
Efficient Wideband MRCS Simulation for Radar HRRP Target Recognition 

Based on MSIB and PCA 
 

 

Yunqin Hu * and Ting Wan 
 

Department of Communication Engineering 

Nanjing University of Posts and Telecommunications, Nanjing, 210009, China 

*huyq@njupt.edu.cn 

 

 

Abstract ─ In this paper, efficient wideband monostatic 

radar cross-section (MRCS) simulation is presented for 

radar high range resolution profile (HRRP) target 

recognition. Firstly, an efficient numerical approach is 

proposed for the wideband MRCS. The well-conditioned 

integral equation and the higher-order hierarchical 

divergence-conforming vector basis functions are utilized 

for the scattering field. The adaptive cross approximation 

(ACA) based matrix compression method is applied  

for efficient analysis of MRCS at a specific frequency 

point. The geometric theory of diffraction (GTD) based 

scattering model is utilized for MRCS over a wide 

frequency band. Secondly, the radar HRRP target 

identification is performed by using principal component 

analysis (PCA) on modified surrounding-line integral 

bispectrum (MSIB). The HRRP of target can be obtained 

by inverse fast Fourier transform (IFFT) of the spectral 

domain backscattering field within a certain frequency 

range. The one-dimensional MSIB features of HRRP  

are extracted to constitute eigenvectors for radar target 

recognition. To enhance the separation ability of radar 

target recognition, the MSIB is projected onto PCA 

space before recognition. Numerical examples prove that 

the proposed algorithm is feasible and efficient. 

 

Index Terms ─ Adaptive cross approximation, geometric 

theory of diffraction, high range resolution profile, 

modified surrounding-line integral bispectrum, principal 

component analysis. 
 

I. INTRODUCTION 
The high range resolution profile (HRRP) carries 

information of target scattering centers distribution 

along the radar line-of-sight, reflecting details of target 

structure such as scatter centers’ strength, scatter centers’ 

position, target size, and so on. These target features 

have been shown to be highly discriminative. HRRP 

based radar target recognition has received extensive 

attention and research [1-3]. 

In the field of non-cooperative radar HRRP target 

recognition, various computational electromagnetics 

algorithms have been widely used in the prediction of 

scattered electromagnetic fields of actual targets.  
Frequency domain surface integral equation (SIE) by the 

method of moments (MoM) is a powerful tool in full 

wave electromagnetic simulation, since it does not need 

to handle the absorbing boundary conditions and its 

computational domain is taken on the surface of the 

target. Most of the existing fast methods for surface 

integral equations, such as the multilevel fast multipole 

algorithm (MLFMA) [4], are based on the fact that when 

unknowns N are grouped in local spatial regions, the 

resulting blocks of the system impedance matrix Z are 

rank deficient. It is noteworthy that in radar HRRP target 

recognition, the wideband monostatic radar cross-

section (MRCS) must be simulated. Since the scattering 

field depends on both frequency and incident angle, most 

of the available iterative algorithms must be run at  

each incident angle and frequency point many times. 

Obviously, the repeated solution of linear systems is 

time-consuming and expensive.  

Many efforts have been done to accelerate the 

wideband MRCS simulation. For monostatic scattering 

at a specific sample frequency point, two classes of 

methods are mainly studied. One is the interpolation 

method, including the asymptotic waveform evaluation 

(AWE) technique [5,6] and the cubic-spline method [7]. 

The other is the matrix compression method. When 

unknowns are spatially grouped, the rank deficient 

interaction submatrices between well-separated groups 

can be well approximated as the outer product of two 

lower rank matrices. For monostatic scattering, where 

there are many right-hand sides (RHS), the blocked RHS 

can be also well approximated by this low rank outer 

product form where each outer product approximant  

is computed using the adaptive cross approximation 

(ACA) [8]. For wideband scattering analysis, impedance 

matrix interpolation [9], asymptotic waveform evaluation 

(AWE) technique [10] and Taylor expansion based 

method [11] are studied to reduce the total simulation 

time.  

