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Abstract ─ Two methods are proposed to get a discrete-

time model for a sinusoidal carrier signal affected by 

phase noise of a predetermined power spectral density 

(PSD). The proposed methods aim to calculate the 

instantaneous phase error at the discrete time samples.  

In the first method, uncorrelated uniformly distributed 

random numbers are generated at the discrete time 

samples and added to the angle of the carrier. These 

phase samples are, then, correlated along the time by 

enforcing the spectrum of the signal to take the 

magnitudes obtained from the predetermined PSD. In the 

second method, uniformly distributed random numbers 

are generated at the discrete frequencies which are 

uncorrelated along the frequency to represent the phase 

of the signal spectrum. In both methods, a subsequent 

application of the inverse Fourier transform results in the 

time domain waveform of the signal in which the time 

samples of the phase error appear as correlated random 

values. The instantaneous phase error is calculated  

for different ratios of the noise-to-carrier power. 

Experimental measurements of the PSD of the phase 

noise for some commercially available microwave 

generators are performed and the measurements are used 

to calculate the instantaneous phase error associating the 

output signal. In all the cases, the obtained phase noise 

model is used to study the effect of such a noise type on 

the performance of M-ary PSK communication systems 
where the dependence of the bit-error-rate on the noise-

to-carrier power level is investigated. 

 

Index Terms ─ M-ary PSK, phase error, phase noise. 
 

I. INTRODUCTION 
The growing capacity and quality demands in 

wireless communication systems imposed more stringent 

requirements on the accurate assessment and modeling 

of the phase noise of local oscillators. Even in the digital 

world, phase noise in the guise of jitter is important. 

Clock jitter directly affects timing margins and hence 

limits system performance. Phase noise causes spectral 

purity degradation which leads to channel interference in 

RF communication channels. In OFDM systems, Phase 

noise has two detrimental effects on the performance. It 

rotates all the subcarriers in the same OFDM symbol 

with a common phase, which is called common phase 

error (CPE). The more important is that it destroys the 

orthogonality of the subcarriers by spreading the power 

from one subcarrier to the adjacent subcarriers which is 

called inert-carrier interference [1]. In digital modulation 

techniques specially those employing phase to encode 

data as in PSK communication systems, it reduces the 

distance between the symbols leading to higher error 

rates. Phase noise in oscillators is one of the hardware 

impairments that is becoming a limiting factor in high 

data rate digital communication systems. It limits the 

performance of systems that employ dense constellations. 

Moreover, the level of phase noise at a given offset 

frequency increases with increasing the carrier frequency, 

which means that the phase noise problems may be 

worse in systems with high frequency carriers [1].  
Phase noise is random phase fluctuations in a 

waveform. The fluctuations are visualized as sidebands 

in the signal power spectrum spreading out on either side 

of the signal. It reduces in level with increasing offset 

from the carrier frequency and is typically measured in 

dBc/Hz [1]. Phase noise is of particular importance as it 

reduces the quality of the signal and thus increases the 

rate of error in a communication link.  

Phase noise is a phenomenon that essentially 

spreads out the power in a carrier. The carrier has no 

longer a discrete line power spectrum but a continuous 

PSD. The phase noise plot is a single side spectrum 

indicating the noise power density in one hertz 

bandwidth with regard to the carrier power. It can be 

modeled using power-law noise processes [2-4]. Phase 

noise typically rises much faster closer to the carrier and 

falls away as we get far from the carrier [5]. Power law 

noise processes are characterized by their functional 

dependence on Fourier frequencies. The spectral density 

plot of a typical oscillator's output is usually a combination 

of different power-law noise processes. It is very useful 

and meaningful to categorize the noise processes. The 

first job in evaluating a spectral density plot is to 

determine which type of noise exists for a particular  
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range of Fourier frequencies. 

Several attempts to model phase noise have been 

reported in literature [6]-[12]. In [6], the oscillator phase 

noise is represented as integration of two functions 

representing flicker noise and white noise assuming 

independent noise sources. In [7], the phase noise is 

modeled as accumulated and synchronous random phase 

deviations with Gaussian distribution. It also relates the 

PSD of a noisy periodic signal analytically to its phase 

deviations which can be estimated from the jitter of the 

signal. In [8], flicker noise is estimated from white noise 

using the method of fractional order of integration. In 

[9], the phase noise is modeled as a random walk 

stochastic process added as random phase term to a sine 

wave and the decrease in sideband power is calculated 

when the oscillator signal is coherently mixed with a 

time delay replica of itself. In [10], a non-linear equation 

for the phase error is derived which is solved for the 

random phase perturbations. In [11] a power law model 

is used to model the phase noise with Gaussian stochastic 

process to represent the noise sources and a random 

variable representing the slope of each process. In [12] 

an analytic model for phase noise is derived to account 

for two sources of phase noise, thermo-mechanical and 

white noise.  

