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Abstract ─ The design of electromagnetic components 

generally relies on simulation of full-wave 

electromagnetic field software exploiting global 

optimization methods. The main problem of the method 

is time consuming. Aiming at solving the problem, this 

study proposes a regression surrogate model based on 

AdaBoost Gaussian process (GP) ensemble (AGPE). In 

this method, the GP is used as the weak model, and the 

AdaBoost algorithm is introduced as the ensemble 

framework to integrate the weak models, and the strong 

learner will eventually be used as a surrogate model. 

Numerical simulation experiment is used to verify the 

effectiveness of the model, the mean relative error (MRE) 

of the three classical benchmark functions decreases, 

respectively, from 0.0585, 0.0528, 0.0241 to 0.0143, 

0.0265, 0.0116, and then the method is used to model the 

resonance frequency of rectangular microstrip antenna 

(MSA) and coplanar waveguide butterfly MSA. The 

MRE of test samples based on the APGE are 0.0069, 

0.0008 respectively, and the MRE of a single GP are 

0.0191, 0.0023 respectively. The results show that, 

compared with a single GP regression model, the 

proposed AGPE method works better. In addition, in  

the modeling experiment of resonant frequency of 

rectangular MSA, the results obtained by AGPE are 

compared with those obtained by using neural network 

(NN). The results show that the proposed method is more 

effective. 

 

Index Terms ─ AdaBoost algorithm, Gaussian process 

ensemble, microstrip antenna, resonant frequency. 
 

I. INTRODUCTION 
When studying electromagnetic optimization 

problems, the electromagnetic simulation software, such 

as HFSS, is generally used to build the model, and some 

accurate sample data is obtained by calling the HFSS 

software for optimization. The general method to 

optimize microwave structure is using HFSS exploiting 

global optimization method. However, it will be very 

time-consuming because HFSS is called for thousands of 

times for the evaluation of fitness function of the global 

optimization method. The time may be several days or 

even several months, and it is insufferable [1]. Based on 

this problem, many scholars have proposed methods of 

using surrogate models, such as neural networks (NN) 

[2,3], support vector machines (SVM) [4,5], linear 

regression [6,7] and Gaussian process (GP) [8,9], and 

some have achieved results that meet the standards. 

However, when using surrogate models, it is still 

necessary to use the HFSS software to simulate some 

data. Because it is not easy to obtain a large number of 

sample data, the accuracy of the established model 

sometimes cannot meet the requirements. This study 

proposes an AdaBoost GP ensemble (AGPE) method, 

using the GP as the weak learning model and the 

AdaBoost algorithm [10,11] as the ensemble framework.  
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Some weak GPs are weighted and integrated to obtain a 

strong learner. Compared with the single GP, the method 

proposed in this study can obtain higher accuracy under 

the premise of the same training samples, while the 

single GP requires more training samples to achieve the 

modeling accuracy of the method proposed. Therefore, 

the proposed method saves the time of using HFSS 

software to simulate samples. 

As a machine learning (ML) algorithm, GP has 

attracted a lot of attention in recent years [12]. Compared 

to other ML algorithms such as NN, the GP has two 

major advantages: 1) The GP requires few parameters to 

be learned during the training process and is easy to 

implement; 2) It has a good effect on solving the complex 

problems of insufficient samples and non-linearity [13]. 

At present, in the field of electromagnetism, GP has been 

used as a surrogate model, and some results have been 

obtained.  

With the great leap of modern industrial level, the 

problems faced are more and more complex. At this time, 

the concept of ensemble learning [14,15] came into 

being, and gradually attracted a large number of scholars. 

In 1990, Schapire used the constructive method to prove 

the theory that integrating multiple weak learners can get 

stronger learners, and proved the excellence of integrated 

learning [16]. In 1996, the Bagging algorithm came out 

[17]. The algorithm processes training samples through 

Bootstrap method, and obtains a number of training 

subsets with the same number but certain similarity. 