The HRRP of target can be obtained by inverse fast 

Fourier transform (IFFT) to the simulated wideband 

MRCS. However, due to the shift sensitivity, the 
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translation invariance features reflecting the essential 

features of HRRP must be extracted from the original 

data before recognition. Fortunately, the bispectrum of 

HRRP has translation invariance while maintaining 

phase information and suppressing the additive white 

Gaussian noise (AWGN). However, using the bispectrum 

features for target recognition is inefficient, because it is 

a two-dimensional function and its data amount is the 

square of HRRP’s. Many integral bispectrum methods 

have been developed to convert a bispectrum from  

two-dimensional to one-dimensional, including radially 

integrated bispectra (RIB) [12], axially integrated 

bispectra (AIB) [13], circularly integrated bispectra 

(CIB) [14] and surrounding-line integral bispectrum 

(SIB) [15]. Compared with the others, SIB is more 

preferred because its integration path contains all the 

information of bispectrum, with no missing or reusing 

any bispectrum information, and avoids any interpolation 

in the integration process. By choosing integral paths 

exactly consistent with the bispectrum symmetry, the 

modified surrounding-line integral bispectrum (MSIB) 

has less computational complexity than SIB [16].  

This paper is organized as follows. In Section II, an 

efficient numerical approach is proposed for wideband 

MRCS. Firstly, the well-conditioned integral equation 

and the novel higher-order hierarchical divergence-

conforming vector basis functions are utilized for 

efficient analysis of electromagnetic scattering. Then, 

the matrix compression method based on ACA and the 

scattering model based on the geometric theory of 

diffraction (GTD) are employed to improve the 

simulation efficiency of wideband MRCS. In Section III, 

the MSIB features of HRRP are extracted to constitute 

eigenvectors for target identification. To enhance the 

separation ability of radar target recognition, the MSIB 

features are projected onto the PCA space before 

recognition. Numerical simulations are used to 

demonstrate the feasibility and effectiveness of the 

approach in Section IV. Finally, the conclusion is given 

in Section V. 

 

II. ANALYSIS OF WIDEBAND MRCS 

A. Integral equation and basis function 

The combined field integral equation (CFIE) has 

been used extensively for conducting bodies. For a 

homogenous dielectric object, the Poggio-Miller-Chang-

Harrington-Wu-Tsai (PMCHWT) [17] formulation is 

widely used, because it can yield an accurate solution 

without the interior resonance corruption. However, 

PMCHWT suffers from poor convergence problems 

[18]. In this paper, the electric-magnetic current 

combined-field integral equation (JMCFIE) which 

provides better conditioned system matrix for iterative 

solution is utilized to analyze electromagnetic scattering 

from a homogeneous dielectric target.  

Using the equivalence principle, the homogeneous 

dielectric scattering problem can be solved by 

considering two simple equivalent problems, an external 

equivalent problem in the free space denoted by D1  

and an internal equivalent problem in the unbounded 

homogeneous dielectric domain D2 characterized by

 , ,r r r   . Let nl denote the unit normal of the object 

surface pointing into domain Dl. A set of integral 

equations can be formulated for each equivalent 

problem. For the exterior equivalent problem, they are 

the electric field integral equation (EFIE) and the 

magnetic field integral equation (MFIE), denoted as 

EFIE1 and MFIE1. For the internal equivalent problem, 

the integral equations for electric and magnetic field are 

denoted as EFIE2 and MFIE2 [19, 20]. In PMCHWT 

formulation, the EFIE1 is combined with the EFIE2 to 

form a combined equation. Similarly, the MFIE1 is 

combined with the MFIE2 to form another combined 

equation. 

