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aysu.belen@iste.edu.tr
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Abstract – In this work, computationally efficient design
optimization of frequency selective surface (FSS)-loaded
ultra-wideband Vivaldi antenna via the use of data-
driven surrogate model is studied. The proposed design
methodology consists of a multi-layer FSS structure
aimed for performance improvement of the Vivaldi
design, which makes the design a multi-objective multi-
dimensional optimization problem. For having a fast
and accurate optimization process, a data-driven surro-
gate model alongside the metaheuristic optimizer honey-
bee mating optimization (HBMO) had been used. The
optimally designed antenna had been prototyped and its
performance characteristics had been measured. The
obtained experimental results are compared with the sim-
ulated results of the proposed method. Results show that
the obtained FSS-loaded structure has enhanced direc-
tivity compared with the design without FSS structure,
without any performance losses in the return loss char-
acteristics. The FSS-loaded Vivaldi antenna operates
at 2–12 GHz band with a maximum gain of 10 dBi at
10 GHz which makes the design a good solution for
RADAR applications.

Index Terms – Frequency selective surface, optimization,
surrogate modeling, ultra-wideband, Vivaldi antenna.

I. INTRODUCTION
Due to their high-performance characteristics

Vivaldi antenna designs are being used in many

communication applications such as microwave imag-
ing and ground penetrating radar (GPR) [1], [2]. In
order to analyze the composition of underground soil,
GPR requires to propagate high-power EM wave to the
ground. In order to have a wide range of characteriza-
tion of soil the signals need to go deep into the ground
and have high resolution. For such capability the GPR
antenna requires to operate in low frequency, have ultra-
wideband characteristics, and high gain performance [3].
There are different types of antennas suitable for GPR
applications with respect to their characteristics such as
o GPR antenna dipole [4], bowtie [5], [6], and Vivaldi
antennas [7], [8]. Due to its high gain, ultra-wideband
characteristic, Vivaldi antenna can be named as one of
the most commonly used antenna design for GPR appli-
cations. It should be noted that such designs usually
require a large design space or smaller size with lower
performance measures. Usage of lens structures can be
named as one of the methods for performance improve-
ment of antenna designs [9], [10]. However, although
the placement of dielectric lens structures can increase
the gain performance of antenna but their improvements
are limited [11].

Another well-known solution for performance
enhancement of antenna designs is the placement of fre-
quency selective surfaces (FSS) to the aperture of the
antenna in an optimally determined configuration such
as: antenna design with a multi-layer S-type resonator
with zero index for gain enhancement [12], design with
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multi-layers [13], [14] for gain enhancement, and [15]
for sidelobe suppression of the antenna design. Although
the application of FSS can provide a significant per-
formance improvement to the design, the placement
and the geometrical design of FSS structures must be
optimized to reach their full performance of improve-
ment. Achieving such task requires a multi-objective
multi-dimensional optimization process, which requires
a considerable amount of trial and error. This process
usually forces researchers to make a decision for their
models. Either they should use a course model with low
accuracy for achieving fast and computationally efficient
design optimization or they must use fine meshed design
with high accuracy at expanse of relatively long or infea-
sible design optimization process [16].

One of the most efficient solutions for having an
accurate, reliable, and computationally efficient opti-
mization process is the usage of data-driven surrogate
models. Data-driven surrogate models had been used
by many researches for applications such as parameter
tuning [17], statistical analysis [18], [19], and multi-
objective design [20]. In literature, there are many Artifi-
cial Intelligence (AI)-based methods for surrogate-based
modeling of microwave structures such as polynomial
regression [21], kriging interpolation [22], radial basis
functions [23], support vector regression [24], polyno-
mial chaos expansion [25], and artificial neural networks
(ANN) [26].

