R R R R

R R I I R R

R R R R



   (7) 

where tr( ) denotes the trace of matrices. In the 

presence of noise 
1

R  exists while 
1ˆ 

R  exists under the 

condition .N M  I denotes the identity matrix. The 

unknown parameters f, p,   and   are nonlinear in 

relation to R, so it is challenging to minimize g.  

To calculate those parameters in (7), it is necessary  

to reparameterize R for reducing the number of 

parameters. According to (3), C is a (Hermitian) 

Toeplitz matrix, so it can be expressed as ( )TC u  

depending on the first row u. Substitute ( )TC u  into 

(2) to obtain: 
H( , , ) ( ) diag( ).T R u u                 (8) 

According to [6], the cost function in (6) is convex 

and has a unique global minimum. Problem (7) can thus 

be formulated as the following SDP problem: 

 
   

 

1 1

, , 0

ˆ ˆmin tr tr

subject to 0,T

 



u
R R R R

u

 
               (9) 

where 0  represents that 0m   for all m, then we 

show the following equivalence: 

 
 

 

1 1

1 12 2

, , 0

ˆ ˆ ˆ(9) min tr tr

subject to 0.T

 
 

  
 



u
R R R R R

u

          (10) 

The parameters of 1
R  in (10) are in the denominator, 

which does not satisfy the condition of CVX, so we 

introduce parameter Z, satisfying the constraint condition 
1 1

12 2ˆ ˆ ,Z R R R  

  

 
   

 

 
 

1

, 0

1 1

12 2

1

, 0

1

2

1

2

ˆmin tr tr

ˆ ˆsubject to 0and

ˆmin tr( ) tr

ˆ

ˆsubject to 0 .

( )

T

T









 

 

 
 
 
  
 
 
 
 

u

Z, u

Z R R

u Z R R R

Z R R

Z R

R R

u

 

 

      (11) 

Substitute 
H( ) diag( )T R u    into (11), 

 

H 1 1 H

, 0

1

2

1

H2

ˆ ˆmin tr( ) tr( ( )) Re(diag( ) )

ˆ

ˆsubject to ( ) diag( 0.

( )

T

T

T

  

 
 
 
   
 
 
 
 

Z, u
Z R u R

Z R

R u

u

 
  

  
 

 (12) 

We assume that ˆ ˆ( , )u   is the solution of the SDP 

problem (12) with initial/estimated ˆ   The SDP is 

implemented using CVX with the SDPT3 solver [27-

28]. Because ˆ( )T u  is a positive semidefinite Toeplitz 

matrix, it can be decomposed to: 
Hˆˆ( ) = ,T u VPV                          (13) 

where V denotes the eigenvector matrix and P̂  is a 

diagonal matrix and denotes the eigenvalues of ˆ( ).T u  

The frequency parameter f̂  can be determined by the 

largest K eigenvalues. Then, the DOA estimates ̂  

corresponding to f̂  as: 

ˆ ˆarcsin(2 1). f                         (14) 

We know that rank( ) 1,K M  C  and it is natural to 

determine that ˆrank( ( )) 1,T K M  u which means that 

ˆ( )T u  is rank-deficient. Therefore, the prior knowledge 

1K M   makes the solutions ̂  and P̂  unique. 
 

B. Gain error estimation 

From (2), (3) and (4), it is clear that, 
*

,

, * 2 2

1

,

,
,

m l m l

K
m l

m m k

k

C m l

R
p m l

 

  


 


 
 




            (15) 

when ,m l=  the main diagonal element ( , )R m m  is that, 

2 2 2

1

( , ) .
K

m k

k

R m m p 


                   (16) 

̂  is estimated by (12), and the gain errors can be 

estimated as: 

  

2

2

ˆ ˆ( , )
ˆ sqrt , 1, , ,

ˆ ˆ(1,1)
m

R m m
m M

R






 
    

       (17) 

where ˆ (1,1)R  is the first element of the main diagonal 

of R and is taken as a reference because 
1 1.   