The well-conditioned JMCFIE formulation can be 

established by combining the interior and exterior 

equivalent problems as the following form [21]:  

 1 1 1 2 2 2

1 2

1 1 1 1 2 2 2 2

1 1
EFIE MFIE EFIE MFIE

,

EFIE MFIE EFIE MFIE

 

 


    


     

n n

n n

 
(1) 

where  1,2l l l l    . 

In terms of the geometrical modeling and current 

discretization, traditional methods are low-order 

techniques using plane triangle patches and low-order 

basis functions, such as the Rao-Wilton-Glisson basis 

function (RWG). For electrically large size problems, the 

accuracy of solutions obtained by low-order techniques 

can only be improved slowly with the increase of 

unknowns, thus, the number of unknowns will be very 

large inevitably. To resolve such problems, the higher-

order hierarchical divergence-conforming vector basis 

functions defined on curved triangular patches are used 

in this paper.  

First, choose the curve Rao-Wilton-Glisson basis 

function (CRWG) as the lowest-order (order-0.5) 

divergence-conforming basis function. It can be expressed 

in normalized area coordinates  1 2 3, ,    as: 
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              (2) 

where J is the element Jacobian and r is the position 

vector of the point determined by normalized face 

coordinates on curved parametric triangular patch.  
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The novel higher-order bases are constructed by 

multiplying the corresponding order new orthogonal 

scalar polynomials with the lowest order bases [22, 23]. 

The order of basis function is 0.5 higher than that of 

polynomials. Without loss of generality, we consider 

basis functions associated with edge 1. The edge-based 

basis functions of order-3.5 associated with edge 1 can 

be expressed as: 

     

     

       

1,1 2 3 1,0
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1,3 2 3 2 3 1,0

3

5
3 1

2

7
5 3 .

2

e e

e e

e e

 

 

   

 

   
 

    
 

f r f r

f r f r

f r f r

 (3) 

As in Formula (2), the superscript of ,

e

i jf  denotes edge-

based, the subscript i denotes the number of the edge and 

j denotes the order of hierarchical polynomials.  

The face-based basis functions of order-3.5 

associated with edge 1 can be expressed as: 
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The superscript of ,

f

i mnf  denotes face-based, the first 

subscript i denotes the number of the edge, and the sum 

of two digits of the second subscript is equal to the order 

of the polynomial.  

The edge-based and face-based basis functions 

associated with edge 2 and edge 3 can be obtained by 

rotating the coordinates, 1 2 3 1       in (3) and 

(4), and then multiplying the corresponding lowest-order 

basis in (2). Note that one of the three subsets of face-

based functions should be discarded since a 2-D triangle 

element can have only two independent tangent vectors. 

The hierarchical divergence-conforming vector basis 

functions of order-3.5 include the vector basis functions 

of order-2.5 and order-1.5. 

After expanding the equivalent surface current 

densities with the higher-order hierarchical divergence-

conforming vector basis functions and using the 

Galerkin’s testing procedure, the integral equation can be 

well tested leading to a matrix equation: 

 ,A x = b  (5) 

where A is the impedance matrix, x is the unknown 

coefficient vector of the basis function, b is the excitation 

vector generated by the incident wave.  

Comparing with the low-order techniques, the  

novel higher order hierarchical divergence-conforming 

vector basis function can greatly reduce the number of 

unknowns for a given problem. To reduce the memory 

requirement and computational complexity of MoM, the 

MLFMA is employed to complete the matrix-vector 

product of each iteration step. The FMM box size must 

be chosen to be a little bit larger than the average patch 

size [24]. 

 

B. ACA for MRCS 

Iterative solvers may be quite satisfactory for only a 

few RHS such as bistatic problems, but for monostatic 

scattering with many required sampling angles, this part 

of the problem becomes expensive, because iterative 

solvers must be used to compute current solutions for 

each RHS excitation vector. 