Then, it uses these subsets to train several weak models, 

and finally integrates several weak models. AdaBoost 

algorithm was proposed by Freund et al. in 1996 [18], 

and realized the great leap from theoretical research to 

practical application of integrated learning. In 2016, 

Chen et al. proposed an improved Boosting model using 

residual learning, namely XGBoost [19]. This model  

and its improved model are very popular in various  

fields. When dealing with many problems, its learning 

performance can be compared with that of deep neural 

network (DNN). 

AdaBoost algorithm is proposed on the basis of 

Boosting, which is one of the three ensemble algorithms. 

It has been widely concerned in the field of ML [20]. It 

is applicable to classification and regression problems 

[21,22], but most of them are currently used to deal with 

classification problems. In reference [23], the AdaBoost 

algorithm and decision tree are combined to classify 

electromagnetic radiation and other related characteristics. 

In reference [24], the AdaBoost algorithm and NN    

are combined to classify high-resolution radar. In this  

study, the AdaBoost algorithm is used to deal with the 

regression problem, and an algorithm based on the 

AGPE is proposed. The advantage of the proposed 

method is illustrated by benchmark functions and 

resonance frequency of microstrip antennas (MSAs). 

 

II. GAUSSIAN PROCESS 
From the mathematical point of view, GP is a kind 

of functional distribution, which represents a set of 

random variables subject to joint Gaussian distribution. 

The GP is uniquely determined by mean function and 

covariance function [25]. 

Suppose there is a training sample set, 

  , , 1, , ,i iD i n x y ,d

i iR R x y . n is the number 

of samples and d is the dimension of training samples. 

Then the mean function and covariance function are as 

follows:  

     ,m E f   x x  (1) 

            ' ' ' ,k E f m f m    x,x x x x x  (2) 

where ' dRx,x  is a random variable, so GP can also 

be expressed by the following formula: 

 ( ) ~ ( ( ), ( , ')).f GP m kx x x x  (3) 

Assuming that the test sample is *x , the prediction 

distribution of the GP model is the joint Gaussian 

distribution formed by the training sample and the test 

sample: 

 
2

*

( , ) ( , *)
~ 0, ,

( *, ) ( *, *)

nK K
N

f K K

     
   
     

y x x I x x

x x x x

 
(4) 

where , *x x  is the input of training sample and test 

sample, *fy,  is the label of training sample and test 

sample, and ( , )K x x , ( *, )K x x  is the covariance matrix 

respectively. 

The most important part of GP is the setting of 

kernel function. Through the mapping of kernel function, 

the relationship between input and output is established. 

In general, the setting of kernel function needs to meet 

Mercer condition [26]. There are many common kernel 

functions, such as radial basis kernel function, Matern 

series and so on. 

In the training process of GP, only a group of super 

parameters need to be learned, which is also the only 

parameter to be determined. The properties of GP are 

determined by the super parameters that are generally 

obtained by the maximum likelihood method. The 

conditional probability of training samples is calculated, 

and then the logarithmic likelihood function  L   is 

calculated. The final optimization algorithm is conjugate 

gradient algorithm [27].  L 
 
and its partial derivatives 

are as follows: 

 
11 1

( ) log | | log2 ,
2 2 2

T n
L     y C y C  (5) 

 
1( ) 1

(( ) ).
2

T

i i

L C
tr



 

 
 

 
αα C  (6) 

After the optimal super parameter is obtained, the 

test sample can be estimated according to Equations (1) 

and (2). 

 

ZHANG, TIAN, CHEN, GAO: ANTENNA RESONANT FREQUENCY MODELING 1486



III. THE PROPOSED ADABOOST 

GAUSSIAN PROCESSES ENSEMBLE 

(AGPE) 
AdaBoost is also called adaptive boosting. Its   

core idea is to generate strong learners by weighted 

combination of iterative basic learners. This algorithm 

can effectively avoid over fitting problem [28]. In this 

study, the algorithm is combined with GP to solve the 

regression problem. AdaBoost algorithm can be described 

as follows. First, Bootstrap is used to generate a set of 

equal number of sub training sets from the original 

training samples, and each sample is given equal initial 

weight to train a GP regression model; then the error rate 

of the model is calculated and the training sample weight 

is updated according to the error rate; finally, the weight 

of the model is calculated. By repeating the above 

process, several models can be obtained, and the output 

results can be obtained according to the weight ensemble. 

