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A Review and Application of the Finite-Difference Time-Domain
Algorithm Applied to the Schrödinger Equation

J. R. Nagel

University of Utah
Department of Electrical and Computer Engineering

Salt Lake City, Utah, USA
james.nagel@utah.edu

Abstract – This paper contains a review of the FDTD
algorithm as applied to the time-dependent Schrödinger
equation, and the basic update equations are derived
in their standard form. A simple absorbing boundary
condition is formulated and shown to be effective with
narrowband wave functions. The stability criterion is
derived from a simple, novel perspective and found to
give better efficiency than earlier attempts. Finally, the
idea of probability current is introduced for the first time
and shown how it can be used to radiate new probability
into a simulation domain. This removes the need to
define an initial-valued wave function, and the concept is
demonstrated by measuring the transmission coefficient
through a potential barrier.

I. INTRODUCTION

Most electrical engineers are already familiar with
the Finite-Difference Time-Domain (FDTD) algorithm as
a popular tool for simulating the progression of time-
dependent Maxwell equations. However, as the push for
miniaturization brings us closer to the realm of nanoscale
devices, Maxwell’s equations can no longer be relied upon
to provide useful insight. Nanoscale integrated circuits,
quantum computers, and solid-state devices are just a few
of the emerging electronic technologies that cannot be un-
derstood using classical electromagnetic theory. Instead,
we must delve into the realm of quantum mechanics,
where the laws of physics are more correctly governed
by the Schrödinger equation. It will therefore be useful
for electrical engineers to gain a deeper understanding of
the Schrödinger equation, as well as develop a rigorous
set of software tools for simulating the time-development
of complex quantum systems. In particular, FDTD is a
well-suited tool for this task, and can be easily modified
for quantum simulation.

The first attempt to create a working FDTD algo-
rithm for the Schrödinger equation was published by
Goldberg et. al. in 1967 [1], but remained relatively
obscure for many years. After 1990, the topic began to
receive greater attention in the literature [2–4], most of
which has been based on the Crank-Nicholson scheme.

In 2004, Soriano et. al. rigorously formulated a more
efficient FDTD algorithm and dubbed it ”FDTD-Q” in
order to distinguish its application for quantum systems
[5]. Meanwhile, quantum FDTD has already been used for
many practical applications such as numerical simulation
of quantum dots [6] and the time-progression of quantum
logic gates [7].

Despite the recent activities surrounding FDTD-Q,
the number of publications on the topic are a tiny fraction
of what has been devoted to Maxwell’s equations. Further-
more, many subtle nuances inherent to the Schrödinger
equation tend to emerge when an FDTD-Q is applied.
Thus, the goal of this paper is to review the basic FDTD-Q
algorithm and to introduce new topics for future research.
It is assumed that the reader is reasonably familiar with
the Maxwellian FDTD, and so little time needs to be
spent on the minor details and terminology. It is further
assumed that the reader is at least familiar with basic
quantum theory, though the more important expressions
are reviewed in section II. For a more complete study of
quantum mechanics, the reader is referred to [8] and [9].

The basic update equations of the FDTD-Q algorithm
are derived in section III, and the information here is
similar to what can be found in [5]. The issue of numer-
ical stability is discussed in section IV, and the critical
time step is derived from a unique, and hopefully more
intuitive, perspective from that given by [10]. A Mur
absorbing boundary condition is studied in section V,
after which a simple example of quantum tunneling is
simulated in section VI. Finally, we will introduce the
novel concept of probability currents in section VII and
show how they can be used to inject plane waves into a
quantum simulation domain.

II. BACKGROUND

Just as Maxwell’s equations are fundamental to all of
electromagnetics, the Schrödinger equation is fundamen-
tal to all of quantum mechanics. The three-dimensional,
time-dependent Schrödinger equation is therefore given
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as [8],

jh̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) (1)

where ψ(r, t) is the wave function at position r and time
t, V (r) is the potential function, m is the particle mass,
and h̄ is the reduced Planck’s constant. Although ψ(r, t)
is not a physically measurable quantity, it is necessary in
order to compute the function ρ(r, t) defined by,

ρ(r, t) = ψ∗(r, t)ψ(r, t) = |ψ(r, t)|2 . (2)

The interpretation of ρ is that of a time-varying
probability density function (pdf) for the position of the
particle. Thus, the total probability P of finding the
particle in some volume V is found by integrating ρ over
all points within that volume, [8]

P =
∫

V

ρ(r, t)dr . (3)

Due to this probabilistic interpretation, the wave
function must be normalized so that integration of ρ over
all space produces a value of 1. It also serves to emphasize
how the wave-particle duality of nature is really only
an expression of how the positional pdf of a particle is
governed by a wave-like equation.

The wavenumber amplitude φ(k) is defined by the
Fourier transform of ψ at t = 0. In three dimensions, this
is given by, [8]

φ(k) =
1

(2π)3/2

∫ +∞

−∞
ψ(r, 0)e−jk·rdr (4)

where k is the wave-vector. In particular, k is important
because it tells us the particle’s momentum, which is
given by p = h̄k. The function φ, like ψ, is not directly
observable, but is only used to compute the pdf defined by
|φ(k)|2. This quantity represents the probability density
of detecting the wave-vector k after a given experiment.
Thus, like before, the total probability Pk of detecting
some wave-vector (or equivalently, some momentum)
within the volume Vk (in k-space) is found by, [8]

Pk =
∫

Vk

|φ(k)|2 dk . (5)

From this interpretation, it is clear that the Heisenberg
uncertainty principle is merely a result of the Fourier
relationship between probabilities in position-space and
momentum-space. In other words, any restriction of vari-
ance within one domain will inevitably increase variance
within the other.

III. UPDATE EQUATIONS

This next section parallels the derivations found in
[4, 5], but with more explicit detail and clarification. We
begin by noting that complex-valued arithmetic can be
numerically costly, so it is helpful to first break up the

wave function into real and imaginary components such
that,

ψ(r, t) = ψR(r, t) + j ψI(r, t) . (6)

This step allows us to treat each component sepa-
rately and perform only real-valued computations with
each function. Plugging the real and imaginary compo-
nents back into the Schrödinger equation thus produces
two coupled partial differential equations of the form,

h̄
∂ψR(r, t)

∂t
= − h̄2

2m
∇2ψI(r, t) + V (r)ψI(r, t) (7)

h̄
∂ψI(r, t)

∂t
= +

h̄2

2m
∇2ψR(r, t)− V (r)ψR(r, t) .(8)

The next step is to define a mesh that discretely
samples grid points in space and time. Using the standard
FDTD notation for grid spacings of ∆x, ∆y, ∆z, and time
spacings of ∆t, this gives,

xi = i∆x (9)
yj = j∆y , (10)
zk = k∆z , (11)
tn = n∆t . (12)

Note that in this context, j is not to be confused with
the imaginary unit

√
−1 as implied by equation (1), nor

is k to be confused with the particle wavenumber. We
next define a short-hand notation for the wave function
evaluated at the mesh points. This is given by,

ψR(xi, yj , zk, tn) = ψn
R(i, j, k) (13)

ψI(xi, yj , zk, tn) = ψn
I (i, j, k) . (14)

With the wave function sampled on a discrete grid,
the derivatives will now be approximated by using finite-
differences. For convenience, it helps to define the imag-
inary part of the wave function to exist at half-step time
intervals from the real part. This is analogous to the way
E-fields and H-fields are placed at half-step intervals in
conventional FDTD because it facilitates the use of the
central-difference method for the time derivatives. Thus,
the time derivatives on the real- and imaginary-valued
wave functions are approximated by,

∂

∂t
ψ

n+1/2
R (i, j, k) ≈

ψn+1
R (i, j, k)− ψn

R(i, j, k)
∆t

(15)

∂

∂t
ψn

I (i, j, k) ≈
ψ

n+1/2
I (i, j, k)− ψn−1/2

I (i, j, k)
∆t

.