For analyzing the MRCS at a given operating 

frequency, the impedance matrix remains the same, 

whereas the RHS vector should be updated at each 

incident angle. The MRCS problem can be expressed in 

the following matrix form: 

 ,A X = B  (6) 

where B=[b1, b2,…,bM,], X=[x1, x 2,…, xM,] and M is the 

number of incident angles. 

Like the impedance matrix, the blocked RHS is also 

low rank and can be compressed by the ACA method. 

Readers can see [8] for Bebendorf’s ACA details. By 

using ACA, the blocked RHS can be approximated using 

low rank representations: 

 
ACA ACA . B U V  (7) 

The dimension of matrices UACA and VACA are N k  and 

M k , respectively. Generally, k is much smaller than 

M. By substituting (7) into (6), the linear equations can 

be rewritten as: 

  1 H

ACA ACA.  X A U V  (8) 

The iterative solution of linear equations A-1   UACA is 

required at each principle eigenvectors. Compared with 

solving linear equations at each angle repeatedly, the 

ACA method is able to greatly reduce the computation 

time. The computational complexity of ACA is k2(N+M) 

and the memory requirement is k(N+M). 
 

C. GTD-based scattering model for wideband MRCS 

In radar HRRP target recognition, MRCS must be 

simulated at multiple frequency sampling points over 

wideband. Since the impedance matrix depends on 

frequency, the above electromagnetic algorithm must be 

repeated at each frequency point. To improve simulation 

efficiency, a parametric scattering model based on the 

GTD is utilized for fast analysis of the scattered field 

over a wide frequency band. 

In GTD method [25], the backscattering from a 

target, which can be modeled as a collection of ideal 

scattering centers, can be approximated as: 
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   (9) 

where, M denotes the order of the model; bm and rm 

denotes the complex scattering amplitude and vertical 

distance of the mth scattering center; fc is the center 

frequency of the test band; 
m  is an integer multiple of 

0.5, which reflects the scattering mechanism of the 

scattering center.  

For real targets, when data are collected over a  

very narrow angular window, (9) still provides a very 

compact way to model their backscattering. However, 

when data collected over a broad angular window, if we 

want to model a complex target as a summation of ideal 

scattering centers, we have to use a different set of 

scattering centers for each different observation angle. 

The backscattering can be approximated as the summation 

of point scatterers multiplied by their respective aspect-

dependent amplitude functions [26]: 

    
4

1

, , , .
m

m
M j fr

sca c

m

m c

f
E f b j e

f

 

   
 
 
 



 
  

 
   (10) 

The amplitude function  ,mb    for each scattering 

center accounts for angular dependence and must be 

stored. The parameters of GTD scattering center model 

can be extracted from the scattered field at partial 

sampling frequency points by using the matrix pencil 

method [27]. 
 

III. TARGET RECOGNITION BASED ON 

MSIB AND PCA 
Suppose that the spectral backscatter field of NF 

sampling frequency points at a specific sampling angle 

can be expressed as X=[X(1), X(2), …, X(NF)]T. The 

HRRP can be obtained by IFFT: 

      1 , 2 ,..., ,   

T

Fx x x Nx  (11) 

     ,       1,2,..., .Fn IFFT n n N   x X  (12) 

The bispectrum of HRRP is defined as the Fourier 

transform of the third-order cumulant of HRRP 

sequence:  
        *

1 2 1 2 1 2, ,      B X X X  (13) 

      exp .X x j


  




   (14) 

The bispectrum is translation invariant, while maintaining 

the phase information and inhibiting the AWGN 

theoretically. However, bispectrum is a two-dimensional 

function and its data amount is the square of HRRP’s. If 

the two-dimensional bispectrum features is directly used 

in target recognition, a large amount of memory is 

needed for the target template library. In addition, the 

bispectrum has great information redundancy.  

 

 
 (a)   (b) 

 
Fig. 1. Integral path of the different integrated bispectra: 

(a) RIB, AIB, CIB, SIB, and (b) MSIB. 