In this work, the phase error range is estimated 

explicitly for phase noise characterized by its single side 

band PSD. A mathematical model for the phase noise is 

developed which enables the determination of the phase 

error span and instantaneous time samples. All the sources 

of phase noise can be accounted for in the proposed 

phase noise model accurately. Each of the previously 

mentioned methods has modeled certain types of phase 

noise sources but not all the sources that can be present 

in practical cases. Experimental measurements of the 

PSD of the phase noise for some commercially available 

microwave generators are performed and the instantaneous 

phase error associating the output signal is calculated. 

The effects of the phase noise on the performance of 

communication systems employing PSK modulation 

techniques are studied. The bit error rate (BER) and 

symbol rate (SER) can then be estimated for specific 

PSD of the phase noise. 
 

II. MODELING THE PHASE NOISE 
There are several types of phase noise, each 

characterized by the slope of the PSD curve. Phase noise 

across a range of frequencies will be dominated by a 

specific noise process [13]. In the present work it is 

considered that the oscillator may suffer from all or some 

of the following causes of phase noise, (i) Random walk 

FM noise (1/𝑓4) found at lower offset frequencies, (ii) 

flicker frequency noise (1/𝑓3), (iii) white frequency noise 

(1/𝑓2) [14], (iv) flicker PM noise (1/𝑓)[15], and (v) 

white PM noise (1/𝑓0), which is mainly caused by 

thermal noise and shot noise [3]. It is possible to consider 

that all the five noise processes are generated from a 

single oscillator, but usually, only two or three noise 

processes are dominant. Figure 1 is a graph of single 

sideband PSD of a sinusoidal signal affected by phase 

noise on a log-log scale with all the five noise processes 

taken into consideration. 

 

 
 

Fig. 1. Single side band PSD 𝐿(𝑓) describing phase noise 

characteristics. 

 

The phase noise in the frequency domain is 

commonly characterized by the single side band PSD, 

𝐿(𝑓), which is defined as the noise power in 1 Hz 

bandwidth at an offset frequency, 𝑓, from the carrier 

frequency relative to the carrier power [16, 17]: 

    𝐿(𝑓) =
Noise power in 1Hz bandwidth

𝑃𝑐

, (1) 

where 𝑃𝑐 is the carrier power. 

The magnitudes of the spectrum of a carrier signal 

affected by phase noise can be obtained as follows: 

𝐴(𝑓) = √𝑃𝑐  𝐿(𝑓). (2) 

The spectrum of a pure sinusoidal signal is a Dirac 

delta function. The presence of phase noise will cause 

spectrum broadening as shown in Fig. 2. The noise-to-

carrier power ratio (NCR) in a bandwidth Δ𝑓 centered at 

the carrier frequency can be calculated as follows: 

NCR = 2 ∫ 𝐿(𝑓) 𝑑𝑓
Δ𝑓/2

0

. (3) 

The PSD of the phase noise, 𝐿(𝑓) can be described by 

equation (1) according to the explained physical sources. 

This gives rise to the magnitude distribution 𝐴(𝑓) given 

by equation (2). However, the phase of the noisy signal, 

𝜓(𝑓), and the instantaneous phase error in the time 

domain, 𝜑𝑒(𝑡), are not known. The knowledge of the 

discrete-time phase errors, 𝜑𝑒(𝑡𝑛),   𝑛 = 1,2,3, ⋯ , 𝑁, are 
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Frequency Offset  

 −40 𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 

−30 𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 

−20 𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 

−10 𝑑𝐵/𝑑𝑒𝑐𝑎𝑑𝑒 
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necessary whenever it is required to assess communication 

system performance measure such as the bit error rate 

(BER). The next section aims to evaluate the phase errors 

as functions of the frequency and time as well. 

 

 
 

Fig. 2.  Spectrum of a sinusoidal signal affected by phase 

noise. 

 

For performance assessment in many applications 

including communication systems, it is necessary to 

determine the instantaneous phase error of a carrier 

signal subjected to phase noise. Modeling the phase 

noise means to get complete numerical information 

about a carrier signal affected by phase noise of a given 

PSD distribution. Complete information include the 

magnitude and phase distributions over the frequency for 

the carrier signal when affected by the phase noise, and 

also give the time samples of the signal from which the 

instantaneous phase error can be deduced.  

