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Abstract ─ In this paper, a p-norm-like constraint 

normalized least mean square (PNL-CNLMS) algorithm 

is proposed for sparse adaptive beamforming. The 

proposed PNL-CNLMS algorithm inherits the good 

capacity of the conventional constrained least mean 

square (CLMS) algorithm in adaptive beamforming, 

i.e., forming ideal beam patterns. Also, the proposed 

PNL-CNLMS algorithm utilizes a p-norm-like constraint 

to exploit sparse property of the corresponding antenna 

array. In the derivation procedure, the Lagrange 

multiplier approach and the gradient descent method 

are utilized to obtain the devised updating equation. 

Numerical simulations reveal the superiority of the 

proposed PNL-CNLMS algorithm. 

 

Index Terms ─ Array beamforming, constrained LMS 

algorithm, p-norm-like constraint, sparse adaptive 

beamforming. 
 

I. INTRODUCTION 
With the ability of forming the desired beampattern 

in the sector of interest while suppressing the influences 

from the unexpected interferences, adaptive 

beamforming has been an important application for 

array processing in the last decades. Because of the 

good capacity, adaptive beamforming is widely applied 

to radar, sonar, mobile communications, seismic 

sensing and other fields [1-2]. The strategy for an 

adaptive beamformer to acquire a better signal-to-

interference-plus-noise ratio (SINR) is to form a main 

lobe in the interested direction to get a high gain, 

meanwhile, to form nulls to attenuate the interferences 

[3]. 

The wide spread linearly constrained minimum 

variance (LCMV) algorithm developed by Frost 

provides an excellent beamforming performance, which 

can provide the mentioned properties, i.e., dynamically 

adjusting the array weight vectors to adaptively capture 

the signals of interest (SOI) and suppress the 

interferences [3]. Then, the normalized adaptive version 

of LCMV, namely the constraint normalized least-

mean-square (CLMS) algorithm is developed in [4], 

through which the output power is minimized, and the 

unintended interferences are reduced. Meanwhile, the 

CLMS algorithm remains a maximum gain in the 

desired direction.  

Always, however, in real-life applications, 

especially in radar system, enormous arrays are 

essentially needed for realizing the desired performance. 

Where the fact is, enormous arrays face the problem of 

limited power supply and insufficient computation 

ability. As conventional adaptive beamforming 

algorithms fail to meet the requirements of enormous 

arrays computations, sparse adaptive beamforming 

algorithms have been proposed [5-9] which aim to find 

sparse solution for adaptive beamforming with little 

effect on the beampattern capacity. The first proposed 

sparse adaptive beamforming algorithm is inspired by 

the Compressive Sensing [10] and the Least Absolutely 

Shrinkage and Selection Operator [11]. Then, with the 

development of sparse signal pressing [12-21], scholars 

use the zero attracting technique to exploit the sparse 

characteristics of the antenna array and force the minor 

entries of the weight vector towards zero [12-15].  

Sparse signal processing algorithms exploit the 

sparse characteristics existing in many scenarios,  

which attributes to the fact that they have particular 

advantages on both convergence rate and performance. 

Sparse signal processing technique is a hot research 

point and has been widely investigated in recent years. 

From the representative zero-attracting LMS (ZA-

LMS) algorithm, which introduces a zero-attractor into 

the traditional iteration equation of the LMS algorithm, 

an enormous number of algorithms have been studied 

for sparse system applications [13-22]. The zero-

attractor forces all zero-filter taps to zero, so that the 

convergence rate is accelerated. However, the zero-

attractor in the ZA-LMS, which is generate by the  
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l1-norm penalty, unable to distinguish dominant 

coefficients and attenuate all the coefficients. In this 

regard, the reweighted ZA-LMS (RZA-LMS) is 

proposed to introduce different zero attractors for 

different taps, i.e., the trivial coefficients are force to 

zero more quickly. 