In this work, for optimal determination of geomet-
rical design variables of an FSS structure to be applied
to an antipodal Vivaldi antenna (AVA) for performance
improvements have been achieved via the use of data-
driven surrogate modeling [27]. Firstly, an FSS-loaded
Vivaldi antenna have been presented in Section II, along-
side the design variables of FSS structure. By using
Latin-hypercube sampling method, a data set generated
with a 3D full-wave EM simulator is created to be used
for data-driven surrogate model to create a mapping
between geometrical design parameters of FSS structure
and performance measures of scattering and maximum
gain of the FSS-loaded Vivaldi antenna design. In Sec-
tion III, some of the commonly used state of the art AI
regression algorithms had been used and bench marked
to obtain a model with best performance for creating a
mapping between input and output of the data set. In
Section IV, the optimal selected surrogate model will be
used to drive the design optimization search alongside a
meta-heuristic optimizer. Finally, the work ends with a
brief conclusion in Section V.

II. FSS-LOADED VIVALDI ANTENNA
In Figure 1, a typical AVA design modeled in 3D

CST MWS environment is presented. AVA is designed
on a PLA Filament–Polar White RBX-PLA-WH002 (εr

Fig. 1. A typical antipodal vivaldi antenna.
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= 2.5) with two noncoplanar exponentially tapered edge
arms on both top and ground plane (symmetrically) of
the antenna. The exponentially tapered edges of the
design are defined as exponential factor R, P1(x1, y1),
and P2(x2, y2), initial and final points of the exponential
tapered shape respectively. Design equations are given
below as eqn (1)–(3) [28, 29]:

y =C1eRx +C2, (1)
where

C1 =
y2− y1

eRx2 − eRx1
(2)

C2 =
y1eRx2 − y2eRx1

eRx2 − eRx1
(3)

C1 = 5, C2 = 0, R = 0.03; and C1 = 15, C2 = –8, R =
0.1, respectively. In Figure 2, the simulated performance
of the Vivaldi antenna without FSS structure had been
presented.

In Figure 3, the schematic of the proposed FSS
structure to be placed in top and ground layer sides of
Vivaldi antenna is presented. The variables of the FSS
structure and their lower and upper limitations are pre-
sented in Table 1. For ease of modeling, L2 is taken as
equal to L1. Here, for having computationally efficient
modeling, the total number of training and test samples
are taken as 600 where 500 of the samples are used for

Table 1: Design variables and their variation limits
Variable Min Max Variable Min Max
W1 5 15 L1 2 8
S1 0.5 2 H2 2 6
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Table 2: Design variables and their variation limits
Model HP K-fold/Holdout

MLP 2 layers with 15 and
20 neurons, trained with
“Levenberg–Marquardt”

9.1%/10.5%

SVRM Epsilon SVR, Epsilon =
0.15, with radial basis
kernel

7.9%/8.5%

Gradient
boosted tree

Learning rate of 0.05
1500 number of estima-
tors and depth of 7

10.6%/11.5%

Random for-
est

Max depth 10, 200 num-
ber of estimators, leaf
size of 20

11.1%/11.9%

Gaussian
process
regression

Kernel function of
“matern3/2,” Prediction
method of Block coordi-
nate descent with block
size of 2500

8.3%/9.0%

training and 100 are taken as “hold-out” data for eval-
uation of over-fitting performance of surrogate models.
For sampling method, Latin-Hyper cube sampling (LHS)
method is used. The frequency range is 1–12 GHz with
a step size of 0.1 GHz.

III. SURROGATE MODELING
In this section, some of the commonly used AI

regression algorithms have been used for creating a sur-
rogate model for creating a mapping between design
variables of FSS structure and the outputs of maximum
gain and scattering parameters of the antenna design. For
creating the surrogate model of the FSS-loaded Vivaldi
antenna, the algorithms given in Table 2 are trained with
K = 5 K-fold cross validation. Furthermore, a holdout
data set with 100 samples is used for testing the over-
fitting performance of the models. Relative Mean Error
(RME) metric (Eqn (4)) have been used for performance

study of models.