In the first method, the phase noise is modeled 

through the following steps. First a random sequence  

of uniformly distributed random phase samples is 

generated and added to the angle of the carrier signal in 

time domain. The Fourier transformation is applied to 

the carrier signal where the magnitudes of the resulting 

signal spectrum are replaced by the magnitudes 𝐴(𝑓) 

which are obtained from 𝐿(𝑓) as given by (2). This 

process has the effect of correlating the random phase 

error samples along the time. The inverse Fourier 

transformation is, then, applied giving rise to the 

correlated time samples of the instantaneous phase error 

caused by the phase noise.  

At high frequencies (in the gigahertz range) the 

above method may be impractical as it requires huge 

number of time and frequency samples to perform the 

Fourier transform which is memory and time consuming. 

An alternative procedure is proposed to construct the 

model of such a carrier signal with less computational 

complexity. This procedure starts with the construction 

of the magnitude and phase distribution in the frequency 

domain for the noisy carrier signal and then the inverse 

Fourier transform is applied to get the corresponding 

time samples. It should be noted that the magnitudes  

are obtained from the 𝐿(𝑓) as given by (2) whereas  

the phases (of the signal spectrum) are constructed as 

uniformly distributed random numbers in the range 

[−𝜋, 𝜋], which are not correlated along the frequency.  

The following subsections provide descriptions for the 

two methods mentioned above to construct a model for 

the phase noise when affects a carrier signal. 

 

A. Modeling phase noise as correlated time sequence 

of random phase errors 

Let the carrier signal 𝜉(𝑡) without the phase noise 

be expressed as: 

𝜉(𝑡) = 𝐴𝑐 𝑒𝑗(2𝜋𝑓𝑐𝑡 + Ψ), (4) 

where 𝐴𝑐 is the carrier amplitude, 𝑓𝑐 is the carrier 

frequency, and Ψ is a constant phase. When such carrier 

signal is affected by phase noise, it can be expressed as: 

𝑠(𝑡) = 𝐴𝑐e𝑗(2𝜋𝑓𝑐𝑡+Ψ+𝜑𝑒(𝑡)), (5) 

where 𝜑𝑒(𝑡) is the unknown instantaneous value of the 

phase error due to phase noise. 

Let us consider a signal 𝑥(𝑡) similar to 𝑠(𝑡) except 

for one difference; the unknown phase error 𝜑𝑒(𝑡) is 

replaced by random variable Φ(𝑡) which represents the 

uniformly distributed random phases over the time. This 

means that, 

𝑥(𝑡) = 𝐴𝑐e𝑗(2𝜋𝑓𝑐𝑡+Ψ+Φ(𝑡)). (6) 

For discrete time 𝑡𝑛 = 𝑛 ∆𝑡, 𝑛 = 1,2, … 𝑁, the signal 

𝜉(𝑡) is discretized to get a sequence of 𝑁 time samples: 

𝜉𝑛 = 𝜉(𝑡𝑛) = 𝐴𝑐 𝑒𝑗(2𝜋𝑓𝑐𝑡𝑛 + Ψ),
𝑛 = 1,2, … , 𝑁. 

(7) 

Initially, a sequence of 𝑁 uncorrelated uniformly 

distributed random angles in the closed interval 

[−Φmax, Φmax] is generated as follows: 

Φ𝑛 = Φ(𝑡𝑛) = 𝑟𝑛 Φmax,  (8) 

where 𝑟𝑛 is a random number in the range [−1, 1] and 

0 < Φmax  < 𝜋. 

An expression for the discrete signal 𝑥𝑛 can be 

obtained by adding discrete angle errors Φ𝑛 to the phase 

of the discrete time samples 𝜉𝑛 as follows: 

𝑥𝑛 = 𝑥(𝑡𝑛) = 𝐴𝑐 𝑒𝑗(2𝜋𝑓𝑐𝑡𝑛+Ψ+Φ𝑛). (9) 

Applying the Fast Fourier Transform (FFT) to the 

discrete sequence 𝑥𝑛, one gets: 

𝑋𝑘 = 𝑋(𝑓𝑘) = FFT(𝑥𝑛),
𝑘 = 0,1, 2, … , 𝐾, 

(10) 

where 𝑓𝑘 = 𝑘∆𝑓, 𝑘 = 0,1, 2, … , 𝐾, and ∆𝑓 is the discrete 

frequency step. 