 

To decrease the computational complexity of target 

recognition, many different integral bispectrum methods 

have been developed to convert a bispectrum from  

two-dimensional to one-dimensional. According to the 

integral path, four kinds of integral bispectrum are 

shown in Fig. 1 (a), with each point represents a value of 

bispectrum. The calculation of the integral bispectrum 

can be simplified by using the bispectrum symmetry.  

According to the periodicity and symmetry of 

bispectrum, bispectrum in 
1 2 1 20           

contains all the information. As shown in Fig. 1 (b), the 

MSIB integrates along a closed hexagons centered at the 

origin. The MSIB does not omit or reuse any bispectrum 

values, so as to ensure that important information can be 

obtained for target recognition. The MSIB expression is: 
    1 2MSIB , ,     1,2,..., ,  

sR

s B s m  (15) 

where RS is an integral path and m is the total number  

of integral paths. Because the path of integration 

completely conforms to the bispectrum symmetry, it 

only needs to integrate along the section within the 

shaded area. This makes the time of extracting integral 

bispectrum features significantly saved. 

Suppose the total number of targets is C. By 

simulating the backscattering responses of each target at 

nc sampling angles, nc training samples of MSIB will be 

obtained for target c, c=1, 2, …, C. The training samples 

of these targets form a MSIB database X= {x1, …, xi, …, 

xN}, where xi represents a MSIB vector of some target. 

The total number of training samples is 
1

.
C

cc
N n


  

The MSIB can be used as feature vectors of targets,  

but bispectrums on many integration paths may be 

redundant, and some are even baneful for target 

classification.  

The PCA is utilized to reduce the redundant 

information and the feature space dimension of MSIB 

before recognition [28]. PCA seeks the most expressive 

features for well representing different classes with 

minimum mean square error. The mean vector and the  
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covariant matrix of the training samples are defined as: 

 

1

1
,

N

n

nN 

 μ x  (16) 

    
1

1
,

N
T

n n

nN 

   C x μ x μ  (17) 

where ‘T’ denotes the transpose. Then, compute the 

eigenvalue equation of the covariance matrix: 
 .Cp p  (18) 

Assume that the eigenvalues are arranged from 

maximum to minimum,
1 2 ... 0,m       and the 

corresponding eigenvectors are p1, p2, …, pm. The 

transformed matrix is constituted with the eigenvectors 

corresponding to the previous nPCA eigenvalues: 

  
PCA1 2 PCAA , ,..., ,     . 

T

n n mp p p  (19) 

Each MSIB vector can be projected onto the nPCA-

dimensional PCA space by the following formula: 

  .i i y A x μ  (20) 

In this way, the dimension of the MSIB vectors is 

decreased to nPCA. Then, the radar recognition is 

performed by the maximal correlate coefficient template 

marching method (MCC-TMM) on the low-dimensional 

PCA space. The recognition accuracy depends on nPCA. 

Generally, the larger the nPCA, the higher the recognition 

accuracy, but there is no optimum selection rule to 

maximize the probability of correct recognition while 

retaining a small value [29]. This will be discussed in the 

next section. 

 

IV. NUMERICAL SIMULATION 
In this section, numerical examples are given to 

verify the valid and efficiency of the proposed method. 

In all examples, the inner-outer Flexible Generalized 

Minimal Residual (FGMRES) method is used for the 

iterative solution, where the inner and outer restart 

numbers are both taken to be 10, and the stop precision 

for the inner and outer iteration is 1.E-2 and 1.E-4, 

respectively. 