RME=
1
N

N

∑
i=1

|Ti−Pi|
|Ti|

. (4)

Here, Ti is the ith sample targeted value, Pi is the ith
sample predicted value, N is the total number of tested
samples over the given operation frequency. Here, the
obtained RME values are combined values for both S11
and maximum gain at each frequency sample. With
respect to the obtained results in Table 2, support vec-
tor regression machine (SVRM) had been taken as the
best surrogate model to be used in the design optimiza-
tion process due to having the lowest K-fold and hold out
RME.

IV. DESIGN OPTIMIZATION
Herein, for determination of optimal design vari-

ables of the proposed antenna, a powerful population-
based hybrid metaheuristic algorithm HBMO had been
used [30, 31]. HBMO is an algorithm based on the
mating habits of honey bees in which the new born mem-
bers of the bee colony (usually assumed that all mem-
bers are female) are ranked based on their fitness to be
the new queen of the colony. The search for the new
queen can be considered a global search strategy where
there is no initial knowledge of the optimal solution [30].
When, the nurse bee finds a candidate with better fit-
ness values than the current queen the candidate will be
crowned as the queen. After the coronation, in order
to enhance the development of the new queen and her
breeding capabilities, the nurse bees start to feed the
queen with “Royal Jelly,” a nutrition that can signifi-
cantly enhance the fitness of the new queen. This pro-
cess can be considered as a local search where there is
an initial knowledge about a global or local optimum
which can be furthered enhanced [31]. It should be
noted that, although there are many novel and recently
published global search metaheuristic optimization algo-
rithms in literature that might have better convergence
speed than the used HBMO algorithm, the main concern
of this work is not focused on the convergence perfor-
mance nor the selection of optimal metaheuristic opti-
mization algorithm. In this work, with the usage of the
proposed data-driven surrogate modeling technique, the
simulation time required for the prediction of scatter-
ing and directivity characteristics of the antenna would
be much less than a second while single EM simulation
for the selected antenna might take up to 5 minutes or
more with respect to the mesh size and the used hard
ware setup. Thus, in a case that hundreds of function
evaluations would took less than a minute the conver-
gence speed of the algorithm can be neglected. Thus,
here HBMO algorithm is taken as an example of a meta-
heuristic optimization algorithm for the selected prob-
lem. The cost function that had been used for HBMO
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Fig. 4. Flow chart of the proposed optimization process. 
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search is presented in (5)–(7),
x∗= argmin

x
[w1C1(x)+w2C2(x)] (5)

C1(x) = max{ f ∈ [ fc1, fc2] : |S11(x, f )|} (6)
C2(x) = max{ f ∈ [ fc1, fc2] : Directivity(x, f )|} , (7)

where C is the cost function, x is the input vector of vari-
ables of [W1 L1 S1 H2], fc1 and fc2 denote the lower and
upper frequency determining the target-operating band.
The coefficients w1 and w2 are weighing of cost func-
tions, these coefficients are taken as w1 = 0.7 while w2
= 0.3, due to the large possible difference between S11,
which can have low values such as –30 dB, and directiv-
ity for this design might be as high as 10 dBi. Here, the
aimed operation bands of FSS-loaded Vivaldi antenna is
to achieve an ultra-wideband operation frequency of 2–
12 GHz which is an optimal operating range for RADAR
applications. The flowchart of the proposed optimization
algorithm is given in Figure 4. The optimally selected
design variables of the design are as follows: W1 =
8.75, L1 = 4, S1 = 1, H = 23.7 all in [mm]. These val-
ues are obtained after 15 iterations, 25 Drone bees, and
Royal jelly step size of ±0.1 using HBMO optimization
[30].

Furthermore, for justification of the proposed
method, the obtained geometrical results are given to 3D
EM model in CST and the performance measures of both
CST and SVRM surrogate models are compared with
each other. As it can be seen from Figure 5, the pro-
posed method has the same performance characteristics
as the 3D EM simulator tool.
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Fig. 6. The prototyped FSS-loaded Vivaldi antenna.

the optimally designed antenna in section IV have been
prototyped (Figure 6). The measurement devices (a
Network Analyzer with a measurement bandwidth of
9 KHz–13.5 GHz, and LB-8180-NF Broadband Horn
Antenna 0.8–18 GHz as reference antenna) available in
Microwave Laboratories of Yildiz Technical University
had been used.