 

C. Phase error estimation  
In this section, we introduce a forward and 

backward space smoothing method to reduce the  
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correlation between signal sources [24]. 
MJ  is an M 

order exchange matrix where the reverse-diagonal 

elements are 1, and the rest of the elements are 0. We 

construct a new covariance matrix: 

,M M *
R R + J R J                      (18) 

where *
R  is the complex conjugate matrix of R.  

The noise subspace 
1 2[ , , , ]K K K M  U U U U  can be 

obtained by the characteristic decomposition of .R  It is 

worth noting that the space smoothing algorithm is a 

dimensionality reduction algorithm, which is essentially 

a process of restoring the rank of the covariance matrix. 

Therefore, in general, the dimension of the modified 

covariance matrix is smaller than that of the original 

covariance matrix, that is to say, the performance of 

estimating coherent signals is obtained by reducing the 

degree of freedom of the covariance matrix. However, 

in order to satisfy the dimension for estimating phase 

errors, we do not divide R and *
R  into multiple sub-

arrays to make R  reach the optimal case of full rank. 

Thus, we may further improve the performance of the 

proposed method in the case of coherent signals in the 

future. 

The phase errors can be estimated as [20]: 
ˆ angle( ), w                          (19) 

1
T

T 1

( )
[1,0, ,0] ,

( )




 

B h
w h

h B h
            (20) 

H H

1

ˆ ˆ[diag( ( ))] diag( ( )),
K

k k

k

B a f UU a f         (21) 

where T

1[ , , ]M   and angle( )  denotes the phase 

of a complex number.  

Consequently, the proposed method is summarized 

as follows: 

Step 1: Set 
0 =   and ˆ ˆ( , )u   is estimated by (12). 

Step 2: f̂  and ̂  are estimated by (13) and (14), 

i.e., GLSM1. 

Step 3: Gain errors are estimated by (17). 

Step 4: Phase errors are estimated by (19). 

Step 5: Set 1
ˆ ˆj j T

1
ˆ ˆ ˆdiag([ e , , e ] ),M

M

    and f̂  

and ̂  are re-estimated by (12), (13) and (14), i.e., 

GLSM2. 

 

IV. CONNNECTION TO PRIOR ART 

A. Relation with the ONGM method   

The GLSM method proposed in this paper has 

some similarities with the ONGM in [24]. Both 

methods adopt the same covariance fitting criteria for 

DOA, a similar method for gain error estimation, and 

the same method for phase error estimation. However, 

the following three main differences make their 

performances very different. The first is that GLSM  

is based on the continuous frequency domain, while 

ONGM depends on the grid of the angular space. Note 

that the covariance matrix R is approximated in ONGM 

by discretizing the range of the angle, where it is no 

guarantee that the true DOAs are located on the grids. 

Thus, the modelling error, which is dependent on the 

grid density, is one possible reason for the inaccuracy 

of ONGM estimation. The second is that the DOA 

estimate of ONGM is obtained directly from the 

solution of the covariance fitting optimization problem 

[11], while GLSM obtains the frequency estimation by 

the Vandermonde decomposition of ˆ( ).T u  Therefore, 

the DOA estimation of ONGM is bound by the grid, 

which is referred to as an on-grid issue. The third is  

that parameters of ONGM are estimated via iterative 

processing, while parameters of GLSM are estimated 

with no iteration. Alternating iteration processing causes 

ONGM to easily fall into local optimality in the case of 

large phase errors. 

 

B. Complexity analysis 

In this section, we compare the computational 

complexity of the GLSM method with the ONGM 

method [24]. ONGM is an iterative algorithm whose 

computational complexity is equal to the complexity of 

each iteration times the number of iterations; therefore, 

the major computational complexity of the ONGM 

algorithm is  2 3 4 5( ) ,K M +2KM M T   where K  

denotes the grid size and T denotes the number of 

iterations, which is difficult to quantify and varies in 

different scenarios. We define 
1J  as the variable size 

and 
2 2J J  as the dimension of the positive semidefinite 

matrix in the semidefinite constraint of an SDP [11]. 