(16)

Similarly, we apply a central-difference on the spatial
derivative to obtain the well-known approximation to the
second-partial, given by,

∂2

∂x2
ψn

R(i, j, k) ≈

ψn
R(i+ 1, j, k)− 2ψn

R(i, j, k) + ψn
R(i− 1, j, k)

∆x2

(17)
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with a similar expression for all other spatial derivatives.
Plugging these approximations back into equations (7)
and (8) and solving for the update equations then gives
the formulation as given by [5], which is,

ψn+1
R (i, j, k) = ψn

R(i, j, k)

− cx

[
ψ

n+1/2
I (i+ 1, j, k) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i− 1, j, k)

]
− cy

[
ψ

n+1/2
I (i, j + 1, k) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i, j − 1, k)

]
− cz

[
ψ

n+1/2
I (i, j, k + 1) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i, j, k − 1)

]
+ cvV (i, j, k)ψn+1/2

I (i, j,k)
(18)

for the real part, and

ψ
n+1/2
I (i, j, k) = ψ

n−1/2
I (i, j, k)

+ cx [ψn
R(i+ 1, j, k)− 2ψn

R(i, j, k) + ψn
R(i− 1, j, k)]

+ cy [ψn
R(i, j + 1, k)− 2ψn

R(i, j, k) + ψn
R(i, j − 1, k)]

+ cz [ψn
R(i, j, k + 1)− 2ψn

R(i, j, k) + ψn
R(i, j, k − 1)]

− cv V (i, j, k)ψn
R(i, j, k) ,

(19)

for the imaginary part. The constant coefficients are given
by,

cx =
h̄∆t

2m∆x2
(20)

cy =
h̄∆t

2m∆y2
, (21)

cz =
h̄∆t

2m∆z2
, (22)

cv =
∆t
h̄

. (23)

From this point on, FDTD-Q is performed exactly
the same as the Maxwellian FDTD. That is, an iterative
loop solves for the state of the system at incremental time
steps and ”leap-frogs” between the real and imaginary
components. Between each increment, the appropriate
boundary conditions are applied.

It is interesting to compare the similarities between
the Schrödinger and Maxwellian FDTD algorithms. For
example, the real and imaginary wave functions are some-
what analogous to the electric and magnetic fields in the
way they couple together in space and time. However,
because of the second-order spatial derivatives, the real
and imaginary wave functions can both exist at the same
spatial grid point. Compare this with the Maxwellian
FDTD, where the first-order derivatives require the elec-
tric and magnetic field stencils to be defined at half-step
increments from each other in both space and time.

IV. STABILITY

The critical time step for stable FDTD-Q simulation
was first derived by Soriano et. al. in 2004 by using
an argument based on the ”growth factor” of the wave
function eigenvalues [5]. In 2005, Dai et. al. re-derived
the stability criterion from the perspective of accumulated
numerical error, and arrived at a similar, but more correct,
solution [10]. This next section offers a third derivation
that simply preserves the natural bounds of the wave
function, and provides a more complete result than either
[5] or [10]. For simplicity, the derivation is limited to one
dimension and then briefly extended to three.

Suppose the potential function is a constant value
such that V (x) = V0. Solutions to the Schrödinger
equation then take on the form of free particles with wave
functions given by,

ψ(x, t) = α1e
j(kx−ωt) + α2e

j(kx+ωt) (24)

where k is the particle wavenumber and ω is the angular
frequency. Without any loss of generality, consider the
simple case of a free particle traveling to the right where
α1 = 1 and α2 = 0. The real and imaginary components
are then simply,

ψR(x, t) = cos(kx− ωt) (25)
ψI(x, t) = sin(kx− ωt) . (26)

In terms of the FDTD stencil, these can be written
as,

ψn
R(i) = cos(ki∆x− ωn∆t) , (27)
ψn

I (i) = sin(ki∆x− ωn∆t) . (28)

For convenience, let us now define A = ki∆x −
ωn∆t so that,

ψn
R(i) = cos(A) (29)
ψn

I (i) = sin(A) . (30)

Furthermore, define the constants B = k∆x and C =
ω∆t so that,

ψn+1
R (i) = cos(A− C) (31)

ψ
n+1/2
I (i) = sin(A− C/2) , (32)

ψ
n+1/2
I (i+ 1) = sin(A+B − C/2) , (33)

ψ
n+1/2
I (i− 1) = sin(A−B − C/2) . (34)

Next, substitute equations (29) to (34) back into
equation (18) to find,

cos(A− C) =− cx [ sin(A+B − C/2)
− 2 sin(A− C/2)
+ sin(A−B − C/2)]

+ cvV0 sin(A− C/2) + cos(A) . (35)

The importance of equation (35) is that it places
constraints on the available choices for cx and cv . If these
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constants are not properly defined, then equation (35) can
not be satisfied with real values for A, B, or C. As a
result, numerical error quickly accumulates and the wave
function increases without bound.

In order to maintain a stable simulation, it is neces-
sary to choose the constants cx and cv such that equation
(35) is satisfied by only real values of A, B, and C. The
simplest way to do this is by choosing a time step ∆t
that prevents the right-hand side from ever exceeding the
natural bounds of the left-hand side. In other words, we
must enforce the condition that,

−1 ≤ cos(A− C) ≤ 1 . (36)

After applying this restriction to the right-hand side
of equation (35), we find that cx and cv are limited by
the extreme values of their multiplicative factors. For
the positive bound of equation (36), this leads us to the
expression,

4cx + cvV0 ≤ 2 (37)

or equivalently

2h̄∆t
m∆x2

+
∆tV0

h̄
≤ 2 . (38)

Finally, solve for ∆t to find,

∆t ≤ h̄
h̄2

m∆x2 + V0
2

. (39)

The upper bound on ∆t is called the critical time
step, ∆tc, and represents the maximum allowable time
increment that will maintain a stable simulation [5]. It is
also the same result that is found by exploring the lower
bound of equation (36) instead of the upper.

In the event that V (x) is not a constant value,
then equation (39) is still true for sectionally constant
potentials, even if those potentials are only one grid point
in size. As a result, every point in the domain essentially
has its own limit for ∆t, and a stable simulation is
guaranteed only by ensuring that equation (39) is satisfied
over all points within the simulation. Thus, the maximum
allowable time step over a varying potential region V (x)
is found by,

∆tc = arg min
x

[
h̄

h̄2

m∆x2 + V (x)
2

]
. (40)

If one follows the above derivation in three dimen-
sions, it is straightforward to show that equation (37) will
be rewritten into,

4(cx + cy + cz) + cvV (r) ≤ 2 (41)

solving for the critical time step therefore yields,

∆t = arg min
r

 h̄

h̄2

m

(
1

∆x2 + 1
∆y2 + 1

∆z2

)
+ V (r)

2

 .

(42)

For comparison, the expression in equation (42) is
nearly identical to that given by [5], except there is now
a factor of 1/2 which divides V in the denominator. This
can make a significant difference for simulations where
V is large in comparison to h̄2/m∆x2.

The result in equation (42) is also similar to that given
by Dai et. al. in [10], except for two key differences. First
is the argument that the inequality of equation (42) should
be limited to a less-than relation (<), and that inclusion of
the upper bound does not necessarily guarantee stability.
Fortunately, numerical truncation within a computer’s
memory will always set ∆t to some value slightly smaller
than its exact mathematical assignment. As a result, there
is little practical difference in distinguishing between the
(<) and (≤) relations.

The second key difference in [10] is a replacement
of V (r) with |V (r)|, that is, all potentials are treated
as positive values. For the case of a positive-definite V ,
this makes no difference and the two formulations are
equivalent. However, for the case of negative potentials,
∆tc actually gets larger, and therefore does not influence
the minimum time step over a simulation domain. So even
though the formulation in [10] is certainly guaranteed to
be stable, it does not necessarily provide one with the
maximum stable value.

Interestingly, the critical time step seems to approach
infinity as V/2 → −h̄2/m∆x2 and stable simulation is
easily demonstrated for relatively large values of ∆tc.
Indeed, it may even be possible to exploit this effect
for faster quantum simulations. It remains unclear, how-
ever, what sort of trade-offs one incurs by pushing the
limits of very large time steps in a domain of all-
negative potentials. Experiments also demonstrate that for
V < −h̄2/m∆x2, the expression in equation (42) no
longer provides stability, while the formulation in [10] still
remains valid. Such behavior has yet to be fully analyzed,
and a general expression for the maximum stable time step
over all possible V remains unknown.