Firstly, the accuracy and validity of the well-

conditioned integral equation combined with the novel 

higher-order hierarchical divergence-conforming vector 

basis functions and the MLFMA are verified by a 

dielectrically coated warhead model ( 2.0),r   as shown 

in Fig. 2. The incident plane wave is 3GHz and the 

incident angels are =0 , =0 .i i   For composite conducting 

and dielectric object, the CFIE on the conductor surface 

and the JMCFIE on the dielectric surface are combined, 

noted as JMCFIE-CFIE. The novel higher-order 

hierarchical divergence-conforming vector basis 

functions and the MLFMA are utilized for efficient 

analysis. Corresponding to order-1.5, order-2.5 and 

order-3.5 hierarchical bases, 46390, 38598 and 35712 

unknowns are generated from curvilinear triangular 

patches discretization, respectively. The bistatic RCS for 

ˆ ˆ -polarization at =0s  is computed and compared 

with low-order RWG method. As shown in Fig. 3, there 

is an excellent agreement between novel higher-order 

bases and RWG bases.  
 

 
 

Fig. 2. Geometrical models for a dielectrically coated 

warhead.  
 

 
 

Fig. 3. Bistatic RCS for ˆ ˆ -polarization of a 

dielectrically coated warhead at 3 GHZ, with the RWG 

basis functions, order-1.5, order-2.5 and order-3.5 

hierarchical basis functions. 
 

Table 1: Memory requirements of MLFMA with different 

bases for dielectrically coated warhead  

Bases RWG Order-1.5 Order-2.5 Order-3.5 

Patch size 

( ) 
0.1 0.5 0.8 1.06 

Total 

unknowns 
222,168 46,390 38,598 35,712 

MoM 

memory 

(MB) 

376,576 16,418 11,366 9,730 

Box size 

( ) 
0.25 0.8 1.0 1.3 

Near field 

memory 

(MB) 

1384.5 662.2 750.2 1041.6 

Far field 

memory 

(MB) 

1047.2 713.3 903.0 1228.9 

MLFMA 

memory 

(MB) 

2431.7 1347.9 1653.2 2270.5 
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Fig. 4. Convergence histories of PMCHWT_CFIE  

and JMCFIE_CFIE solved with FGMRES for the 

dielectrically coated warhead. 

 

The memory requirements of MLFMA are 

presented and compared between different bases in 

Table 1. With the increase of the order of higher-order 

basis functions, the total number of unknowns decreases, 

and the memory requirement of MoM greatly decreases, 

however, the near-field and far-field memory of MLFMA 

both increase. This is because, with the increase of the 

order of basis functions, the larger FMM box size is, and 

the larger the truncation term of MLFMA is, which leads 

to the low efficiency of MLFMA. After compromise 

consideration, order-1.5 and order-2.5 are more 

appropriate in the higher-order MLFMA. In the 

following numerical examples, the order of the 

hierarchical basis function is set to be 2.5. As shown in 

Fig. 4, the iterative convergence of JMCFIE-CFIE is 

plotted and compared with the traditional PMCHWT-

CFIE. The latter needs 1829s and 444 iterative steps, 

while the former only needs 145s and 38 iterative steps. 

The result shows that the JMCFIE-CFIE has good 

iterative convergence characteristics. 

Secondly, the accuracy and validity of the wideband 

MRCS algorithm are verified by a homogenous dielectric 

cylinder ( 2.0, 1.0  r r
) of 2.5m length and 0.6m 

diameter. The incident plane wave is 5GHz. As shown in 

Fig. 5, the MRCS for ˆ ˆ -polarization is computed by 

the ACA based matrix compression method and 

compared with direct solution at each incident angle by 

FEKO. It can be found there is an excellent agreement. 

For direct solution, the iterative solver must be used at 

each incident angle and the total number is 361. While, 

for the ACA based matrix compression method, the 

iteration solver is only used 21 times, since the number 

of columns in UACA is 21. This demonstrates that the 

ACA based matrix compression method can efficiently 

analyze the MRCS problem. In this example, the amount 

of calculation has been reduced by about 17 times. As  

shown in Fig. 6, the wideband backscattering for ˆ ˆ -

polarization of this dielectric cylinder is computed by the 

GTD-based scattering model and compared with and the 

direct solution at each sampling frequency point by 

FEKO. Good agreement can be found between them. 