 

𝑓𝑐 Frequency  

Oscillator Bandwidth   
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Let’s define,  

𝛼𝑘 = |𝑋𝑘|, 𝑘 = 0,1, 2, … , 𝐾, (11) 

𝜓𝑘 = phase(𝑋𝑘), 𝑘 = 0,1, 2, … , 𝐾. (12) 

Let us write the discrete form of 𝐿(𝑓) as:  

𝐿(𝑓𝑘) = 𝐿𝑘 , 𝑘 = 1, 2, … , 𝐾. (13) 

To get the desired PSD 𝐿(𝑓), the discrete spectrum 

𝑋𝑘 should be modified by replacing the magnitudes 𝛼𝑘 

by 𝐴𝑘 where, 

𝐴0 = 𝐴𝑐 , (14-a) 

𝐴𝑘 = √𝑃𝑐  𝐿𝑘 = 𝐴𝑐  √𝐿𝑘 ,

𝑘 = 1, 2, … , 𝐾. 
(14-b) 

Thus, the final form of the carrier 𝑆(𝑓) affected by 

the phase noise signal can be constructed using the 

magnitudes 𝐴𝑘 and the phases 𝜓𝑘 as follows: 

𝑆𝑘 = 𝑆(𝑓𝑘) = 𝐴𝑘 𝑒𝑗𝜓𝑘 , 𝑘 = 0,1, 2, … , 𝐾. (15) 

The distribution of the discrete magnitudes of the Fourier 

transform of a carrier signal affected by the phase noise 

with the discrete frequencies seems like that shown in 

Fig. 3. It is worth noting that the spectrum is broadened 

due to the phase noise and that the carrier power is 

reduced. It is also important to note that irrespective of 

the value of Φmax, the phases 𝜓𝑘 given by (12) have 

uniform random distribution in the interval [−𝜋, 𝜋] and 

the carrier phase is equal to Ψ.  

The corresponding time sequence of the carrier 

signal, can be obtained by applying the Inverse Fast 

Fourier Transform (IFFT) to the frequency samples, 𝑆𝑘: 

𝑠𝑛 = 𝑠(𝑡𝑛) = IFFT(𝑆𝑘). (16) 

The discrete-time phase error due to phase noise, 

𝜑𝑒𝑛
 which is the phase error at each time sample 𝜑𝑒𝑛

=

𝜑𝑒(𝑡𝑛), can be obtained as follows: 

𝜑𝑒𝑛
= tan−1 [

imag(𝑠𝑛)

real(𝑠𝑛)
] − (2𝜋𝑓𝑐𝑡𝑛 + Ψ). (17) 

Thus, the discrete time sequences of carrier signal 

affected by phase noise can be expressed as: 

𝑠𝑛 = 𝑠(𝑡𝑛) = 𝐴𝑒𝑗(2𝜋𝑓𝑐𝑡𝑛+Ψ+𝜑𝑒𝑛). (18) 

It may be interesting to notice that even though the 

sequences Φ𝑛 are uncorrelated random samples with 

time, the samples 𝜑𝑒𝑛
 are sequentially correlated. 

Actually, the correlation effect is attributed to the 

imposed magnitude distribution, 𝐴𝑘, that replaces the 

magnitudes 𝛼𝑘 corresponding to the uncorrelated 

sequences. 

It may be worth to recall that the number of 

time/frequency samples for IFFT is restricted by 𝑁 =

1

∆𝑓∆𝑡
. The main drawback of this method is that the 

requirement of 1 Hz resolution of the resulting phase 

noise model in the frequency domain means the 

application of IFFT on a huge number of frequency 

samples. Quantitatively speaking, for ∆𝑓 = 1 Hz and 

assuming the time sampling is to be performed with the 

Nyquist rate, ∆𝑡 = 1 2𝑓𝑐⁄ , one gets: 

𝑁 = 2𝑓𝑐. (19) 

It should be noted that (19) gives the minimum value of 

𝑵. Larger values of 𝑵 result in better accuracy of the 

obtained model of the phase noise. Nevertheless, this leads 

to computational complexity which may be unaffordable 

for high carrier frequency. 

 
 

Fig. 3. Magnitudes of the spectrum of the noisy carrier 

signal, 𝑆(𝑓). 

 

B. Modeling phase noise as uncorrelated random 

phases in the frequency domain 

As mentioned above, the method introduced in the 

previous section leads to high computational complexity 

for high frequency carrier. In this section, a more 

computationally efficient method alternative to that 

described in the last section is introduced. This method 

starts constructing the phase noise model directly in  

the frequency domain by generating the phases 𝜓𝑘 as 

uniformly distributed random numbers in the range 

[−𝜋, 𝜋] in one hand, and, in the other hand, using the 

magnitudes 𝐴𝑘 given by (14) to construct the discrete 

frequency samples 𝑆𝑘 as expressed in (15). The phase at 

the carrier frequency (zero frequency offset) is set equal 

to phase of the carrier in the absence of phase noise (Ψ). 