V. ABSORBING BOUNDARY CONDITIONS
(ABCS)

Because of the nonlinear dispersion relation that
arises from the Schrödinger equation, absorbing boundary
conditions (ABCs) can be difficult to implement. The
problem was first addressed by Shibata in 1991 [2], and
then expanded upon by Kuska in 1992 [3]. Both solutions
worked by devising a linear approximation to the disper-
sion relation and then formulating a corresponding partial
differential equation to enforce at the boundaries. The
problem was further addressed and formalized by Arnold
et. al. [11], and has even been expanded by others to
include the nonlinear Schrödinger equation [12]. To date,
however, all of these formulations have been based on
the Crank-Nicholson discritization, and none have been
demonstrated in the FDTD-Q formulation of equations
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(18) and (19). Therefore, this next section will introduce
a simple ABC that is compatible with FDTD-Q.

The simplest ABC is the first-order Mur condition,
which enforces a one-way wave equation at the bound-
aries. For a plane-wave traveling to the right in one
dimension, this is given by, [13]

∂

∂x
ψ(x, t) = − 1

vp

∂

∂t
ψ(x, t) (43)

where vp is the phase velocity of the wave impinging at
the boundary. As an example, we will consider the right-
most boundary where i = L, though the end result is
perfectly analogous at all other boundaries.

Solving for the update equations at the far-right grid
point gives the familiar formulation, [13]

ψn+1
R (L) = ψn

R(L− 1) + r
[
ψn+1

R (L− 1)− ψn
R(L)

]
(44)

for the real part, and,

ψ
n+1/2
I (L) = ψ

n−1/2
I (L− 1)

+ r
[
ψ

n+1/2
I (L− 1)− ψn−1/2

I (L)
]
(45)

for the imaginary part, with the constant r given by,

r =
vp∆t−∆x
vp∆t+ ∆x

. (46)

By definition, the phase velocity is vp = ω/k, where
ω is the angular frequency of the wave. The dispersion
relation between ω and k is given by [2]

h̄k =
√

2m(h̄ω − V ) . (47)

Next, we note that the expression h̄ω represents the
total energy E = K+V of the particle. Back substitution
therefore yields,

vp =
h̄ω√

2m(h̄ω − V )
=
K + V√

2mK
. (48)

It is worthwhile to note how equations (44) and
(45) are very similar to the classical Mur boundary of
Maxwell’s equations. The main difference, however, is
that both ψR and ψI exist at the same grid point, while
E and H typically are defined at half-step increments. As
a result, the classical Mur ABC is only applied to the field
that exists at the boundary, which is either E or H , but
never both. Since both ψR and ψI exist at the boundary,
the ABC must be applied to both quantities after each
iteration of FDTD-Q.

Although the Mur ABC is relatively simple to im-
plement, it suffers from several major trade-offs. The
first is that performance diminishes with steep angles of
incidence, which is a well-known limitation from classical
FDTD. For simple simulations in one-dimension, this is
generally not a concern since all waves impinge perpen-
dicularly to the boundaries. In two or three dimensions,
however, the problem is much more significant.

A second problem arises from the fact that phase
velocity vp of a quantum wave packet varies with ω. As
a result, equations (44) and (45) exhibit a band-limited
response. This requires the user to manually ”tune” the
Mur boundary around some given center frequency. It
also means that wideband wave packets will exhibit
significantly greater reflection than narrowband packets.
For the case where V > 0, a local minimum actually
appears in vp at K = V , and the Mur ABC performs
best around this value. However, for regions where the
slope of vp is very large, the ABC performance diminishes
accordingly.

Despite its complex behavior, the simple Mur ABC
can still perform reasonably well under practical con-
ditions. To demonstrate, we generated a Gaussian wave
packet with a mean kinetic energy of K0 = 500 eV and
a standard deviation of 2.0 Å. The packet was placed
in a domain of V = 0 potential and directed against
a tunable boundary centered at the variable energy K.
Figure 1 shows a demonstration of this. If we neglect
the slight spectral variance that comes from using a
Gaussian envelope, the total remaining probability after
the packet collides with the boundary is a fair measure
of the reflection coefficient. As demonstrated in Fig. 2, a
properly tuned boundary still provides as much as 35 dB
of return loss on a Gaussian wave packet.

Fig. 1. Four snapshots of a Gaussian wave packet as it is
absorbed by the simple Mur boundary. The mean particle
energy is 500 eV and the boundary is ”tuned” to the same
value.

Finally, a word of warning must be noted for bound-
aries where V < 0. Under the condition K < |V |, ω takes
on a negative value, thereby forcing vp to be negative as
well. This means the Mur ABC actually requires waves
to enter the simulation from the boundaries instead of
leave. As a result, numerical error quickly accumulates
and destabilizes the simulation.

VI. EXAMPLE: QUANTUM TUNNELING

One of the more interesting predictions of quantum
mechanics is that a particle can penetrate through a
potential barrier of greater height than the particle’s ki-
netic energy. This phenomenon, called tunneling, is easily
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Fig. 2. Reflection coefficient of a one-dimensional
Gaussian wave packet with mean kinetic energy K0 as
it reflects from a Mur absorbing boundary tuned for K.

demonstrated by FDTD-Q. It is not difficult to imagine
how this could become a serious issue in the realm
of modern micro-electronics. For example, the potential
barrier separating the gate and source of a transistor is just
such a system. If the leakage current were significantly
affected by tunneling electrons, then quantum mechanics
would be the only means of understanding the problem.

To begin, we define an initial value for the wave
packet to represent a free particle traveling to the right,
and then localize it in space by multiplying with a
Gaussian envelope. For a potential barrier of thickness 2a,
the potential function is simply defined as V (x) = V0,
where −a ≤ x ≤ a and V0 is some potential energy
greater than K.

Figure 3 shows a simulated demonstration of just
such a system. A particle with kinetic energy of K =
500 eV is sent towards a potential barrier with V0 =
600 eV. The grid step size is fixed at dx = 0.005 Å,
and the barrier thickness is set to 2a = 0.25 Å, or 50
grid points. The simulation domain consists of 3000 grid
points. The figure shows four snapshots of the simulation
as it progresses in time. As the particle collides with the
potential barrier, some of the wave function is able to
penetrate through while the rest is reflected. In the end,
there is a finite probability for the particle to be found
on the right side of the barrier, even though the barrier is
greater than the kinetic energy of the particle.

A useful metric for characterizing a system such as
this is the transmission coefficient T , which is defined as
the probability that an incident particle will tunnel through
the barrier. This is calculated by integrating ρ along all
points to the right of the boundary and then dividing by
the total probability of the system,

T =

∫∞
a
ρ(x)dx∫∞

−∞ ρ(x)dx
. (49)

Note that if the wave packet is properly normalized,
the denominator is identically 1. The result of this com-
putation is a value of T = 0.1701, which is only 1.5%

Fig. 3. Snapshots of a wave packet ρ as it collides with
a potential barrier. The particle has a kinetic energy of
500 eV and the potential barrier is 600 eV. The thickness
of the barrier is only 0.25 Å (50 grid points), so some
of the probability penetrates to the other side.

of error from its theoretical value of 0.1676 (see equation
(6.14) in [8]).

VII. PROBABILITY CURRENT SOURCES

A useful area of research that has yet to be explored
is the idea of probability sources. To date, simulations
involving FDTD-Q have always required an initial-valued
wave function to be pre-inserted into the domain at t = 0.
If one is willing to forgo conservation and normalization
of probability, then it is possible to inject probability into
a simulation domain via probability ”currents.” Physically,
the situation is analogous to the way electric currents
radiate new electric fields. The benefit of such currents
would be the potential to generate a true plane wave of
probability, and would greatly facilitate the measurement
of scattering parameters with complex potentials.

Mathematically, the injection of probability into a
simulation domain can be achieved by simply introducing
a source term into the Schrödinger equation. This is
analogous to the use of ”soft” current sources in the clas-
sical Maxwellian FDTD. Thus, if we define the complex-
valued injection current J(r, t) = JR(r, t) + jJI(r, t) to
represent a source of new probability, then equation (1)
can be modified as,

jh̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + J(r, t) .

(50)
After following the derivation through to the update

equations, the only difference will be the addition of
source terms onto the ends of equations (18) and (19),
or more specifically,

ψn+1
R (i, j, k) = ... + cvJ

n+1/2
I (i, j, k) (51)

ψ
n+1/2
I (i, j, k) = ... − cvJ

n
R(i, j, k) . (52)
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Figure 4 demonstrates the injection principle by sim-
ulating a real-valued, sinusoidal current at the center of an
empty domain. As can be seen, what begins as an empty
region of space quickly fills with probability as the wave
function propagates away from the source. Because of the
high-frequency content that is inherent to any transient
function, ρ exhibits some natural amount of ringing after
the current is suddenly introduced, and significant ripples
tend to remain even long after the transients have settled
down. To lessen this effect, the current source was padded
with an exponential rise time, which also reduces the
amount reflection at the band-limited ABCs.