The backscattering is computed at 81 equal spaced 

frequencies from 0.1GHz to 0.5GHz in FEKO, while the 

number of sampling frequencies is 21 in the GTD-based 

scattering model. In this example, the amount of 

calculation has been reduced by about 4 times, and 

plenty of time is saved by using the GTD-based 

scattering model. 

 

 
 

Fig. 5. MRCS for ˆ ˆ -polarization of a dielectric cylinder 

( 2.0, 1.0  r r
) of 2.5m length and 0.6m diameter at 

5GHz.  
 

 
 

Fig. 6. Wideband MRCS for ˆ ˆ -polarization of a 

dielectric cylinder ( 2.0, 1.0  r r
) of 2.5m length and 

0.6m diameter at =0 .  
 

Finally, numerical examples are given to verify the 

proposed radar recognition algorithm. Assume there are 

three known types of scaled aircraft models (i.e., C=3) 

including F15, F117 and VFY-218. The geometrical 

models and the geometry dimension for the three types 

of aircraft are shown in Fig. 7 and Table 2, respectively.  
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The ˆ ˆ -polarization backscattering fields of these 

aircrafts are calculated by the proposed numerical 

approach in Section II. The elevation angle is fixed at 0◦. 

The azimuth angle is changed continuously from 0◦ to 

180◦ with an interval of 0.25◦. At each azimuth angle, 161 

frequency points from 1 to 5 GHz with a frequency step 

of 25 MHz are calculated. Thus, there are 721 HRRP 

corresponding to 721 azimuth angles for each target in 

the database, and the dimension of HRRP vector is 161.  

With curvilinear triangular patches discretization, 

the unknown number of F15, F117 and VFY-218 for 

order-2.5 hierarchical basis functions is 187152, 153594 

and 170898, respectively. The backscattering field of 

each aircraft at 21 frequency points uniformly distributed 

between 1G to 5G is calculated by the ACA based matrix 

compression method. Compared with solving linear 

equations repeatedly at 721 angles with direct solution, 

the iteration solver is only used 56, 41 and 48 times with 

the ACA accelerated method for F15, F117 and VFY-

218, respectively. Plenty of iterative solution time can be 

saved. For wideband backscattering field, the GTD-

based scattering model is established for each aircraft by 

using the backscattering field corresponding to 721 

azimuth angles.  Instead of computing at 161 frequency 

points with direct solution, the number of sampling 

frequency points is reduced to 21 by using the GTD-

based scattering model. The computational efficiency 

has been improved by about 8 times. The HRRPs of each 

aircraft models are illustrated in Fig. 8. Figure 9 shows 

the bispectrums of F15 at =0  without and with 

AWGN (SNR=10dB), respectively. Figure 10 and Fig. 

11 shows the bispectrums of F117 and VFY-218, 

respectively. It can be found from Fig. 9 to Fig. 11 that 

the estimation of bispectrum cannot completely suppress 

the AWGN. This is because when the length of pseudo-

random sequence is limited, the third-order cumulant of 

Gaussian noise sequence approximately obeys the 

complex Gaussian distribution.  

 

 
 (a) (b) (c) 

 

Fig. 7. Geometrical models for three known types of 

scaled aircraft: (a) F15, (b) F117, and (c) VFY-218.  

 

Table 2: Dimension of scaled aircraft models (unit: m) 

Aircraft Length Width Height 

F15 7.1713 5.0248 1.5967 

F117 7.628 5.1547 0.9384 

VFY-218 7.7354 4.4522 2.057 

 
  (a) 

 
  (b) 

 
    (c) 

 

Fig. 8. HRRPs of the three aircraft models: (a) F15, (b) 

F117, and (c) VFY-218.  