Inspired by the zero-attractor techniques, an l1-

norm CNLMS (L1-CNLMS) algorithm and a weighted 

l1- norm CNLMS (L1-WCNLMS) have been proposed 

for sparse adaptive beamforming [5]. Recently, many 

reweighted l1-norm penalties are proposed and 

considered in [12-15, 19-20], and a new reweighted l1- 

norm CNLMS (RL1-CNLMS) algorithm is proposed 

[8]. In [23-24], a p-norm-like diversity measure is 

proposed for sparse system identification, which holds a 

better performance than that of the l1-norm based 

algorithms, resulting in that it possible to improve the 

l1-norm based sparse adaptive beamforming algorithms.  

In this paper, we develop a p-norm-like constraint 

normalized least mean square (PNL-CNLMS) algorithm 

for sparse adaptive beamforming. Simulation results 

demonstrate that the proposed algorithms can get a 

better beamforming performance and use less antenna 

array elements. 

 

II. ARRAY PROCESSING FUNDAMENTALS 
In this paper, a planar antenna array is considered, 

in which the antenna elements are half wavelength 

spaced. Figure 1 is the model of an adaptive 

beamforming system, while Fig. 2 provides the array 

elements coordinate diagram. Pm (m=1, 2,…, M) is the 

positions of the sensors, and d is the interval between 

antenna elements, which is equals to half wavelength. 

The received signals have the directions of θs and θi 

(i=1, 2,…, N) which corresponds to the SOI and 

interferences, respectively. It is obvious that the 

objective of the adaptive beamforming algorithms is to 

generate main beam in θs and nulls in θi (i=1, 2,…, N). 

One of the basic assumptions for the system is that the 

receiving signals, including SOI and interferences are 

far-field narrow-band signals. In this way, the receiving 

signals can be regarded as plane waves. The sensor 

array is composed of M omnidirectional antennas,  

and each antenna corresponds to a so-called weight 

coefficient. Then, the designed sparse adaptive 

beamforming algorithm is used to find out the final 

sparse solution, i.e., to acquire the sparse weight vector. 

The optimal weight coefficients will be introduced in 

the next section.  

Under the paradigm mentioned above, the 

receiving signals at time index k can be written as: 

 ( ) ( ) ( ) ( ).s ik k k k  x a s a i n  (1) 

Where as and ai are the SOI and interferences steering 

matrix, s(k) and i(k) are the complex signal envelope 

vectors n(k) is the zero-mean white Gaussian noise 

vector. It should be pointed out that the SOI, 

interferences and the noise are assumed to be 

statistically independent. 

 

 
 

Fig. 1. Adaptive beamforming system. 

 

 
 

Fig. 2. Sensor array coordinate graph. 

 

The output signal of the adaptive beamforming 

system then becomes: 

 Hy( ) ( ),k k w x  (2) 

where w represents the weight vector of the adaptive 

beamforming system. 

For a given direction (θ, φ), the beampattern is 

given by: 

 H 2
( , ) exp - ,

T

mB j


 


 
  

 

c P
w  (3) 

where c=[-sinθcosφ,-sinθsinφ]T is an unit vector and λ 

is the wavelength. 

The output SINR of the adaptive beamformer is 

calculated by using: 

 
2 H 2

H

n+i

| a |
SINR= .s s w

w R w
 (4) 

In our notation, σs
2 is the power of SOI and Rn+i denotes 

the interference-plus-noise covariance matrix which is 

given by: 

  H

n+i = ( ) ( )) ( ) ( )) ,E k k k k R (i n i n(  (5) 

where E{·} is the expectation operator and (·)H 

represents the Hermitian operator. 

 

III. THE CNLMS ALGORITHM  

A. The CLMS algorithm 

The well-known classical beamforming algorithm 

LCMV present a solution when the direction of SOI 

and interferences are given [1]. The weight vector in 

LCMV algorithm is expressed as: 
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 -1 H -1 1

o ( ) ,w R C C R C f  (6) 

where R, C and f are the covariance matrix of input 

signal, the constraint matrix, and the constraint vector, 

respectively. It should be pointed out that the constraint 

matrix C contains the information of direction. In the 

constraint vector f, the elements associated to the SOI 

are set to 1 and entries corresponding to interferences 

are selected as 0. Then the adaptive version of LCMV 

algorithm is proposed, namely the CLMS algorithm 

which can adaptively give the desired beam pattern 

according to the direction of SOI and interferences [4]. 