Fig. 4. Snapshots of ρ as it propagates away from the
current source located in the center.

A very useful application of probability currents can
be seen in Fig. 5, which demonstrates the same 600 eV
barrier as that in Fig. 3. This time, instead of pre-
inserting a Gaussian wave packet, a current source of
the same wavenumber was inserted next to the barrier.
The result is a genuine plane-wave of probability that
impinges on the boundary and tunnels through. Also note
the fringe pattern between the current source and the
barrier. This is simply the result of interference between
the forward wave and the reflected wave, and is analogous
to the standing wave that develops on a transmission line
with a mismatched load. The reflected wave then passes
harmlessly through the current source and gets absorbed
by the left boundary. The transmitted wave is likewise
absorbed by the right boundary, and the steady-state result
is a relatively smooth, constant amplitude to the right of
the barrier.

The transmission coefficient of this system is found
by first computing the average probability amplitude to
the right of the boundary, and then dividing by the average
amplitude that occurs in the absence of the barrier,

T =

∫∞
a
ρ(x)dx |barrier∫∞

a
ρ(x)dx |space

. (53)

Using this method, the computed value is T = 0.160,

Fig. 5. A plane wave radiates away from the probability
source at the left of the barrier. The wave collides with the
potential barrier and partially transmits through. The rest
of the wave reflects back towards the source and interferes
with the forward-traveling wave, causing the fringes.

which is still only 4.8% error. The main benefit to this
method, however, is that the full Gaussian packet does
not need to be initialized into the grid, thereby reducing
the necessary size of the simulation domain. Even when
calculated on a domain of one-fifth the size (600 points),
the result does not change by more than 0.1 %. Figure
6 shows the relative performance of this method against
the analytical values for a varying barrier width. For a
domain size of only 600 points, the mean error over the
entire test range is only 3.43 %.

Fig. 6. Comparison of transmission coefficients for a
potential barrier of varying size. Using the probability
current source method, the mean error is 3.43 %.

VIII. CONCLUSIONS

This paper contains a review of FDTD-Q as applied
to the time-dependent Schrödinger equation. The basic
update equations have been derived in their standard form
as presented in [5]. The stability criterion was rederived
from a novel perspective and found to give larger stable
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time steps than that given by [10]. A simple absorbing
boundary condition was also formulated and shown to
be effective with narrowband wave functions. Finally, the
idea of probability currents was introduced for the first
time and shown how it can be used to inject probability
into a simulation domain.

Most of the topic of FDTD-Q is still relatively
unexplored, and many interesting avenues have yet to be
researched. For example, broadband absorbing boundaries
have certainly been rigorously applied to various quantum
simulations [2, 3, 12, 14], but none have yet to be tailored
specifically to FDTD-Q in its above formulation. The idea
of probability currents is also an entirely new concept, and
there is still a great deal of exploration left to be done.
In particular, probability currents can be used to create
genuine plane waves of probability, thereby removing the
need for pre-initialized wave packets in the simulation.
One can also imagine other uses for current sources, such
as quantum beamforming or bistatic scattering, but these
topics have yet to be researched.
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Wide-Angle Absorbing Boundary Conditions for Low and
High-Order FDTD Algorithms

Mohammed F. Hadi

Electrical Engineering Dept., Kuwait University, P. O. Box5969, Safat 13060, Kuwait

Abstract – Wide-angle performance of the perfectly-
matched-layer absorbing boundary conditions for
the finite-difference time-domain (FDTD) method
is investigated for efficient modeling of electrically
large structures. The original split-field, uniaxial and
convolutional perfectly-matched-layer formulations
are all optimized to produce near-flat absorption for
incidence angles up to 87 degrees. Optimized wide-angle
parameters are derived for both the standard FDTD
method and a high-order finite-volumes-based variant.
The investigated high-order algorithm in particular is
shown to produce improved wide-angle performance
over standard FDTD for all three perfectly-matched-layer
variants even when they are optimized for normal wave
incidence. In all cases, optimization is managed through
appropriate choices of modeling parameters which can
be directly and unobtrusively applied to existing FDTD
codes.

Keywords: FDTD methods, PML absorbing boundary
conditions, high-order methods, electrically large struc-
tures.

I. INTRODUCTION

With the recently mounting interest in Giga-Hertz and
Tera-Hertz communications systems and devices, model-
ing electrically large structures is fast becoming a pressing
need for designers and installers of those systems. The
finite-difference time-domain (FDTD) method, especially
in its high-order forms [1–11], is capable of accurately
and efficiently modeling such large structures provided
that the various FDTD modeling tools are updated to
match their high accuracy [12–14]. One of those tools
is the ability to truncate unbounded spaces with efficient
absorbing boundary conditions. The current state of the art
in this area is Bérenger’s perfectly-matched-layer (PML)
which comes in several different implementations [15–
20]. Modeling electrically large problems presents a real
challenge in this regard due to the large interface areas be-
tween the modeled structure and its surrounding absorbing
layers. Such extended interfaces cause appreciably large
outgoing energies to impinge on absorbing layers at steep
angles where PML absorbing abilities quickly diminish
[21]. This problem is exacerbated with the relatively
coarse FDTD grids allowed by the high-order algorithms

and demanded by computational efficiency requirements
when modeling electrically large structures.

Several works investigated approaches to optimize
PML parameters for maximum wide-angle absorption
[22–26]. Most of these works were concerned with
achieving maximum absorption for the incidence angles
range of0 ≤ θ ≤ 75◦ (with θ = 0 representing normal
incidence). While this operating range is reasonably unre-
strictive when designing PML for electrically small FDTD
models, it is not sufficient for electrically large modeling
purposes. The moderately large two-dimensional build-
ing model investigated in [2], for example, had to be
increased in size three-fold to insure adherence to a75◦

incidence angle limit on all outgoing waves impinging
on the surrounding PML region. Clearly, extending the
PML operating range to near grazing incidence angles
is critical for efficient electrically large FDTD models.
One effort that pushed PML wide-angle functionality
beyond θ = 75◦ is the work of Kantartzis, Yioultsis,
Kosmanis and Tsiboukis [26] which introduced a non-
diagonally anisotropic PML where all nine dielectric ten-
sor’s elements are nonzero. This approach demonstrated
good wide-angle PML performance at the expense of
some mathematical complexity and added computational
overhead.

It will be demonstrated in this work that the three
major PML variants– the original split-field PML [15],
the uniaxial PML [17, 18] and the convolutional PML [19,
20]– are all capable of near-flat absorption response for
the incidence angles range of0 ≤ θ ≤ 87◦. This very use-
ful extended range will be realized through optimization
routines that utilize complete FDTD/PML codes as func-
tional arguments and PML parameters as optimization
variables. Furthermore, this wide-angle capability will be
demonstrated for both the standard FDTD method and
a recently-developed finite-volumes-based algorithm [11]
as a representative of high-order FDTD methods. Most
critically, this wide-angle functionality does not require
changes to existing FDTD/PML codes or result in added
computational overhead.

II. FDTD AND PML FORMULATIONS

The various simulations and optimization analysis in
this work will be based on the following FDTD and PML
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implementations, with theEx field update equations as
representative samples.