The discrete frequency domain samples 𝑆𝑘 of the 

carrier signal are constructed using the magnitudes 𝐴𝑘 

and the random phases 𝜓𝑘 according to the following 

expression: 

𝑆𝑘 = 𝑆(𝑓𝑘) = 𝐴𝑘 𝑒𝑗𝜓𝑘 . (20) 

At a specific discrete time index, 𝑛, the sample  
𝑠𝑛 can be calculated by applying the Discrete Inverse 

Fourier Transform ( DIFT) as follows: 

Frequency Offset  

𝐴𝑘  

Carrier Amplitude 

1Hz offset  𝑘∆𝑓  

𝐴𝑐  
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𝑠𝑛 = 𝑠(𝑡𝑛) = DIFT(𝑆𝑘). (21) 

The corresponding phase error 𝜑𝑒𝑛
 due to phase noise  

is calculated using (17). Note that the time step ∆𝑡 for 

DIFT calculation is set arbitrarily; it doesn’t obey the 

restriction for the relation between ∆𝑓 and ∆𝑡 as in the 

IFFT. This enables computationally efficient calculation 

of the phase error samples over a large time span with 

arbitrary time resolution. Also, this method enables 

computationally efficient construction of the spectrum of 

the noisy carrier signal over an arbitrary frequency range 

centered at the carrier frequency with high frequency 

resolution (1 Hz).   
 

III. RESULTS AND DISCUSSIONS 
Recall that the purpose of constructing a phase noise 

model is to get complete description of a carrier signal 

affected by phase noise. In this section, a model is 

constructed for such a carrier signal given the PSD 

distribution of the phase noise. Such a model describes 

the time samples of the carrier as well as the samples  

of the instantaneous phase errors encountered due to  

the phase noise. Two oscillators of carrier frequencies 1 

MHz and 1 GHz are considered and the corresponding 

signal models are constructed by following the procedures 

explained in Sections II.A and II.B, respectively. For 

each carrier signals, the time samples of the phase  

error are calculated over a time span of 1 second. For 

experimental assessment, the frequency-domain method 

proposed in the present work is applied to obtain the 

models of the noisy carrier signals output from two 

commercially available microwave generators. A vector 

signal analyzer (VSA) is used for measuring the PSD  

of the encountered phase noise for the two microwave 

generators. Finally, the performance assessment of 𝑀-ary 

PSK communication systems subjected to phase noise is 

achieved regarding the BER and SER for 𝑀 = 4 and 8. 
 

A. Modeling phase noise as correlated sequential 

random phase errors 

For carrier signals of relatively low frequency (a few 

megahertz) affected by phase noise, it is appropriate to 

apply the method described in Section II.A to construct 

the phase noise model by correlating random sequence 

of uncorrelated phases in the time domain. Such 

uncorrelated random sequence is generated as uniformly 

distributed random numbers. In the present section,  

this method is applied to obtain the noise model for a 

1 MHz carrier signal affected by phase noise having a 

predetermined PSD distribution over the frequency. 
 

A.1 Construction of the frequency spectrum 

magnitudes of the noisy signal 

Let the PSD, 𝐿(𝑓), for a range of 1 MHz offset from 

the carrier frequency be that shown in Fig. 4. In the first 

and second decades: (1Hz − 10 Hz), (10 Hz − 100 Hz), 

the 𝐿(𝑓) curve has slopes of −40  and −30 dB/decade, 

respectively. In the third and fourth decades: (100 Hz −
1 kHz), (1 kHz − 10 kHz), it has slope of −20 dB. In 

the fifth decade: (10 Hz − 100 kHz), it has slope of 

−10 dB. For frequencies higher than 100 kHz, the 𝐿(𝑓) 

curve has a zero-slope corresponding to white phase 

noise level of −130 dBc/Hz. The maximum of the PSD 

is −10 dBc/Hz at 1 Hz offset from the carrier. If a carrier 

signal of 1 MHz is affected by phase noise of such a PSD, 

the corresponding magnitudes of the signal spectrum  

can be obtained by (14). Figure 5 shows a plot of the 

resulting signal spectrum magnitudes for a single side 

span of 100 Hz offset from the carrier frequency. 
 