Suppose the original sample set is

      1 1 2 2, , , , , , ,N ND x y x y x y where N is the number 

of samples. Table 1 is the pseudo code of the proposed 

AGPE algorithm. The specific steps are as follows: 

1) Bootstrap is used to generate a set of sub training 

sets with the number of N from the original samples 

D, and each sample is given equal initial weight

 1 1, , , 1, ,iW i N   , 1i N  . 

2) According to the training subset generated above, 

the GP is trained and the maximum error on the 

training set is calculated:  

 max ( ) ,m i m iE y GP x   (7) 

Calculate the relative error of each sample: 

 
( )

,i m i

mi

y GP x
e

E


  (8) 

The error rate of the training set of the model can be 

obtained:  

 
1

.
N

m mi mi

i

e e



 

   (9) 

3) According to the error rate, the weight coefficient of 

the model is calculated:  

 .
1

m
m

m

e

e
 

  
(10) 

4) Update sample weight:  

 
1

1 ,miemi
m m

m

W
Z


 

   (11) 

where Z is a normalization factor:  

 
1

1

.mi

N
e

m mi m

i

Z   



  (12) 

5) Repeat the above process K times to get K GP 

models, and integrate them to get the final model as 

follows:  

    
1

1
ln .

K

m

m m

f x GP x


 
  

 
  (13) 

 

Table 1: Pseudo code of the proposed AGPE algorithm 

Input: Training set       1 1 2 2, , , , , , ;N ND x y x y x y

Iteration times T. 

Initialize:  1 1W i N , where 1,2, ,i N . 

Do for: 1,2, ,t T   

1. Use Bootstrap to generate a subset of the 

training sample tD  from D. 

2. Use the training subset tD  to train the weak 

learner tGP . 

3. Calculate the error rate of the basic learner on 

the training set
te : 

 
1

,
N

t t t

i

e W i 


  

( )
,

max ( )

i t i

t

i t i

y GP x

y GP x






 

If 0.5te  , then go to step 1 to continue the 

cycle; 

End if 

4. Let ln
1

t
t

t

e

e
 


; 

5. Update the weight of training samples tW ; 

 
  1

1 ,tt

t t

t

W i
W i

Z

 

   

Where tZ  is the normalization factor; 

End for 

Output: Final regression: 

   
1

1
ln .

N

t

t t

f x GP x


 
  

 
  

IV. CASES STUDY 

A. Benchmark functions 

In this part, three classical benchmark functions are 

selected to verify the superiority of the proposed AGPE 

algorithm. The specific information of the test functions 

is shown in Table 2. At the same time, in order to show 

the superiority of the proposed method, it is compared 

with a single GP regression model, and mean relative 

error (MRE) is selected as the evaluation index, which is 

defined by: 

 
1

( ) ( )1
.

( )

n
i i

i i

f x y x
MRE

n y x


   (14) 
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Table 2: Benchmark functions 

Function Function Expression Dim. 
Search 

Space 

Schaffer 
 

  

2 2

1 2

2
2 2

1 2

sin 0.5
( ) 0.5

1 0.001

x x
f x

x x

 
 

 

 2 
-100～

100 

Rastrigin     2 2

1

10cos 2 10
n

i i

i

f x x x


    3 
-20 

～20 

Schwefel    
1

418.9829 sin( )
n

i i

i

f x n x x


   3 
-500～

500 

 

In this case, the number of samples 35NP  , in 

which 5 groups are randomly selected as test samples 

and the rest as training samples. Table 3 shows the MRE 

comparison between the proposed model and a single 

model on the test set, and Fig. 1 shows the comparison 

of the prediction results of test samples between the 

proposed method and a single model. The abscissa in the 

figure represents the number of test samples, and the 

ordinate represents the value corresponding to the test 

samples. According to the results in Table 3 and Fig. 1, 

the MRE of the three benchmark functions is 0.0585, 

0.0528 and 0.0241 respectively by single GP, whereas 

the MRE is 0.0143, 0.0265 and 0.0116 respectively   

by the proposed method in this paper. Therefore, the 

modeling effect of the method proposed in this paper is 

better than that of the single GP model. 