A. Split-Field PML Formulation

For this original PML formulation, theEx = Exy +
Exz update equation is given by [15],

Exy|
n+ 1

2 = e−σy∆t/ε Exy|
n− 1

2 +

1 − e−σy∆t/ε

σy
DyHz (1)

Exz|
n+ 1

2 = e−σz∆t/ε Exz|
n− 1

2 −

1 − e−σz∆t/ε

σz
DzHy, (2)

where the PML loss profile is coded by Holland’s ex-
ponential time-stepping formula [27]. For the standard
FDTD method, theDyHz andDzHy difference operators
refer to,

DyHz =
1

h

[

Hz |j+ 1

2

−Hz |j− 1

2

]

(3)

DzHy =
1

h

[

Hy|k+ 1

2

−Hy|k− 1

2

]

, (4)

where the non-staggeredi, j, k and n spatial and
temporal indices are omitted for cleaner notation. The
spatial difference operators for the high-order algorithm
are represented by [11],

DyHz =
Ka

h

[

Hz|j+ 1

2

−Hz|j− 1

2

]

+ (5)

Kb

3h

[

Hz|j+ 3

2

−Hz|j− 3

2

]

+

Kc

12h











Hz |i+1,j+ 3

2

+Hz|i−1,j+ 3

2

+Hz|j+ 3

2
,k+1 +Hz |j+ 3

2
,k−1

−Hz|i+1,j− 3

2

−Hz|i−1,j− 3

2

−Hz|j− 3

2
,k+1 −Hz |j− 3

2
,k−1











+

Kd

12h











Hz|i+1,j+ 3

2
,k+1 +Hz|i−1,j+ 3

2
,k+1

+Hz|i+1,j+ 3

2
,k−1 +Hz|i−1,j+ 3

2
,k−1

−Hz|i+1,j− 3

2
,k+1 −Hz|i−1,j− 3

2
,k+1

−Hz|i+1,j− 3

2
,k−1 −Hz|i−1,j− 3

2
,k−1











and

DzHy =
Ka

h

[

Hy|k+ 1

2

−Hy|k− 1

2

]

+ (6)

Kb

3h

[

Hy|k+ 3

2

−Hy|k− 3

2

]

+

Kc

12h











Hy|i+1,k+ 3

2

+Hy|i−1,k+ 3

2

+Hy|j+1,k+ 3

2

+Hy|j−1,k+ 3

2

−Hy|i+1,k− 3

2

−Hy|i−1,k− 3

2

−Hy|j+1,k− 3

2

−Hy|j−1,k− 3

2











+

Kd

12h











Hy|i+1,j+1,k+ 3

2

+Hy|i−1,j+1,k+ 3

2

+Hy|i+1,j−1,k+ 3

2

+Hy|i−1,j−1,k+ 3

2

−Hy|i+1,j+1,k− 3

2

−Hy|i−1,j+1,k− 3

2

−Hy|i+1,j−1,k− 3

2

−Hy|i−1,j−1,k− 3

2











.

An explanation and derivation procedure for the
K tuning parameters in the above equations, which play
a key role in minimizing numerical dispersion errors, can
be found in [11].

Due to the extended reach of the high-order update
equations (up to±3h/2 from the updated field node), spe-
cial difference operators are required for the FDTD lay-
ers bordering the PML’s perfect-electric-conductor back-
planes [13]. For example, when theEx node is adjacent
to a planar conducting boundary normal to thex-axis, the
difference operators (5) and (6) reduce to,

DyHz =
Kb

a

h

[

Hz |j+ 1

2

−Hz |j− 1

2

]

+ (7)

Kb
b

3h

[

Hz|j+ 3

2

−Hz|j− 3

2

]

+

Kb
c

6h

[

Hz|j+ 3

2
,k+1 +Hz|j+ 3

2
,k−1

−Hz|j− 3

2
,k+1 −Hz|j− 3

2
,k−1

]

DzHy =
Kb

a

h

[

Hy|k+ 1

2

−Hy|k− 1

2

]

+ (8)

Kb
b

3h

[

Hy|k+ 3

2

−Hy|k− 3

2

]

+

Kb
c

6h

[

Hy|j+1,k+ 3

2

+Hy|j−1,k+ 3

2

−Hy|j+1,k− 3

2

−Hy|j−1,k− 3

2

]

.

Readers are referred to [13] for more difference
operators adjustments that deal with other conductor
proximity situations as well as explanation of the above
K-parameters and their relations to those in equations (5)
and (6). Interested readers in the two-dimensional version
of this high-order algorithm [2] can find similar treatments
in [12].

B. Uniaxial and Convolutional PML Formulations

For these PML variants, Roden and Gedney’s update
equations will be used [20],

Ex|
n+ 1

2 = Ex|
n− 1

2 +
∆t

ε

[

DyHz/κy + ψy

−DzHy/κz − ψz

]

(9)

where the difference operators for both FDTD algorithms
are the same ones given in equations (3) and (6), and,

ψy = byψy|
n−1 + cyDyHz (10)

ψz = bzψz|
n−1 + czDzHy, (11)

with

by = exp

[

−

(

σy

εκy
+
ay

ε

)]

(12)

bz = exp

[

−

(

σz

εκz
+
az

ε

)]

, (13)

cy =
(by − 1)σy/κy

σy + κyay
, (14)

cz =
(bz − 1)σz/κz

σz + κzaz
. (15)
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The above equations fully describe the convolutional
PML formulation, whereas the special case uniaxial PML
formulation is realized by settingκy,z = 1 anday,z = 0
[18].

C. PML Loss Profiles

The three PML parameters,σ, κ anda, will be coded
with the polynomial profiles,

σ(ρ) = σmax

(ρ

d

)nσ

(16)

κ(ρ) = 1 + (κmax− 1)
(ρ

d

)nκ

, (17)

a(ρ) = amax

(

d− ρ

d

)na

, (18)

where ρ is the incremental PML depth measured from
its interface with the scatterer region andd is the PML
thickness. PML optimization and performance will now
be decided based on proper choices of three parameters
(σmax, nσ andd) for the split-field and uniaxial PML and
seven parameters (σmax, nσ, κmax, nκ, amax, na andd) for
the convolutional PML. For the following analysis, one
deviation from the literature should be mentioned here.
The κ ≥ 1 constraint [20, 28] will be relaxed toκ ≥ 0.
This step will prove to be crucial for realizing optimum
wide-angle convolutional PML profiles as will become
obvious in Section IV.

III. PML OPTIMIZATION PROCEDURE

For each of the three PML variants, optimum pro-
files were determined using MATLAB’s FMINSEARCH
optimization routine. This routine was set up to minimize
an error quantity (Ψ) which is the maximum difference
of two Ez surface plots from two FDTD simulations;
one incorporating the PML formulation under study while
the other is a large reference three dimensional space
with matching FDTD parameters. The test domain is a
50× 50× 51-cell vacuum terminated by a 10-layer PML
(see Fig. 1). AnEz hard point-source [15] is introduced
at the center of the vacuum that is non-zero only for the
duration0 ≤ ωt ≤ 2π,

Ez =
1

32
[10 − 15 cos(ωt) + 6 cos(2ωt) − cos(3ωt)] .

(19)
The chosen first harmonic of this signal is 1 GHz

and the uniform FDTD grid size in all three dimensions
is set ash = λ/20 at this frequency. The time step is
set as the maximum allowed by each algorithm’s stability
criterion. The simulation time is chosen to be long enough
to allow appropriate interaction of the outgoing wave
with the PML interface, inner layers and backplanes;
100 and 110 times steps for standard and high-order
FDTD, respectively. For the standard FDTD simulations,
for instance, Fig. 2 shows that the lead propagating peak
reaches the PML interface at time stepn = 53. It also
reaches the backplane of the 10-layer PML atn = 74

Observation Plane

Radiating Source

θmax

AB

50 Cells

50

1–51

Fig. 1. PML test domain with the PML regions removed
for clarity. Observed reflections are mainly due to side
walls, except when thez-dimension approaches one cell
where steep reflections off the top and bottom walls
dominate. Radiating source and observation points A and
B are located at (25,25), (25,0) and (0,0), respectively,
within the observation plane.

E
z
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V

/m
)

Standard FDTD
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E
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/m
)

High-Order FDTD

0 20 40 60 80 100

0 20 40 60 80 100

-2

-1

0

1

-2

-1

0

1

2

Fig. 2. Observed field values at locations A (solid) and
B (dashed) which verify sufficient wave interaction with
the PML layer for parameter optimization purposes.

and what is left of it re-enters the test domain atn = 95.
Once each simulation is completed,Ez data are collected
from the centralxy-plane (observation plane in Fig. 1)
and introduced to the optimization routine.

Most PML reflection errors observed from the above
experimental setup will be due to reflections correspond-
ing to incidence anglesθ ≤ θmax = π/2 within the
observation plane. Thisθmax value also holds for the
normal plane as all six PML interfaces are equidistant
from the centrally located point source. When thez-
dimension of the test vacuum is collapsed, however,θmax

that corresponds to the top and bottom PML interfaces
will start to increase beyondπ/4, reaching86.6◦ when
the test vacuum is collapsed to50 × 50 × 1 FDTD cells.
For the rest of this work,θmax will refer to this increasing
maximum incidence angle as the vaccuum’sz-dimension
is collapsed as illustrated in Fig. 1. This relatively rough
experimental setup is deliberately chosen as it closely
mimics real-world simulation challenges, especially when
modeling electrically large structures.
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In the following section, two sets of optimized PML
parameters will be derived for each combination of
FDTD algorithms and PML formulations; one set from
a 50× 50× 51-cell setup an another from a50× 50× 1-
cell setup that highlights the near-grazing angle wave
incidence challenge. To test each set of optimized PML
parameters, it will be inserted back in the test setup
and the error function defined earlier will be collected
from a series of simulations where thez-dimension is
collapsed incrementally, sweeping in the process the range
π/4 ≤ θmax ≤ 87◦.