 
 

Fig. 4. Power spectral density 𝐿(𝑓) of the phase noise. 
 

 
 

Fig. 5. Amplitude spectrum of the synthesized model, 

𝑆(𝑓), for a 1 MHz carrier affected by phase noise of the 

PSD given in Fig. 4. 
 

A.2 Phases of the frequency spectrum of the noisy 

signal 

The time-domain carrier signal is discretized so that 

each cycle of the sinusoid has 16 time samples. Thus, for 

one second duration of this signal, the total number of 

samples is 𝑁 = 16M samples with time resolution of 

∆𝑡 =
1

𝑁
 (as ∆𝑓 = 1Hz). The uncorrelated uniformly 

distributed random sequence of phase samples Φ(𝑡) are 

generated as described in section II.A according to (8) 

with Φmax =
𝜋

2
. The application of the FFT operation on 

the discrete-time carrier signal 𝑥𝑛 given by (9) with the 

imposed phase samples, Φ𝑛, results in a spectrum whose 

magnitudes and phases in the frequency domain are 𝛼𝑘 

and 𝜓𝑘, respectively. The phases, 𝜓𝑘, are found to be 

random numbers which are uniformly distributed in  

ACES JOURNAL, Vol. 34, No. 12, December 20191935



the range [−𝜋, 𝜋]. The plot of such phases with the 

frequency is presented in Fig. 6 for an offset frequency 

span of 100 Hz from the carrier frequency.   
 

 
 

Fig. 6. Distribution of the discrete phases of 𝑆(𝑓) with 

the frequency for a carrier signal affected by phase noise. 
 

A.3 The phase error time samples 

It should be mentioned that the phase error is 

calculated by continuing the steps achieved in Section 

A.2, according to the procedure explained in Section 

II.A. The 𝛼𝑘 magnitudes are, then, replaced by 𝐴𝑘 which 

are given by (14) to obtain the frequency spectrum, 𝑆𝑘 ≡
𝑆(𝑓𝑘), of the noisy carrier signal as described by (15). 

The IFFT is, then, applied to the discrete frequency 

samples, 𝑆𝑘, to get the discrete time samples 𝑠𝑛 ≡ 𝑠(𝑡𝑛). 

The time samples of the instantaneous phase error 𝜑𝑒𝑛
 

are obtained using (17). The calculated time samples of 

𝜑𝑒𝑛
 for a time span of one second are plotted against the 

time and shown in Fig. 7. It is clear that the sequential 

samples of the phase error are temporally correlated over 

the one-second span of the time. The swing of the phase 

error, which is the difference between the maximum and 

minimum, is about 65°. 
 

 
 

Fig. 7. Time samples of the instantaneous phase error of  

a carrier signal affected by phase noise of the PSD 

described by the curve 𝐿(𝑓) presented in Fig. 4 with Ψ =
0°. 
 

B. Modeling phase noise as uncorrelated random 

phases in the frequency domain 

For carrier signals of relatively high frequency  

(gigahertz) affected by phase noise, it is appropriate to 

apply the method described in Section II.B to construct 

the phase noise model by generating uncorrelated 

random sequence of phases in the frequency domain. In 

the present section, this method is applied to obtain the 

phase noise model for a 1 GHz carrier signal of 0dBm 

power and 0° phase. This signal is affected by phase 

noise of the PSD distribution presented in Fig. 4 which 

is defined over the frequency offset range 1 Hz to 1 MHz 

with a frequency step ∆𝑓 = 1 Hz.  

The spectrum of the noisy signal is obtained by 

calculating the distribution of the magnitudes and phases 

over the frequency range (𝑓𝑐 − 1 MHz) to (𝑓𝑐 + 1 MHz). 

The magnitudes are obtained from the PSD distribution, 

𝐿(𝑓), as given by (14) and by setting 𝐴−𝑘 = 𝐴𝑘 to get 

symmetrical sidebands. This results in the magnitudes 

distribution presented in Fig. 8 over the offset frequency 

range (−4 kHz to 4 kHz) from 𝑓𝑐. 

 

 
 

Fig. 8. Magnitudes of the spectrum for a 1 GHz carrier 

signal affected by phase noise of the PSD distribution 

presented in Fig. 4. 

 

It should be noticed that to cover the entire 

frequency band, (𝑓𝑐 − 1 MHz) to (𝑓𝑐 + 1 MHz), a number 

of 2 mega samples of the frequency samples plus the 

carrier frequency sample are required. The frequency 

domain phases, 𝜓𝑘, are generated as uniformly distributed 

random numbers in the interval [−𝜋, 𝜋].  
 