 

 
    (a)   (b)       

 

Fig. 9. Bispectrum for  F15 at =0 : (a) without noise, 

and (b) with AWGN (SNR=10dB). 
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    (a)    (b)       
 

Fig. 10. Bispectrum for F117 at =0 : (a) without noise, 

and (b) with AWGN (SNR=10dB). 

 

 
    (a)     (b)       
 

Fig. 11. Bispectrum for VFY-218 at =0 : (a) without 

noise, and (b) with AWGN (SNR=10dB). 

 

We uniformly choose one in every three of the 721 

MSIBs as the training samples, leading to 241 training 

samples for each target. The rest of the MSIBs in the 

database are served as testing samples, providing totally 

1440 testing samples. Figure 12 shows the average 

correct recognition rates (CRR) of MSIB_PCA with 

respect to nPCA and the noise levels of AWGN. It can be 

found that the average CRR gradually improves as nPCA 

increases. But when nPCA reaches a certain value, the 

CRR remained unchanged. It can also be seen that the 

average CRR is constantly reduced when the level of 

Gaussian noise is increased.  

 

 
 

Fig. 12. The average CRR of three aircraft models with 

respect to nPCA and the levels of AWGN. 

To give insight into the confusion of the three 

aircraft in recognition process, Table 3 shows CRR when 

each aircraft is chosen as the testing target respectively. 

Here nPCA=50. It can be noticed that the CRR is inversely 

proportional to the level of Gauss's noise, and it can be 

improved to a certain extent by projecting the MSIB 

features onto the lower-dimensional PCA space for 

recognition. It also can be found that the CRR of VFY-

218 is higher than the other two. This is because the 

HRRPs of VFY-218 are obviously different, as shown in 

Fig. 5.  

 

Table 3: Correct recognition rate of three aircraft models  

  
F15 F117 

VFY-

218 

Without 

noise 

MSIB 92.92 94.21 96.25 

MSIB_PCA 94.38 94.17 99.17 

SNR= 

20dB 

MSIB 92.62 93.58 96.25 

MSIB_PCA 92.71 92.5 98.75 

SNR= 

10dB 

MSIB 81.46 87.71 94.17 

MSIB_PCA 81.88 82.08 98.33 

SNR= 

5dB 

MSIB 55.00 57.08 88.33 

MSIB_PCA 60.42 56.88 93.96 

SNR= 

0dB 

MSIB 46.04 39.79 62.29 

MSIB_PCA 46.46 39.58 72.71 

 

IV. CONCLUSION 
In this paper, efficient wideband MRCS simulation 

has been presented for radar HRRP target recognition 

based on MSIB and PCA. Firstly, an efficient numerical 

approach has been proposed for the wideband MRCS 

from a target. The well-conditioned integral equation 

combined with the novel higher-order hierarchical 

divergence-conforming vector basis functions and the 

MLFMA has been utilized for efficient scattering 

analysis. The well-conditioned matrix equation can 

obtain rapid converging iterative solutions without 

preconditioning. Comparing with low-order techniques, 

the use of novel higher order hierarchical divergence-

conforming vector basis function can greatly reduce the 

number of unknowns for a given problem. By using the 

low-rank property of the multiple RHS problem, the 

ACA based matrix compression method has been 

employed for efficient computation of MRCS. Compared 

with solving linear equations repeatedly at each angle 

with direct solution, the ACA based matrix compression 

method can greatly reduce the computation time. The 

GTD-based scattering model has been utilized for fast 

analysis of MRCS over a wide frequency band. By 

modeling a complex target as a summation of ideal 

scattering centers, large amount of calculation can be 

reduced. Finally, the one-dimensional MSIB features of 

HRRP have been extracted to constitute eigenvectors  
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for radar target recognition. To enhance the separation 

ability of radar target recognition, the MSIB features 

have been projected onto a lower-dimensional PCA 

space for recognition. Numerical examples prove that the 

proposed algorithm is feasible and efficient. 
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