IV. OPTIMIZATION RESULTS AND
COMPARATIVE ANALYSIS

Table 1 summarizes the derived PML parameters
from the optimization process detailed in the previous
section for the standard and high-order FDTD algorithms.
Listing the PML parameters in the table to 4–5 significant
digits is necessary for optimum performance. For exam-
ple, the−175 dB reflection error increased by 5 dB when
the corresponding parameters were implemented with
only two significant digits. Furthermore, experimenting
with several sets of initial guesses was necessary to
achieve minimal reflection error levels, especially with
convolutional PML optimization runs.

Table 1. Optimized Split-field, Uniaxial and Convolu-
tional PML profiles for conventional and wide - angle
wave incidence on a 10-layer PML. (Units: S/m forσ
and dB for error functionΨ)

Standard FDTD High-Order FDTD

θmax 45◦ 87◦ 45◦ 87◦

σmax 0.6108 0.8051 0.8466 0.6469

S nσ 3.9849 5.5968 3.6958 5.4837

Ψ -158 -116 -157 -119

σmax 0.3532 0.4413 0.4526 0.4836

U nσ 3.1769 3.9540 3.2428 4.1050

Ψ -152 -128 -151 -127

σmax 0.3338 0.3226 0.5132 0.4288

nσ 4.1322 3.2352 3.3551 2.9732

κmax 0.3414 0.3207 0.4196 0.4699

C nκ 3.8151 4.7704 2.8402 3.6169

amax 0 0.0980 0 0.0822

na 1.0145 1.1934

Ψ -175 -148 -157 -147

A. Optimized PML Parameters atθmax = π/4

These parameters are most suitable for electrically
small problems where the bulk of outgoing energy can be
made to impinge on the surrounding PML regions within
the limits of θmax = π/4 without incurring significant

computational burden. We can deduce from tabel 1 that
for standard FDTD, split-field PML performs slightly
better than uniaxial PML (6 dB lower reflection) due to its
more favorableσmax andnσ combination. Both however
are vastly outperformed by convolutional PML with a
17 dB margin over split-field PML. The performance
of the optimized parameters for the high-order FDTD
algorithm mimicked those of standard FDTD for both
split-field and uniaxial PML formulations. Convolutional
PML, on the other hand, failed to match its excellent
performance with standard FDTD and managed only to
match split-field PML permanence which was the same
for both FDTD algorithms. It should be noted here that for
all cases in Table 1, the optimization process maintained
0.3 < κmax< 0.5 which justifies the slight deviation from
previous convolutional PML implementations mentioned
at the end of Section II.

Figure 3 charts the performance of the optimized
PML parameters atθmax = π/4 when the test domain’s
z-dimension is gradually collapsed, sweepingθmax from
π/4 to 87◦. Standard FDTD curves show that as the
incidence angle increases, the clear convolutional PML
advantage quickly diminishes and it slightly underper-
foms both split-field and uniaxial PML for the range
65◦ < θmax < 85◦. The high-order FDTD curves of
Fig. 3 demonstrate that the three PML variants achieve
better wide-angle performances as they stay below, say,
−140 dB up toθmax ≈ 80◦, compared to standard FDTD’s
θmax ≈ 75◦.

B. Optimized PML Parameters atθmax = 87◦

When the PML parameters were optimized at the
extreme incidence angleθmax = 87◦ to best accommodate
electrically large models, both standard and high-order
FDTD algorithms produced comparable performances
across each of the three PML variants as shown in Table 1.
On the other hand, there were clear differences among
the PML formulations, as uniaxial and convolutional PML
afforded roughly 10 dB and 30 dB lower reflection errors,
respectively, than split-field PML. As the incidence angle
is swept thoughπ/4 < θmax < 87◦ (see Fig. 4), all
three PML variants more or less maintained flat response.
The convolutional PML formulation in particular shows
superior extreme angle composure as well as lower overall
levels than the other two formulations for both FDTD
algorithms. While the reflection error levels in this figure
do not match those of Fig. 3, they do represent reliable
wide-angle PML performances. Depending on the prob-
lem under study, these error levels could be controlled by
varying the PML depthd and re-running the optimization
routine.

C. Frequency Response of Optimized PML Parameters

To verify that the optimized PML parameters are
insensitive to small frequency variations, the detailed
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Fig. 3. Comparative wide-angle performance of the three
PML formulations when optimized atθmax = π/4.
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Fig. 4. Comparative wide-angle performance of the three
PML formulations when optimized atθmax = 87◦.

experiment in Section III was repeated for convolu-
tional PML and standard FDTD with a unit impulse
source replacing equation (19) within a test domain sized
50 × 50 × 1. Two sets of optimized PML parameters,
at θmax = π/4, 87◦, were tested and compared in the
power spectral density plots of Fig. 5. (The 100-step time
series data were collected at points A and B, marked in
Fig. 1.) This comparison illustrates maintained minimal
reflection errors except at the frequency range where the
spatial grid becomes too coarse to support accurate FDTD
simulations. (It should be remembered here that the FDTD
grid was designed around 20 cells per wavelength at
1 GHz.)

In gerneral, however, PML parameters are frequency
dependent. For example, when the 3-harmonics source of
equation(19) was driven with a 60 GHz fundamental, the
optimization routine producedσmax = 38.6781 S/m and
nσ = 3.7181 at θmax = π/4 for the split-field PML and
standard FDTD, with the same−158 dB error level as in
Table 1.
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Fig. 5. Reflection errors’ frequency response of convolu-
tional PML with standard FDTD using normal-angle and
wide-angle PML parameters optimized atθmax = π/4 and
87◦, respectively.

V. CONCLUSION

This work demonstrated that the three main PML
variants, Bérenger’s original split-field PML, the uniaxial
PML and the convolutional PML, are all capable of
good outgoing wave absorbing capabilities at near grazing
angles. This capability was tested in three-dimensional
simulations up to87◦ incidence angles. The developed
optimization process provided different sets of PML pa-
rameters depending on how wide an incidence angle is
anticipated. This wide-angle performance comes at the
expense of reduced absorption capabilities at near normal
wave incidence. However, the far more critical advantage
of this extreme wide-angle capability is the elimination
of the need for prohibitively large scatterer/PML buffer
zones when modeling electrically large structures.

Both low-order (standard) FDTD and a high-order
FDTD algorithm were tested and optimized for near-
normal and near-grazing PML performances. When both
were optimized for near-normal incidence angles, the
high-order FDTD algorithm demonstrated wider-angle
capabilities than standard FDTD, providing flat absorption
response across0 ≤ θ ≤ 80◦ compared to standard
FDTD’s 0 ≤ θ ≤ 75◦. Of the three PML variants, the
convolutional PML formulation demonstrated best wide-
angle capabilities. The optimized PML parameters in
this work, though frequency dependent in general, were
shown to be insensitive to small frequency variations.
Optimized PML parameters could be easily implemented
in existing FDTD codes with no code changes or added
computational burden.
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Abstract −−−− The two-dimensional CP-FDTD thin slot 

algorithm is extended to three-dimensions for the application 

to shielding analysis in electromagnetic compatibility. The 

accuracy and the applicability of the 3-D CP-FDTD scheme 

to the slot width were validated with finer mesh model and 

capacitive thin-slot formalism (C-TSF). The model taken by 

the comparison is originated from a thin slot in an enclosure 

wall. The numerical results indicate that the performance or 

accuracy will descend with the augment of the slot width. 

Good agreements with the results of finer mesh modeling 

can be expected as the slot width is on the order of the mesh 

dimension, and quite large discrepancies from the results of 

C-TSF with the slot width far less than mesh dimension. The 

3D CP-FDTD algorithm will be utilized when the slot width 

is comparatively large and otherwise C-TSF will be used. 

Taking advantage of both of them will avoid finer mesh in 

thin slots modeling such as the shielding analysis of the 

electronic enclosure. 