 

 
  (a) 

 
   (b)

 
   (c) 

 

Fig. 1. Prediction results comparison of test samples: (a) 

for Schaffer function, (b) for Rastrigin function, and (c) 

for Schwefel function. 

 

Table 3: MRE comparison of the benchmark functions 

Methods Schaffer Rastrigin Schwefel 
Single GP 0.0585 0.0528 0.0241 

This paper 0.0143 0.0265 0.0116 

 

B. Resonant frequency modeling of rectangular MSA 

Antenna plays an irreplaceable role in the 

communication system. MSA has the advantages of 

small size, light weight and easy fabrication, and has 

been widely used in aerospace, medical, mechanical and 

other fields [29]. The MSA can be set to different shapes 

as required. In this paper, the resonant frequency of 

rectangular MSA is used for modeling, and its structure 

is shown in Fig. 2. 

 

 
 

Fig. 2. The rectangular MSA. 

 

In this modeling, the width w, length l, height h and 

dielectric constant r  of the MSA are as input, and the 

resonance frequency 11f  (MHz) is as output. We select 

33 groups of data from Reference [30] and list them in 

Table 4 to model according to the proposed AGPE 

method, in which those with tag* are test sample. The 

prediction results of this paper are compared with other 

literature and single GP.

l

h

w 

l

Dielectric 

substrate

Feeding 

point

 Patch

Ground
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Table 4: Resonant frequency of the rectangular MSA in TM10 mode