 
 

Fig. 9. Calculated instantaneous phase error for a 1 GHz 

carrier due to phase noise with the PSD shown in Fig. 4. 

 

The phase error at each time sample is calculated as  

given by (17) with time step ∆𝑡 = 5ms and plotted over 

a time period of one second as shown in Fig. 9. It can be 

seen in the figure that the mean of the phase error is 0° 

and the swing is about 65°. The time samples 𝜑𝑛 are  
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calculated over a time span of one second. 
 

C. Dependence of the time-variance of the phase 

error on phase noise power 

It has been shown, in the previous discussions of the 

results concerning the time variation of the phase error, 

that it can be considered as a time-correlated sequence  

of random angles with zero-mean and a variance that 

may be dependent on the power of the phase noise. The 

dependence of the time-variance of the resulting phase 

error on the power of a phase noise having a spectral 

density distribution as shown in Fig. 4 and affecting a 1 

GHz carrier signal is studied. It may be worth noting that, 

referring to Fig. 4, the area under the 𝐿(𝑓) curve within 

the operational bandwidth, gives half the ratio of noise 

power to the carrier power. In Fig. 10 the standard 

deviation of the phase error and the corresponding  

span are calculated for different NCR within a 10 MHz 

bandwidth for a 1 GHz carrier frequency having 0 dBm 

power. It is clear that as the NCR increases the phase 

error variance and, consequently, its span increase 

monotonically. 
 

D. Experimental assessment for phase error variance 

for commercially available oscillators 

Experimental data are usually plotted on log-log 

scales that make the power laws appear as straight lines 

where the slopes and, hence, the corresponding types of 

noise can be easily recognized. In this section, the phase 

noise associated with some commercially available 

oscillators are measured and modeled to obtain the time 

samples of the oscillator output. 
 

 
 

Fig. 10. Span and standard deviation of the phase error 

for different values of the carrier-to-noise power ratio. 
 

D.1. Modeling the phase noise of the Agilent Vector 

Signal Generator (VSG) E8267D  

The Agilent VSG model E8267D is precise, well-

fabricated and commercially available for scientific 

research purposes. It operates in the frequency band 

250 KHz to 44 GHz. The spectrum of the output signal 

and the phase noise PSD for 1 GHz frequency and 0 dBm 

power are measured using the Agilent Vector Signal 

Analyzer (VSA) model N9010A. The experimental setup 

is shown in Fig. 11 where the E8267D output is connected 

to N9010A input through a Pasternack coaxial cable 

PE300-24 (cable length: 60 cm, insertion loss 0.36 dB/m 

at 1GHz). The phase noise is measured in the offset 

frequency range 1Hz − 1MHz from the carrier frequency. 

Front-panel screen shots of the VSG and VSA showing 

the settings and measurement data are shown in Figs. 12 

(a) and 12 (b), respectively. The measured raw data and 

the averaged curve of the phase noise are plotted as 

shown in Fig. 13. The spectrum of the output signal is 

measured using the VSA with resolution bandwidth 

(RBW) of 1 Hz and video bandwidth (VBW) of 1 KHz 

over a 100 Hz span. The measured power spectrum is 

plotted as shown in Fig. 14. 
 

 
 

Fig. 11. Experimental setup for measuring the phase 

noise of the Agilent VSG model E8267D. 
 

 
(a) 

 
(b) 

 

Fig. 12. Screen shots of (a) VSG E8267D showing the 

oscillator settings, and (b) VSA N9010A, showing the 

corresponding phase noise measurements. 
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The power spectrum of the output signal from such 

a VSG can be calculated from the PSD of the associated 

phase noise over a span of 100 Hz using (14) as 

described in Section II.A. In this way, the measured PSD 

of phase noise shown in Fig. 13, is used to numerically 

obtain the power spectrum of the output signal which is 

plotted and compared with the measured spectrum as 

shown in Fig. 14. As shown in the figure the calculated 

power spectrum agrees with the measured one over the 

entire frequency band, which ensures the accuracy of the 

developed model. 
 

 
 

Fig. 13. Measured PSD of the phase noise for Agilent 

VSG model E8267D for 1 GHz frequency and 0 dBm 

power. 
 

 
 

Fig. 14. Power spectrum of the 1 GHz, 0 dBm output 

signal of the Agilent VSG model E8267D. 
 

 
 

Fig. 15. Instantaneous phase error associating the output 

signal of the Agilent VSG model E8267D. 
 

