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Abstract ─ In this paper, a broadband dual-polarized 

antenna with concentric rectangular ring electromagnetic 

bandgap (CRR-EBG) structure is proposed for 5G 

applications. The antenna consists of a pair of ±45°  

cross dipoles, an EBG array, and two inverted L-shaped 

improved feeding structures. In particular the ring part 

of the feeding structures can reduce the coupling 

between two ports. The leaky wave area of the EBG 

structure can be used to increase bandwidths. According 

to the measured results, the bandwidths of port1 and 

port2 are 32% (3.04-4.21GHz) and 28.3% (3.13-

4.16GHz), respectively. The port-to-port isolation can 

reach up to 23 dB, and the average gain is approximately 

5 dBi. The antenna has the advantages of a wide band, 

good isolation and a stable radiation pattern, which can 

be better used in 5G communications. 

 

Index Terms ─ 5G, dual-polarized, electromagnetic 

band-gap (EBG), wideband. 
 

Ⅰ. INTRODUCTION 
With the fast development of wireless 

communication systems and a looming shortage of 

wireless spectrum, the wireless industry has recognized 

the significance of multi-band and wideband antennas 

for future wireless communication systems [1-7]. In  

this sense, dual-polarized antennas, especially ±45° 

polarized antennas [8-11] have been widely proposed  

to determine multipath fading, pulling in signals from  

all directions better. It is worth noting that we added  

the electromagnetic band-gap (EBG) structure to the 

designed dual-polarized antenna for band spread.  

The EBG structure is divided to a high-impedance 

surface (HIS) [12] and uniplanar compact (UC) surface 

[13-14]. In [15], the designed CSRR-EBG structures 

reduce the starting frequency of the first band gaps by 

28%, and are used for multi-band applications. It is well 

known that for most dual-polarized antennas, such as 

those reported in [16] and [17], the stable unidirectional 

radiation pattern characteristics are mainly determined 

by the shape and size of the metal reflector. Since    

the antenna and reflector are generally one-quarter-

wavelength apart, it is non-trivial to realize a low-profile 

antenna in this framework. On the contrary, owing to the 

in-phase reflection characteristic of EBG structure, the 

distance between antenna and reflector can be less than 

one-quarter-wavelength, and therefore reducing the size 

of the antenna [18]. EBG structure can also make use  

of leaky wave region to achieve bandwidth expansion 

[19-20] and better isolation [21-22]. In [23], Meander-

Perforated Plane (MPP-EBG) structure was reported  

to improve the slow-wave effect, reduce the size and 

broaden the bandwidth.  

In this paper, a broadband dual-polarized base-station 

antenna with CRR-EBG structure for 5G applications is 

proposed. The designed antenna provides good coverage 

of the frequency bands from 3.13 GHz to 4.16 GHz, 

intended for potential 5G applications. The simulated 

and measured results are obtained using Ansys HFSS 15, 

an Agilent vector analyzer and OTA. Detailed discussions 

of the design are provided as follows. 

 

Ⅱ. ANTENNA DESIGN 
The geometric structure of the broadband dual-

polarized antenna with EBG structure is presented in 

Figs. 1 and 2. The antenna is mainly composed of three 

parts: a pair of ±45° cross dipoles, an EBG array and two 

improved feeding structures with an inverted L-shaped 

structure. The three components are printed on an FR4 

substrate with a relative dielectric constant of 4.4 and a 

thickness of 1 mm. The EBG structure attached to the 

lower dielectric plate consists of 48 units. If we remove 

the overlap the EBG structure and balun structure, the 

electromagnetic interference will be reduced. 

The patch structure is composed of a pair of 

irregular hexagons dipole in Fig. 1 (b). Two pairs of 

small rectangles are formed on the dipoles, which are 

used to avoid short-circuit between the feeding structure 

and the dipole. The dipoles can be connected to the 

ground plane primarily through two pairs of rectangular 

patches, which are placed vertically in the EBG structure 

and attached to one side of the feeding line. On the other 

side of the balun, the inverted L-shaped feeding line is 

also placed vertically in the EBG surface and is used   
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to excite the antenna. The half ring shape of the two 

inverted L-shaped feeding lines is intended to reduce 

coupling between the ports, where the bottom ends of 

the feeding lines are connected to the SMA connectors 

in Fig. 2.  
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Fig. 1. (a) 3-D view of the proposed antenna, and (b) 

geometry of the patch. 

 

In order to better understand the working principle 

of the feeding lines, the equivalent ac circuit diagram of 

the feeding structure is given in Fig. 3. In the feeding 

structure, the open branches, branch1 and branch2, can 

be equivalent to LC resonance circuit. Each open branch 

can be equivalent to LC resonant circuit, among which 

the resonance point of branch1 and branch2 are 3.8 GHz 

and 4.45 GHz, respectively. Series resonance circuits 

suppress harmonics when they resonate. Moreover, the 

slot coupling can be seen as inductance. 
Figure 4 shows the geometric structure of the 

designed EBG array and a single EBG unit. The 

rectangular slots are made in a square patch, which  

form the EBG structure we designed. The CRR-EBG 

structure belongs to Uni-planar Compact EBG (UC-

EBG). The CRR-EBG can be equivalent to a parallel LC 

model, the resonant frequency of which lends the high-

impedance band-gap characteristics to the CRR-EBG  

structure, as shown in formulas (1) and (2): 

      𝑤0 =
1

√𝐿𝐶
,               (1) 