The objective of CLMS algorithm is to solve: 

 2
min    subject to   ,kE e  

 
H

w
C w f  (7) 

with 
H

k o kd w x  and 
H-k k ke d w x  denote the desired 

output signal and the estimation error, respectively. 

To find out the solution of (7), the Lagrange 

multiplier method is utilized, and then (7) is 

transformed into the following cost function: 

 2 H H( ) ( ),CLMS k kξ k E e  
 

+ λ C w f  (8) 

where λ is the Lagrange multiplier. 

For the obtained cost function, namely (8), a close-

form solution is unavailable. In this case, the gradient 

descent principle is utilized to iteratively seek for the 

solution. Then, the updating equation can be constructed 

as: 

 
1 - ( ),k k CLMSμ ξ k  ww w  (9) 

where μ represents the step size in each iteration and 

w
 is the gradient operation in terms of the weight 

vector. 

To simplify the updating equation, the 

instantaneous estimation of the gradient vector is 

utilized. In this way, the gradient vector can be 

expressed as: 

 
1

ˆ ( ) - .CLMS k kξ k e  
w

x Cλ2  (10) 

From (7), one can get the constraint condition, i.e., 

.H
C w f  Use this constraint condition, one can derive 

the updating function after several straight-forward 

calculations, which is given by:  

 
1 ,k k cμe

   w P w x fk k
 (11) 

where 

 1( ) ,

  H H
P I C C C CN N

 (12) 

which is the projection matrix with IN×N is the identity 

matrix, and fc is the constraint hyperplane which is 

given by: 

 1( ) .c

 H
f C C C f  (13) 

 

B. The CNLMS algorithm 

In CLMS algorithm, it can be seen that the step 

size, which is also referred as convergence factor, is a 

constant. As a consequence, the convergence rate of 

CLMS algorithm can be accelerated. Minimize the 

instantaneous posteriori squared error in terms of the 

step size [21]: 

   2

*

[| | ]
0,

ip

k

e k

μ





 (14) 

where 

    H1 .ip k k k ke k e μ  x Px  (15) 

Solving (15), yields, 

 0

H
.k

k k ε


x Px


  (16) 

In (16), ε is a small positive constant which can prevent 

overflowing when H

k kx Px  is too small, and μ0 is the 

initialized convergence factor. 

Finally, the update function is obtained: 

 
1 H

[ ] .k k
k k k c

k k

e

ε
   



x
w P w f

x Px
  (17) 

 

C. The p-norm-like diversity measure 

Different from the conventional Euclidean norm 

noted as ||.||p or Lp, the p-norm-like diversity measure is 

a general effective criterion developed in [24], which is 

expressed as: 

 

1

|| || ( ) , 0 1.
n

p

p like

j

x j p



 x =  (18) 

As (18) shows, it is clearly to see that the so-called p-

norm-like diversity measure is not a classical norm, but 

they have close connection to provide sparse solution 

and can be used for sparse array beamforming. In  

[24-25], numerical simulation results have shown that 

the p-norm-like diversity measure outperforms the 

conventional l1-norm optimal method for sparse system 

identification. Hence, in this paper the p-norm-like is 

utilized to exploit the sparsity characteristic of weight 

vector in adaptive beamforming algorithm.  

 

D. Derivation of the PNL-CNLMS algorithm 

The proposed PNL-CNLMS algorithm employs the 

p-norm-like diversity measure to develop the sparse 

adaptive beamforming algorithm, which is to solve: 

 2 ;
min    s.t.   

|| || ,

k

k

k p like

E e
z

     

H

w

C w f

w
 (19) 

where z acts as the constraint factor which lies in the 

range (0, 1), while ek, C, wk and f have the same 

meaning which are mentioned earlier in this paper.  

Then, to solve (19), the Lagrange multiplier 

method is employed to acquire the objective function 

corresponding to (19): 

 
2 H H

- 1( ) ( )

[|| || - ],

p like k k

p like k p like

ξ k E e

z 

  
 



+ λ C w f

              w

=



 (20) 

where λ1 and λp-like are vector and scalar, respectively, 

which are the Lagrange multipliers. 