According to reference [29], we known that the SDP 

can be solved in 2 2.5

1 2( )J J  flops. In the GLSM method, 

1J  equals 2M  and 
2J  equals M, so the complexity of 

the GLSM method is 6.5( ).M  Obviously, the order on 

M for GLSM is higher than that for ONGM. However, 

the grid size K  is much greater than the number of 

sensors, M. Additionally, the computational complexity 

from phase errors is much higher in the ONGM method, 

which needs to execute 3( )KTM  flops. In contrast, 

we need to run once to obtain the phase errors in the 

GLSM method. Therefore, the GLSM method can be 

faster than the ONGM method. 
 

V. NUMERICAL SIMULATIONS 

The gain errors  
1

M

m m



 and phase errors  

1

M

m m



 

of the sensors are generated by [21]: 

   1 12 ,m m                           (22) 

12 ,m m                              (23) 
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Where m  and m  are independent and identically 

distributed random variables distributed uniformly over 

[-0.5, 0.5]. Additionally, 
  and 

  are the standard 

deviations of 
m  and , respectively [22]. In the 

following simulations, 0.1.   For all Monte Carlo 

experiments, the number of trials is 200. It is known 

from (17) that the estimation of the gain errors is 

independent of the phase error and DOA, and the gain 

errors do not affect the accuracy of the DOA, so we 

omit the performance of the gain error estimation in the 

following simulations. 

The RMSE of DOA and phase errors are measured 

in (24) and (25), respectively: 
1/2

200
2

1 1

1 ˆRMSE = ( ) ,
200

K
i

k k

k iK
  

 

 
 

 
           (24) 

1/2
200

2

1 1

1 ˆRMSE = ( ) .
200

M
i

m m

m iM
  

 

 
 

 
          (25) 

 

A. Effect of DOA separation 

We consider K=2 uncorrelated sources. The sample 

number is 200, the signal-to-noise ratio (SNR) is 20 dB 

and 20 .  The grid size of the ONGM method is 180. 

Figure 1 shows the space spectra of the WF method, the 

L1_SVD method, the ONGM method, and the GLSM 

method under two different DOA separation cases. The 

proposed method without calibration is referred to as 

GLSM1, and GLSM2 represents the proposed method 

with calibration. L1_SVD1 is without gain-phase errors, 

and L1_SVD2 is with gain-phase errors.  

It can be seen from Fig. 1 (a) that when two signals 

are not close to each other (DOA [5 20 ]),  the 

performance of the L1_SVD method with gain-phase 

errors severely deteriorates and has only one sharp 

peak. In contrast, the other three methods can accurately 

estimate DOA. When the DOA separation of the two 

signals is reduced (DOA [17 20 ]),  Fig. 1 (b) shows 

that the WF method almost completely fails, and the 

ONGM method only has one peak. In contrast, the 

proposed method can still distinguish the two closed 

signals. In addition, the calibration technique of the 

proposed method improves the estimation accuracy 

(GLSM1 vs. GLSM2). 
 

B. Effect of phase errors 

We consider K=3 sources from directions 
T[10,25,60] .  The sample number is 200 and SNR is 

20 dB. The grid size of the ONGM method is 180. 

Based on 200 Monte Carlo runs, the RMSE of DOA 

and gain-phase error estimates versus the standard 

deviation of the phase error   are obtained by the WF 

method, the ONGM method and the proposed method.  

 

  (a) 

 

   (b) 
 

Fig. 1. Space spectrum of four algorithms: (a) 

DOA [5 20 ] , and (b) DOA [17 20 ] . 
 

Figure 2 (a) and Fig. 2 (b) show that when the 

sources are uncorrelated, the ONGM method and the 

WF method are similar in the performance of DOA 

estimation and phase error estimation. Moreover, the 

performance of the two algorithms gradually deteriorates 

with increasing phase error because both algorithms 

easily fall into local optima when the phase errors are 

large. In contrast, the GLSM algorithm shows good 

stability to DOA and phase error estimation as the 

phase error increases from small to large, and the 

estimation accuracy is obviously higher than the first 

two algorithms. When the signal sources are coherent 

(source 2 is a replica of source 1), the WF algorithm is 

completely invalid in DOA estimation and phase error 

estimation. The estimation performance of the ONGM 

method and GLSM method are similar and obviously 

better than those of the WF method because GLSM and 

ONGM are based on the covariance fitting criterion, 

which is robust to the correlated sources, and both of 

them reduce the influence of signal correlation through 

the exchange matrix in the process of solving the phase 

error. 
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  (a)     

 

  (b) 
 

Fig. 2. RMSE versus   (a) RMSE of DOA estimation 

versus  , and (b) RMSE of phase error estimation 

versus  . (The dashed and solid plots represent the 

cases of coherent signal sources and uncorrelated signal 

sources, respectively). 
 