        𝑧𝑠 =
𝑗𝜔𝐿

1−𝑤2𝐿𝐶
.              (2) 

A 26mm diameter cylinder is subtracted from   

the reflector to make it easier connected with SMA 

connector in actual measurement. The antenna is 

analyzed and optimized by HFSS 15, and the optimal 

values defined in Figs. 1 and 2 are listed as follows (unit: 

mm): X2=12, X3=6, B4=1.5, L=78, M3=14, D4=7, 

W4=4.6, W5=1.3, D5=2.8, D7=10, W6=2.4, Rin=1.7, 

Rout=4.1, L5=20, BL=6, H1=28, W1=2.25, D1=5, D2=9, 

BW2=5.8, W7=1.8735, BW=3, GL=164, GH=8, T=1, 

N=0.32, We=0.48, M=8.5, A=10, L3=89.4. 
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Fig. 2. Feeding structure for port1 and port2. 
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Fig. 3. Equivalent AC circuit diagram of the feeding 

structure. 

 

Figure 5 shows a comparison of simulated S11 

values for the dual-polarized dipole with and without an 

EBG structure for port1. It can be observed from Fig. 5 

that the EBG structure has a great impact on impedance 

matching. When the EBG structure is not added, the 

impedance bandwidth is narrow with low frequency 

(3.02–3.15 GHz) and high frequency (4.1–4.74 GHz)  

for S11≤−10dB. By adding the EBG structure, a wide 

impedance bandwidth from 3.14 to 4.8 GHz is realized. 
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Fig. 4. (a) EBG array (b) geometry of the single EBG 

unit.  
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Fig. 5. Comparison of proposed antenna with and 

without EBG structure. 
 

Ⅲ. RESULTS AND DISCUSSION 
S-parameters in this work were measured by a 

network analyzer. Gain and radiation patterns were 

measured in an OTA anechoic chamber. As shown in  

Fig. 6 (a), simulated and measured S-parameters of the 

antenna are given for port1 and port2. As can be seen 

from the S-parameter diagram, the simulated bandwidth 

is 37% (3.13-4.55GHz) and 34.1% (3.13-4.42GHz)  

for port1 and port2, respectively while the measured 

bandwidth is 28.3% (3.13-4.16GHz), the center 

frequency being 3.64 GHz. As can be seen from     

the simulated and measured results, the reflection 

coefficients are different at the two ports. The main 

reasons are as follows. First, the structure of the feeding 

lines at the two ports is not completely the same, 

especially for the ring part. Second, uneven welding 

resulted in a non-parallel state between the planes, 

having a strong impact on the reflection coefficients. 

The simulated and measured gains and isolation degree 

are presented in the Fig. 6 (b). The isolation performance 

in the operating band is better than 23 dB and the 

simulated gain is about 5 dBi. Furthermore, the bandwidth 

of the antenna with EBG is widened because of its leaky 

region. The experimental results are in good agreement 

with the simulation results.  
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Fig. 6. Simulated and measured S-parameters of antenna. 
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Figure 7 shows the comparison of simulated and 

measured radiation patterns of the design at the 

frequencies of 3.12, 3.80 and 4.5 GHz, respectively. At 

3.12 GHz, the radiation pattern consistency between 

simulation and measurement is relatively high. Among 

them, the radiation patterns are relatively stable at 3.8 

GHz and 4.5 GHz. It can be seen from the direction 

diagram that the gain is about 4.8 dBi, and the directivity 

of the simulated and measured radiation patterns is   

consistent. Figure 8 presents the fabricated prototype  

of the antenna as well as the antenna test scenario. 

Compared with the antenna without EBG structure in [8], 

the proposed antenna broadens the frequency band, and 

improves the stability of the antenna radiation pattern. 
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 (c) 4.5GHz 
 

Fig. 7. Simulated and measured radiation pattern of 

antenna: (a) 3.12 GHz, (b) 3.8 GHz, and (c) 4.5 GHz. 
 

 
 

Fig. 8. Antenna in test and fabricated prototype of the 

antenna.  
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Table1: Comparison of the proposed antenna with 

references 

Ref. 
Bandwidth 

(GHz) 

Gain 

(dBi) 
Isolation 

Type of 

EBG 

[8] 3.12-3.68 5.84 ＞23.5 / 

[10] 3.16-3.48 / ＞30 TVS-EBG 

[15] 3.31-4.33 / ＞20 CSRR-EBG 

[19] 3.60-4.06 / ＞20 ELV-EBG 

Pro. 3.13-4.42 5 ＞23 CRR-EBG 

λ0 is the wavelength in free space at center operating 

frequency. 
 

In Table 1, the performance of the proposed antenna 

is compared with previously published antennas. The 

antenna’s bandwidth of our design operates 3.1 to 4.42 

GHz, which is wider than that published references. The 

port-to-port isolation is slightly higher than [15] and [19]. 

But the gain is lower than that of Ref. [8]. To sum up, 

the performance of the antenna is better than other 

references in the table.  

 

Ⅳ. CONCLUSION 
A wideband dual-polarized base station antenna 

with EBG structure is presented herein, where the leaky 

wave region of EBG has been used to expand the 

frequency band and yield a stable radiation pattern of  

the antenna. The loop design of the feeding structures 

proves to be capable of reducing port coupling 

significantly. The antenna operates in the frequency 

band of 3.13-4.16 GHz. Simulated results prove that the 

design has the advantages of good bandwidth, stable 

radiation pattern and high isolation degree. Future work 

will be focused on further optimization of the radiation 

patterns and other antenna performance.  
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