 

I. INTRODUCTION 

 

The integrity of shielding enclosures is compromised by 

apertures and seams required for heat dissipation, cable 

penetration, and modular construction, among other 

possibilities [1]. These perforations allow energy to be 

radiated to the external environment from interior electronics, 

or energy coupled from the exterior to interfere with interior 

circuits [2, 3]. An understanding of energy coupling 

mechanisms to and from the enclosure is essential to 

minimize the EMI and susceptibility risk in a new design.  

Some numerical methods have been applied to solve 

these EMI/EMC problems such as the finite difference time 

domain (FDTD) method [4], finite element method (FEM) [5], 

method of moments (MoM) [6], etc. Among these methods, the 

FDTD method is one of the most effective tools for the analysis 

of varieties electromagnetic problems, and has previously 

been applied for modeling apertures in shielding enclosures. 

If the physical size of the aperture is on the order of, or larger 

than the spatial cell size, then modeling this aperture with 

FDTD is not a problem, however, if the aperture is narrow 

with respect to the spatial cell, one must either reduce the 

spatial cell size down to that require to resolve the aperture, or 

adopt an alternative method to characterize the aperture. The 

reduction of the cell size is often not a feasible approach, and 

therefore alternative methods have been investigated [7]. 

Two of the more popular thin slot formalisms (TSF) have 

been proposed by Gilbert and Holland (C-TSF) [8] and 

Taflove (CP-FDTD) [9]. Utilizing these TSF, a thin slot 

segment can be modeled with a single cell, thereby saving 

computational resources while retaining accuracy. Previous 

results for slots in infinite or large planes show C-TSF 

computation results agree well with experimental data [4]. The 

two-dimensional (CP-FDTD) study based on contour path 

method by Taflove generally found superior accuracy of the 

TSF, but it can’t be applied in solving 3D electromagnetic 

problems.  

To implement the TSF, the two-dimensional CP-FDTD 

thin slot algorithm is extended to three-dimensional for the 

application to shielding analysis in electromagnetic 

compatibility. The accuracy and the applicability of the 3-D 

CP-FDTD scheme to the slot width were validated with finer 

mesh model [10] and capacitive thin slot formalism (C-TSF). 

Results indicate that the 3D CP-FDTD algorithm will be 

utilized when the slot width is comparatively large and 

otherwise C-TSF. Taking advantage of both of them will 

avoid finer mesh in thin slots modeling.  

 

II. C-TSF ALGORITHMS 

 

Different subcellular thin-slot algorithms are employed 

for modeling thin slots in enclosures and conducting plates. 

The popular method introduced by Gilbert and Holland [8], 

denoted herein as the C-TSF, is based on a straight-forward 

quasi-static approximation. The Yee cells around a slot 

oriented along z-axis is shown in Fig. 1. Employing a quasi 

static approximation for narrow slots, and assuming the field 

quantities vary slowly in the z-direction, the slot can be 

viewed as a coplanar, parallel strip capacitor. The slot is then 

modeled by modifying the relative permittivity and relative 

permeability in the FDTD algorithm for the electric and 

magnetic field components in the slot. 
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Fig. 1. FDTD cells around the slot for the C-TSF algorithm. 

 

The C-TSF time-marching equations can be obtained for 

the electric field and magnetic field components in the slot by 

defining two line integrals, one transverse to the slot, and the 

other across the slot. These line integrals can be employed 

with the integral form of Maxwell’s equations to obtain 

modified FDTD update equations for the field components in 

the slot. An extra parameter results in the finite-difference 

equation which is the ratio of the two line integrals, and can 

be shown to be an effective permittivity for the slot. The 

relative permittivity in the slot is then written as,  
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where C is the parallel strip per unit length capacitance. The 

capacitance is evaluated within only one FDTD cell, and is 

denoted as the in cell capacitance. In order to maintain the 

free space phase velocity through the slot 

0 01 r rv ε µ ε µ= , the relative permeability in the slot is 

given by µr=1/εr. For the slot shown in Fig. 1., the tilde terms 

are the average values in and across the slot for the electric 

and magnetic field components, respectively. The slot 

capacitance per unit length is,  
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where K(·) is the complete elliptic integral of the first kind, w 

is the slot width. The relative permittivity is then related to the 

slot capacitance by equation (1). Therefore, the electric and 

magnetic field components in the slot can be updated by 

modifying only the permittivity and permeability in the 

respective equations as, 
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III. 3-D CP-FDTD ALGORITHMS 

 

The CP-FDTD method is not based on Maxwell’s 

equations in differential form but in integral form using 

Ampère’s and Faraday’s laws, indicated as follows, 
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Applying Faraday’s law along contour L1—L2—L3—L4  

in Fig. 2, and assuming that the field value at a midpoint of 

one side of the contour equals the average value of that field 

component along that side.  

 

 
 

Fig. 2. Faraday’s law for Hz . 

 

Now, further assuming that Hz(i,j,k) equals the average 

value of Hz over the surface S, and then the time derivative of 

Hz can be obtained using a central difference expression, as 

follows, 

 

1/ 2 1/ 2( , , ) ( , , ) ( ,
( , , )

n n n
z z x

t
H i j k H i j k E i j

S i j kµ
+ − ∆ = − −  

1 2 31/ 2, ) ( 1/ 2, , ) ( , 1/ 2, )
n n
y xk L E i j k L E i j k L+ + − + −  

4( 1/ 2, , )n
yE i j k L −  .          （7） 

 

In the same manner, we can obtain other field 

components. 

Figures 3 and 4 illustrate the front view and vertical view 

of a thin slot, respectively. Width of the slot is g, assuming 

that the cell size is ∆x=∆y=∆z=∆s. For Fig. 3 field 

components Hz is assumed to has no variation in the z 

direction (perpendicular to the slot gap), and the electric 

components Ey located within the conducting screen are 
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assumed to zero. For Fig. 4 field components Ex are assumed 

to have no variation in the x direction (across the slot gap). 

 

 
Fig. 3. Vertical view of the thin slot. 

 

 
Fig. 4. Front view of the thin slot. 

 

Subject to the foregoing algorithms, lets the contours 

length L1=L3=g, L2=L4=∆s for Fig. 3，and then substituting 

the contours area S=g∆s into equation (7), the Hz in Fig. 3 

becomes, 
1/ 2 1/ 2

( 1/ 2, 1/ 2, ) ( 1/ 2, 1/ 2, )
n n
z i j k z i j kH H

+ −
+ + + += −  

( 1/ 2, 1, ) ( 1/ 2, , )
n n
x i j k x i j k

t
E E

sµ + + +
∆  − ∆

.      (8) 

 

The electric components Ex in Fig. 3 and Fig. 4 can use 

the basic FDTD method to calculate as follows, 

1 1/ 2
( 1/ 2, , ) ( 1/ 2, , ) ( 1/ 2, 1/ 2, )

n n n
x i j k x i j k z i j k

t
E E H

sε
+ +

+ + + +
∆ = + −∆

 

1/ 2 1/ 2 1/ 2
( 1/ 2, 1/ 2, ) ( 1/ 2, , 1/ 2) ( 1/ 2, , 1/ 2)

n n n
z i j k y i j k y i j kH H H+ + +

+ − + + + −
− +  .  (9) 

 

The basic FDTD are also used to calculate electric 

components Ez as follows, 
1
2

1 1
2 2

1
( , , 1/ 2) ( , , 1/ 2) ( , , )

nn n
z i j k z i j k y i j k

t
E E H

sε
++

+ + + +

∆ = + −∆ 
 

1 1 1
2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

( , , ) ( , , ) ( , , )

n n n

y i j k x i j k x i j k
H H H

+ + +

+ − + + + −

− + 
.  (10) 

 

Assuming that the side contour along Hy are ∆s, ∆s, ∆s 

and g, the contour is ∆s
2，then using the time-stepping 

expression for Hy, and let ω=g/∆s we obtain, 

1/ 2 1/ 2
( 1/ 2, , 1/ 2) ( 1/ 2, , 1/ 2) ( 1, , 1/ 2)

n n n
y i j k y i j k z i j k

t
H H E

sµ
+ −

+ + + + + +
∆ = − −∆

( , , 1/ 2) ( 1/ 2, , 1) ( 1/ 2, , )
n n n
z i j k x i j k x i j kE E Eω+ + + +

− +  .   (11) 

 

The algorithm described above is the basis of the 3-D 

CP-FDTD method, and equations (8) to (11) are the slot 

algorithm for computation the field components near the slot 

gap region.  