In Figure 7, the measured experimental results
of maximum gain, and scattering parameter of the
optimally designed FSS-loaded Vivaldi antenna are
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proposed antenna design with the counterpart designs 

from the literature [32–41] is presented in Table 4. As it 

can be deduced from the performance comparison table, 

the proposed antenna design achieves high gain, wide 

operation band performance compared to the counterpart 

designs in the literature with smaller size and lower cost 

material for substrate. 

 

(a) 

 

(b) 

Fig. 7. Measured (a) maximum gain, (b) scattering 

parameters, over the operating band. 

 

(a) 

 

(b) 

Fig. 8. Measured radiation pattern at (a) 7 GHz, (b) 10 

GHz. 

Table 4: RF performance comparison table  

Work 
f 

[GHz] 

Gain 

[dBi] 
Material Size [mm] 

Here 2–12 2–11.8 FR4 Eps:4.4 50×58×1.8 

32 3.5–16 3.5–12.5 RO4003C Eps: 3.38 80.5×52×14.5 

33 1–12 1.5–5.1 FR4 Eps: 4.6 45×40×1.6 

34 0.8–12 6.32 
ARLON 600 Eps: 

6.15 
190×128×1.57 

35 1.9–5.5 3.6–/4.6 FR4 Eps: 4.4 
68.3×112.2×0.

8 

36 2–18 3/12.3 RO4003C Eps: 3.38 100×140×0.8 

37 1.8/5.2 –/5.5 FR4 Eps: 4.3 80×60×1.6 

38 2.9–11.6 –/3 
Taconic RF-35 Eps: 

3.5 
26×26×0.76 

39 2.4/5.2 3.6/2.5 FR4 Eps: 4.3 94.5×100×1.6 

40 2.9–14.2 5–9 FR4 Eps: 4.3 40×50×1.6 

41 0.8–3.4 2.4–8.1 FR4 Eps: 4.4 150×150×0508 

* Most of the antenna designs have achieved similar S11 

characteristics. Therefore, in this table S11 is not included. 

 

VI. CONCLUSION 
Herein, design optimization of an FSS-loaded 

Vivaldi antenna had been achieved using both SVRM-

based surrogate model and a metaheuristic optimization 

algorithm HBMO. By using a multi-layer structured FSS 

design, the performance of a Vivaldi antenna has been 

increased without a distortion in the gain and scattering 
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MAHOUTI, KıZıLAY, TARI, BELEN, BELEN, ÇALıŞKAN: DESIGN OPTIMIZATION OF ULTRA-WIDEBAND VIVALDI ANTENNA 1600

[25] A. Petrocchi, A. Kaintura, G. Avolio, D. Spina,
T. Dhaene, A. Raffo, and D. M. P.-P. Schreurs,
“Measurement uncertainty propagation in transis-
tor model parameters via polynomial chaos expan-
sion,” IEEE Microwave Wireless Comp. Lett., vol.
27, no. 6, pp. 572-574, 2017.

[26] J. E. Rayas-Sanchez and V. Gutierrez-Ayala, “EM-
based statistical analysis and yield estimation using
linear-input and neural-output space mapping,”
IEEE MTT-S Int. Microwave Symp. Digest (IMS),
pp. 1597-1600, 2006.

[27] P. Mahouti, A. Kızılay, O. Tari, A. Belen, M. A.
Belen, “Design optimization of ultra wide band
vivaldi antenna using artificial intelligence,” Inter-
national Applied Computational Electromagnetics
Society (ACES) Symposium, pp. 1-4, 2021. doi:
10.1109/ACES53325.2021.00164.

[28] X. Zhang, Y. Chen, M. Tian, J. Liu, and
H. Liu, “A compact wide-band antipodal
Vivaldi antenna design,” Int. J. RF Microw.
Comput. Aided Eng., vol. 29, e21598, 2019.
https://doi.org/10.1002/mmce.21598.
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