w (cm) l (cm) h (cm) r  
MEf  EDBDf  DBDf  BPf  AGPEf  GPf  

0.850 1.290 0.017 2.22  7740* 7935.5 7890.1 7858.6 7965  8032.8 

0.790 1.185 0.017 2.22 8450 8328.2 8226.0 8233.1 8450 8450 

2.000 2.500 0.079 2.22 3970 4046.4 4023.0 4075.4 3970 3970 

1.063 1.183 0.079 2.25 7730 7590.1 7567.3 7616.8 7730 7730 

0.910 1.000 0.127 10.2 4600 4604.8 4573.9 4592.4 4600 4600 

1.720 1.860 0.157 2.33  5060* 4934.2 4914.0 4930.3 5041  5156.3 

1.810 1.960 0.157 2.33 4805 4699.2 4684.8 4703.3 4805 4805 

1.270 1.350 0.163 2.55 6560 6528.6 6502.8 6516.5 6560 6560 

1.500 1.621 0.163 2.55  5600* 5503.2 5473.3 5449.0 5601  5535.3 

1.337 1.412 0.200 2.55 6200 6176.6 6142.6 6147.2 6200 6200 

1.120 1.200 0.242 2.55 7050 7099.6 7064.3 7132.9 7050 7050 

1.403 1.485 0.252 2.55 5800 5805.6 5768.8 5765.7 5800 5800 

1.530 1.630 0.300 2.50 5270 5287.7 5260.3 5254.0 5270 5270 

0.905 1.018 0.300 2.50 7990 7975.5 7881.8 8002.2 7990 7990 

1.170 1.280 0.300 2.50  6570* 6674.8 6632.8 6682.7 6558  6600.5 

1.375 1.580 0.476 2.55 5100 5311.8 5293.2 5291.4 5100 5100 

0.776 1.080 0.330 2.55 8000 7911.1 7841.6 7942.5 8000 8000 

0.790 1.255 0.400 2.55 7134 7183.2 7162.1 7215.9 7134 7134 

0.987 1.450 0.450 2.55  6070* 6173.0 6155.1 6170.2 6074  6040.7 

1.000 1.520 0.476 2.55 5820 5931.0 5918.0 5924.5 5820 5820 

0.814 1.440 0.476 2.55 6380 6424.0 6417.5 6430.7 6380 6380 

0.790 1.620 0.550 2.55 5990 5866.1 5873.9 5870.5 5990 5990 

1.200 1.970 0.626 2.55 4660 4699.0 4728.0 4718.9 4660 4660 

0.783 2.300 0.854 2.55  4600* 4459.1 4517.1 4519.2 4644  4847.4 

1.256 2.756 0.952 2.55 3580 3659.8 3655.7 3644.6 3580 3580 

0.974 2.620 0.952 2.55 3980 3952.9 3982.6 3975.9 3980 3980 

1.020 2.640 0.952 2.55 3900 3905.4 3930.0 3922.2 3900 3900 

0.883 2.676 1.000 2.55 3980 3938.8 3970.7 3965.3 3980 3980 

0.777 2.835 1.100 2.55 3900 3825.5 3851.1 3845.9 3900 3900 

0.920 3.130 1.200 2.55  3470* 3481.4 3466.2 3458.4 3465  3478.1 

1.030 3.380 1.281 2.55 3200 3230.3 3184.7 3178.0 3200 3200 

1.265 3.500 1.281 2.55 2980 3036.1 2965.6 2961.2 2980 2980 

1.080 3.400 1.281 2.55 3150 3191.2 3140.4 3134.0 3150 3150 

Absolute error sum of all data 2329 2427 2372 310 770 

MRE of test samples 0.0192 0.0162 0.0174 0.0069 0.0191 

In Table 4, the training data of rectangular MSA are 

given in columns 1~4, the measured value in column 5, 

and the NN results given by Guney et al. [30] are listed 

in columns 6~8, and 
EDBDf ,

DBDf ,
BPf , respectively, 

represent the predicted resonance frequency of the NN 

model using the EDBD (extended delta bar delta), DBD 

(delta bar delta) and BP (back propagation) algorithm. 

Columns 9 and 10 respectively show the results obtained 

by using the proposed method in this paper and the 

single GP model. At the same time, the absolute error 

sum of each method is given in the penultimate row of 

Table 4, and the MRE of test samples according to the 

proposed method and other models is given in the 

penultimate row. It can be seen from Table 4 that the 

total absolute error calculated by the proposed method 

in this paper is 310MHz, which is superior to the 

calculation results of other documents and single GP, 

and the MRE of test sample is smaller than that of other 

models, which shows the excellence and effectiveness 

of the proposed algorithm in this paper. 
 

C. Resonant frequency modeling of coplanar 

waveguide (CPW) butterfly MSA. 

In order to verify the effectiveness of the proposed 

method further, the resonance frequency of coplanar 

waveguide (CPW) butterfly MSA (shown in Fig. 3) is 

modeled. Through HFSS simulation software, training 

data are obtained. Selecting h, W, L are as input data, and 

resonance frequency 11f (MHz) is as output, where h 

represents the thickness of the dielectric substrate, L,  

W respectively represents the length of the butterfly 

antenna and the length corresponding to the opening 

Angle. 30 groups of data are selected for modeling, in 

which 25 groups are as training data and the other 5 

groups are as testing data. Finally, the result computed 

by the proposed AGPE algorithm is compared with that  
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of single GP, shown in Fig. 4 and Table 5. We can see 

from Fig. 4 and Table 5 that the MRE of the AGPE 

model and single GP model are 0.0008 and 0.0023 

respectively, and the prediction value of the AGPE 

model is closer to the real value than that of single    

GP, which means the accuracy and generalization 

performance of the AGPE model is better than that of 

single GP. 
 

 
 

Fig. 3. The CPW butterfly MSA. 
 

 
 

Fig. 4. Prediction results comparison of test samples for 

the CPW butterfly MSA 
 

Table 5: Simulation results of the CPW butterfly MSA  

Methods MRE 
Single GP 0.0023 

This paper 0.0008 

 

V. CONCLUSION 
This study proposes an algorithm named AdaBoost 

Gaussian process ensemble (AGPE). The core of this 

algorithm is to use Gaussian process as weak learner and 

the AdaBoost algorithm as ensemble framework. Firstly, 

we obtain a group of weighted weak learners, and then 

integrate them to get the final strong learner. Through 

modeling of the benchmark functions and the resonant 

frequencies of rectangular microstrip antenna and 

coplanar waveguide butterfly microstrip antenna, it can 

be seen that the proposed AGPE method has higher 

accuracy than that of single GP. At the same time, 

compared with the neural network method in other 

literature, the proposed AGPE method also shows some 

advantages. The proposed method in the study is also 

easily be used in other microwave components modeling 

in the field of electromagnetics. 
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