Again, it is hard to obtain a close-form solution  
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for (20). Similar to (8), (9), and (10), instantaneous 

estimation is used to implement the gradient of (20), 

which yields: 

 
- 1

ˆ ( ) 2 + ,p like k k p like p likeξ k e     
w

x Cλ Q  (21) 

with 

 
1-

|| || sgn( )
= = ,

| |

k p like k
p like p

k k









w w
Q

w w
 (22) 

where sgn(·) is a sign function whose definition is: 

 
1, 0

sgn( ) -1, 0 ,

0 0,




 
 

x

x x

x

 (23) 

Based on the principle of gradient descent concepts 

shown in (9), we can get the final updating equation 

given by: 

 
1 -

ˆ- ( ),  k k p likeμ ξ k
w

w w  (24) 

where -
ˆ ( )p likeξ k

w  is given in (21). 

An upper bound is imposed on (22) to avert 

divergence when the entries of wk become zero. This is 

an essential step especially when the algorithm itself is 

aimed to exploit sparse characteristic of the weight 

vector. As a consequence, Qp-like is expressed as: 

 
1-

sgn( )
= ,

| |

k
p like p

p like k



 

w
Q

w
 (25) 

where εp-like is a small positive constant.  

The next task is to acquire the Lagrange multipliers. 

When the algorithm has converged, i.e., wk+1=wk, then 

we can rewrite the constraints in (19) to be: 

 
H H

1

1

,

|| || .

k k

p like k p like k k p like z



   

  


  

C w C w f

Q w Q w w
 (26) 

Take (21) into (24), and premultiplying (24) by CH 

and Qp-like respectively, the Lagrange multipliers λ1 and 

λp-like are available: 

 
1

H

(2 ),

2-2
( ) + ,

k k p like p like

k p like k

p like e

λ

e
λ z

nμ n



 







  






λ G x Q

Q Px

e
 (27) 

with 

 H 1 H

2

2

=( ),

( ) ,

|| || .

H

e p like k

p like

z z

n







 






Q w

G C C C

= PQ

 
(28) 

Then consider the normalizing approach in [26], 

the final updating formulation for the proposed PNL-

CNLMS algorithm can be written as: 

 *

1 ( ),
p like

k eμ e z
v


  

PQ
w w W

kk k
 (29) 

where 

 

H

H

0

H

1

,

( )

,

( ) ,

( ).
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p like p like
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k e k

k
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k

q

v

e z
v

e

q
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H H

Q Px

Q PQ

PQ
x

W x

P I C C C C

Q
W P x

,






N N

 

(30) 

 

 
 

Fig. 3. Beampatterns of the proposed algorithms versus 

the CNLMS algorithm and the existing algorithms in [5, 

8]. Purple line is the SOI, yellow lines are interferences. 
 

 
 (a) (b) 

 
 (c) (d) 

 

Fig. 4. Sparse arrays thinned by the proposed 

algorithms and the algorithm developed in [5]: (a) L1-

WCNLMS in [5], (b) RL1-CNLMS algorithm in [8],  

(c) PNL-CNLMS algorithm with p=0.7, and (d) PNL-

CNLMS algorithm with p=0.8. 
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IV. SIMULATION RESULTS 
The proposed algorithm is expected to provide a 

better performance than the existing sparse adaptive 

beamforming algorithms [5, 8]. To evaluate its 

performance, several numerical simulations are carried 

out. The SOI as well as the interferences are QPSK 

signals from the azimuth of 90°, 30°, 58°, 127° and 

163°, respectively, with an identical elevation angle of 

45°. The signals are received by a rectangular array 

(RA) which contains 100 antenna elements with 10 

rows and 10 columns. The signal-to-noise ratio (SNR) 

is set to 30 dB and the initialized convergence factor for 

L1-WCNLMS, RL1-CNLMS, CNLMS and PNL-CNLMS 

are 5×10-3, 2×10-2, 5×10-3 and 7×10-3, respectively. The 

constraint factor z is selected as 0.8 uniformly. The 

iteration index is 6×103, while εp-like is equal to 5×10-3. 

Figure 3 depicts the comparison of beam patterns. 