C. Effect of SNR 

We consider three sources from directions by 

direction 10°, 25° and 60°. The number of samples is  

200 and the varying SNR is from -20 dB to 30 dB. The 

grid number of the ONGM method is 180. Based on 

200 Monte Carlo runs, the RMSE of DOA and phase 

error estimates versus SNR are obtained by the WF 

method, the ONGM method and the proposed method.  

First, some simulations are performed to consider 

the effect of SNR in the case of uncorrelated signal 

sources. We show the results in two different phase error 

cases: 5   and 40 .   Figure 3 (a) and Fig. 3 (b) 

show that in the case of small phase error ( 5 ),   

the estimation performance of the three algorithms 

improves as the SNR increases. Moreover, the curve of 

the proposed method is constantly lower than that of the 

WF method and the ONGM method. When the phase 

error is large ( 40 ),   the performance of the WF 

algorithm and ONGM algorithm is difficult to further 

improve with increasing SNR, and the GLSM algorithm 

still maintains good estimation performance. 

Then, some simulations are performed to consider 

the effect of SNR in the case of coherent sources (source 

2 is a replica of source 1). The different simulation 

conditions from the uncorrelated sources case are two 

phase error cases ( 5   and 15 ).   Figure 4 (a) 

and Fig. 4 (b) show that in the case of coherent signal 

sources, the WF method is invalid regardless of how the 

SNR increases. In contrast, as the SNR increases, the 

phase error is smaller, the performance of the ONGM 

method and the GLSM method is better, and the GLSM 

method performs better than the ONGM method. 
 

D. Effect of array length  

We study the performance with respect to the  

array length M. Two uncorrelated sources impinge on  

the array with DOAs 10 and 25 .  We set SNR=20 dB, 

10 ,  and vary M from 5 to 40. Moreover, we 

consider two grid size cases (180 grids and 360 grids) for 

the ONGM method. 
 

                                                                           

    (a)  (b) 
 

Fig. 3. RMSE versus SNR (the signal sources are uncorrelated). (a) RMSE of DOA estimates versus SNR. (b) 

RMSE of phase estimates versus SNR. 
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    (a) (b)  
 

Fig. 4. RMSE versus SNR (Source 2 is a replica of source 1). (a) RMSE of DOA estimates versus SNR. (b) RMSE 

of phase error estimates versus SNR. 
 

 

  (a) (b) 
 

Fig. 5. (a) RMSE of DOA estimates of GLSM with an M-element ULA compared with ONGM. (b) CPU time usage of 

GLSM and ONGM. 

 

Figure 5 (a) shows that the RMSEs of the  

GLSM method and the ONGM method improve with 

the array length. More specifically, when 12,M  the 

performance of the ONGM method with 360 grids is 

better than the GLSM method. Moreover, the more 

grids, the better the performance of the ONGM method 

is. Figure 5 (b) shows that the average CPU time usage 

of these two methods increases with an increasing 

number of array elements. However, the average CPU 

running time used by the GLSM method to complete 

one estimation is significantly lower than that of the 

ONGM method. 
 

VI. CONCLUSION 
In this paper, we propose a fast method to 

simultaneously estimate DOA and gain-phase errors 

in the continuous range without a grid mismatch 

problem. This method does not require the existence 

of a calibration source and calibration information. 

Monte Carlo runs show that utilizing the covariance 

fitting criterion and the SDP, the proposed algorithm 

overcomes the shortcomings of the ONGM method in 

the case of severe gain-phase error perturbations when 

signal sources are uncorrelated. Moreover, the proposed 

method has the advantages of low computational 

complexity and high resolution compared to existing 

methods. 
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