Following the procedure explained in Section II.B, 

the magnitudes 𝐴𝑘 of the spectrum is obtained from the 

measured phase noise PSD shown in Fig. 13. On the 

other hand, the phases 𝜓𝑘 are generated as uniformly 

distributed random numbers in the interval [−𝜋, 𝜋]. The 

DIFT is applied to the constructed signal spectrum to get 

the time samples of the phase error over a time span of 1 

second with resolution ∆𝑡 = 5ms. The results are plotted 

in Fig. 15. 

It is clear that the Agilent VSG model E8267D has 

very low level of phase noise and, consequently, the span 

of the phase error is about 0.7° and the corresponding 

variance is 0.02. 

 

D.2 Modeling the phase noise of the Agilent SG 

𝐍𝟗𝟑𝟏𝟎𝐀 

The Agilent SG model N9310 is commercially 

available and operates in the frequency band 9 KHz to 

3 GHz. The PSD of the phase noise associating an output 

signal of 1 GHz frequency and 0 dBm power is measured 

in the offset frequency range 1Hz − 1MHz using the same 

experimental setup described in Section III.D.1 and shown 

in Fig. 16. The measured data of the phase noise and the 

averaged curve are plotted as shown in Fig. 17. The 

instantaneous phase error is obtained from the PSD of 

the phase noise using the procedure explained in Section 

II.B and is plotted versus time as shown in Fig. 18. 
 

 
 

Fig. 16. Experimental setup for measuring the phase 

noise of the Agilent SG model N9310. 
 

 
 

Fig. 17. Measured PSD of the phase noise for Agilent SG 

model N9310 for an output signal of 1 GHz frequency 

and 0 dBm power. 
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Fig. 18. Instantaneous phase error associating the output 

signal of the Agilent SG model N9310 for a frequency of 

1 GHz and output power of 0 dBm. 
 

E. Performance assessment of 𝑴-ary PSK 

communication systems using the proposed model of 

the phase noise 

In this section, the proposed phase noise model is 

used to assess the performance of the communication 

systems employing 𝑀-ary PSK modulation techniques  

in the presence of phase noise. The swing of the 

instantaneous phase error obtained as described in 

Section II is used to study the effect of the phase noise 

on the BER for different levels of the noise power. The 

procedure is performed with 1 Hz frequency resolution. 

It should be noted that, in the following presentations and 

discussions, the phase noise is assumed to have the PSD 

described in Fig. 4. The BER and SER are calculated for 

𝑀 = 4  and 8 at different values of the NCR through 

numerical simulation of the communication process 

where 10 M symbols are to be received. The symbol rate 

is assumed to be 10 Msps. The time samples of the phase 

error are obtained for each value of the NCR following 

the procedure explained in Section II.B. At the time of 

receiving a symbol, the instantaneous value of phase 

error is added to the phase of this symbol. The calculated 

BER and SER for 𝑀 =  4 and 8 are plotted versus the 

NCR as shown in Figs. 19 and 20, respectively. The 

constellation diagrams are plotted in Figs. 21 and 22  

for phase error spans of 20𝑜 (𝑁𝐶𝑅 ≈ −28 𝑑𝐵) and 30𝑜 

(𝑁𝐶𝑅 ≈ −22 𝑑𝐵), respectively for 𝑀-ary PSK systems 

with 𝑀 =  4 and 8.  
 

 
 

Fig. 19. BER versus NCR for 𝑀-ary PSK system with 

𝑀 = 4. 

 
 

Fig. 20. BER versus NCR for 𝑀-ary PSK system with 

𝑀 = 8. 

 

 
 (a) 

 

 

 (b) 

 

Fig. 21. Constellation diagram for 𝑀-ary PSK system 

affected by phase noise at phase error swing of 20o: (a) 

𝑀 = 4 and (b) 𝑀 = 8. 
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(a) 

 

 

(b)                                                                     

 

Fig. 22. Constellation diagram for 𝑀-ary PSK for phase 

error range of 30𝑜: (a) 𝑀 = 4 and (b) 𝑀 = 8. 

 

IV. CONCLUSION 
Numerical models of the oscillator phase noise 

using two mathematical procedures to calculate the 

resulting instantaneous phase error are introduced. 

Experimental measurements of the PSD of the phase 

noise encountered in some commercially available 

oscillators have been performed and the time samples  

of the corresponding phase error are calculated. To 

demonstrate the importance and applicability of the 

proposed model of the phase noise, the effect of the 

resulting phase error on some performance measures of 

the M-ary PSK modulation techniques, such as the SER 

and BER, is investigated for 𝑀 = 4 and 8. 
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