All the algorithms can form a mean lobe in the direction 

of SOI and generate nulls to attenuate interferences 

which are similar with that of the non-sparse classical 

CNLMS beamforming algorithm. Nevertheless, the  

side lobe level (SLL) for the proposed PNL-CNLMS 

algorithm as well as the L1-WCNLMS and RL1-CNLMS 

algorithms are a little higher than the CNLMS algorithm. 

However, the proposed new algorithm shows lower 

SLL against the existing sparse adaptive beamforming 

algorithms. It is found that for p=0.7 and p=0.8, the 

proposed algorithm shows a better balance between 

array sparsity and beampattern performance. 

 

 
 

Fig. 5. Final sparse array ratio for the algorithms 

presented in Fig. 3 and Fig. 4. 

 

Figure 4 illustrates the final thinned sensor array 

obtained by the proposed PNL-CNLMS algorithm and 

the existing adaptive sparse beamforming algorithms  

[5, 8]. In this paper, sparse ratio is defined as the 

percentage of active antenna elements taking account of 

the total antenna elements. The final sparse ratio is 

provided in Fig. 5. The figures indicate that all the 

algorithms hold the ability for realizing sparse adaptive 

beamforming. Nevertheless, the proposed algorithm can 

exploit a higher sparse level, it has a better performance 

in terms of beampattern in comparison with the existing 

algorithms, though the proposed algorithm has a better 

performance. This is because that the p-norm-like 

diversity measure can effectively exploit the sparse 

characteristic than the L1-norm and the reweighted L1-

norm. In addition, simulation results reveal that there is 

no particular correlation between parameter p and the 

sparsity of the antenna array. In a word, our proposed 

adaptive beamformer can turn off the trivial antenna 

elements in order to reduce the power supply and keep 

a similar performance in the RA beamforming. 

 

 
 

Fig. 6. Beampatterns of the proposed algorithms versus 

the CNLMS algorithm and the existing algorithms in [5, 

8]. Purple line is the SOI, yellow lines are interferences. 

 

 
 (a) (b) 

 
 (c) (d) 

 

Fig. 7. Sparse arrays thinned by the proposed 

algorithms and the algorithm developed in [5]: (a) L1-

WCNLMS in [5], (b) RL1-CNLMS algorithm in [8],  

(c) PNL-CNLMS algorithm with p=0.5, and (d) PNL-

CNLMS algorithm with p=0.7. 

 

Herein, to verify the effectiveness of the proposed 

algorithm, another example is presented. In this case, 

the directions of signals are 25°, 63°, 90°, 133°, and 

158°, respectively. The elevation is set as 30°. p=0.5 

and p=0.7 are selected, while other parameters are 

consistent with the first example. Figure 6 depicts the 
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beampatterns of the proposed algorithm and other 

related sparse beamforming algorithms. The finalized 

sparse array is illustrated in Fig. 7. In this example, the 

proposed algorithm can get the ideal beampattern based 

a sparse array. What’s more, it is clearly seen that  

the proposed PNL-CNLMS algorithm can provide a 

compromise between beampattern and array sparsity. 
 

V. CONCLUSION 
In this paper, a p-norm-like constraint normalized 

least mean square (PNL-CNLMS) algorithm is proposed 

for sparse adaptive beamforming. Two experiments are 

provided in the simulation to discuss the performance 

of the proposed algorithm. The proposed PNL-CNLMS 

algorithm can provide a similar beampattern with that 

of the conventional non-sparse adaptive beamforming 

algorithm using less antenna elements. For the sake  

of comparison with the existing sparse adaptive 

beamforming algorithms, the proposed PNL-CNLMS 

algorithm has a better beamforming performance and 

provides higher sparse level, which verifies the 

superiority of the proposed algorithm. Besides, by 

adjusting the parameter p, a trade-off between 

beampattern and sparse array is achieved. Still, the 

proposed algorithm shows potential to be further 

improved, e.g., reduce the SLL. What’s more, the 

convergence rate for the proposed algorithm can be 

improved if a variable parameter p is employed, and the 

task is how to exploit the sparsity. In the future, the 

proposed algorithm can be further developed under 

impulsive noise and it can be used for MIMO antenna 

arrays [27-34].  
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