 

IV. NUMERICAL RESULTS AND DISCUSSION 

 

To demonstrate the accuracy and applicability of the 

mentioned 3-D CP-FDTD scheme for EMI issues, a model 

of metallic rectangular enclosure with one thin slot is 

presented here as shown in Fig. 5.  

The inside dimension of the enclosure is 

20cm×40cm×50cm, and the thin slot in an enclosure wall is 

8 cm long (x direction) by w cm wide (y direction), as shown 

in Fig. 6. In our simulation we let w=0.6cm, 0.1cm, 0.01cm, 

respectively.  

 

 
 

Fig. 5. Shielding enclosure with one slot. 

 

 
 

Fig. 6. Thin slot in an enclosure wall. 
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The elemental electric dipole oriented along x-direction 

is placed in the center of the enclosure. The electric dipole 

moment is a Gaussian pulse with T=0.0167ns wide, 

2
12 3

( ) 10 exp
t T

P t
T

−
 − = −  

   
 .     (12) 

For the sake of comparison, numerical simulations are 

carried out using the 3-D CP-FDTD, C-TSF and finer grid 

FDTD methods. Perfectly matched layer (PML) absorbing 

boundary conditions are employed for the three dimensional 

FDTD program and choose the space increments 

∆x=∆y=∆z=δ. For the 3-D CP-FDTD and the C-TSF method, 

we chooseδ=1cm. For finer grid FDTD method we choose 

δ=0.2cm. 

When the slot width is w=0.6cm, we calculated the 

electric fields at the point with 10cm far away from the 

center slot wall by using 3-D CP-FDTD method and finer 

grid FDTD methods, the time domain and frequency domain 

simulation results of Ez at the point are shown in Figs. 7 and 

8, respectively.   

 

 
Fig. 7. Time domain results of Ez with 0.6cm slot width by 

using CP-FDTD and finer grid method. 

 

 
Fig. 8. Frequency domain results of Ez with 0.6cm slot width  

by using CP-FDTD and finer grid method. 

The accurate agreements field simulation results for the 

slot in Figs. 7 and 8 clearly shows that the proposed 3-D CP-

FDTD method can successfully works for the slot width is on 

the order of the mesh dimension, and can be obtained 

considerable high computation efficiency compared to the 

finer grid FDTD method. 

It has been demonstrated that EMI issues associated with 

thin slots can computation efficiency and accuracy by C-TSF 

method with w/δ≤0.1, and Two-dimensional (2-D) C-TSF 

results for plane-wave scattering from a slot in an infinite 

conducting plane have been shown to agree well with method of 

moments (MoM) results. Typical discrepancies of less than 10% 

can be expected for the field quantities at locations near the slot 

region [10]. So, we calculated the electric field Ez at the same 

point by using 3-D CP-FDTD and C-TSF methods with slot 

width w=0.1cm, w=0.01cm, respectively. The frequency 

domain simulation results are shown in Figs. 9 and 10, 

respectively. 

 

 
Fig. 9. Frequency domain results of Ez with 0.1cm slot width  

by using CP-FDTD and C-TSF method. 

 

 
Fig. 10. Frequency domain results of Ez with 0.01cm slot 

width by using CP-FDTD and C-TSF method. 

19LI, YU, WANG, LI: EXTENSION OF 2D CP-FDTD THIN SLOT ALGORITHM TO 3D



Figures 9 and 10 show that when w=0.1cm, 0.01cm, the 

results calculated by the 3-D CP-FDTD method deviate from 

the results calculated by the C-TSF method significantly, 

especially when the frequency is high, and it is apparent that 

result deviation is larger for w=0.01cm than that of for 

w=0.1cm. So, it is easy to draw a conclusion that with the slot 

width far less than mesh dimension, the 3-D CP-FDTD will 

lead to quite large discrepancies from the results of C-TSF, 

the reason is because the 3-D CP-FDTD based on a quasi-

static approximation for narrow slots and we take for field 

components has no variation near the slot region, but actually 

field vary greatly when the slot gap is too thin, especially with 

the slot width far less than mesh dimension. 

 

V. CONCLUSION 

 

In this paper, we extended the two-dimensional CP-

FDTD thin slot algorithm to three-dimensions for the 

application to shielding analysis in electromagnetic 

compatibility. The accuracy and the applicability of the 3-D 

CP-FDTD to the slot width were validated with finer mesh 

model and capacitive thin-slot formalism (C-TSF) model. 

The numerical results indicate that the performance or 

accuracy will descend with the augment of the slot width. 

Good agreements with the results of finer mesh modeling 

can be expected as the slot width is on the order of the mesh 

dimension, and quite large discrepancies from the results of 

C-TSF with the slot width far less than mesh dimension. The 

3-D CP-FDTD algorithm will be utilized when the slot 

width is comparatively large and otherwise C-TSF. Taking 

advantage of both of them will avoid finer mesh in thin slots 

modeling such as the shielding analysis of the electronic 

enclosure. 
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A New Implementation of the Hybrid Taguchi GA: Application
to the design of a Miniaturized Log-Periodic Thin-Wire Antenna
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Abstract – This paper proposes a modification of the
hybrid Taguchi-genetic algorithm (HTGA) for solving
global numerical optimization problems with continuous
variables. The HTGA is a method that combines a
conventional genetic algorithm (CGA), which has a
powerful global exploration capability, with the Taguchi
method, which can exploit the optimum offspring. The
Taguchi method is utilized in the HTGA to help in
selecting the best genes in the crossover operations. The
new implementation proposed in this paper (nHTGA)
involves producing, at each generation, a single offspring
by Taguchi method, one of its parents being the best
individual found so far, instead of repeatedly applying
Taguchi to generate several individuals with both parents
selected at random as HTGA does. Moreover, the
efficiency of the algorithm is enhanced by only crossing
via Taguchi individuals with a high enough number of
different genes. The performance of the proposed HTGA
is assessed by solving several benchmark problems of
global optimization with large number of dimensions and
very large numbers of local minima. The computational
experiments show that the new algorithm causes a
reduction, sometimes drastic, in the number of function
calls, i.e. in computational time, for all the benchmark
problems proposed. As an example of application of this
novel algorithm to a real-world problem, the optimization
of an ultra-broadband zigzag log-periodic antenna is
carried out and discussed.

Keywords: Genetic algorithm, numerical optimization,
Taguchi method, log-periodic antenas, zig-zag antenas.

I. INTRODUCTION

Genetic algorithms (GAs) [1] have come a long
way toward solving optimization problems [2] where
conventional optimization methods fail, such as system
identification [3], design [4–7], scheduling [8], routing
[9], control [10, 11], and others [12]. The GAs have been
demonstrated to be robust stochastic search and optimiza-
tion techniques. These algorithms are a type of evolution-
ary algorithms based on Darwin’s theory of evolution.

In GA, a population of Npop individuals (trial solutions)
evolve in parallel by means of selection of the fittest
individuals, crossover and mutation of genes. Because
of its implicit parallelism [2], and a reasonable tradeoff
between global and local search abilities, the GAs are
considered to be robust global optimization algorithms.
However, one obstacle when applying GAs to optimize
complex problems where the evaluation of functions is
computationally intensive is the high computational cost
due to their slow convergence rate.

Many efforts have been dedicated to accelerate the
convergence of GAs, such as studying optimal crossover
and mutation rates or selecting appropriate genetic op-
erators [13]. More recently, new algorithms combining
GAs with local searchers have been proposed to improve
the performance of GAs on global optimization problems
[14–17]. In particular, Tsai et. al. presented a hybrid al-
gorithm, called HTGA, which combines the conventional
GA (CGA) [2] with the Taguchi method by inserting a
Taguchi-method-based crossover between crossover and
mutation operators [17]. The Taguchi method selects two
random individuals from offspring already resulting from
crossover and recombines them, creating a single individ-
ual via an orthogonal array experiment. The systematic
reasoning ability of the Taguchi method helps to select
the best genes to achieve the crossover, and consequently
enhance the genetic algorithm. The process is repeated
until the expected population size is met. The hybrid
method was demonstrated to be more robust, statistically
sound, and quickly convergent than the ones proposed
previously in [14–16].

In this paper, a new implementation of the HTGA
is proposed. The new hybrid method, named nHTGA, is
based on the hypothesis that two low-quality parents have
little chance of beating, by crossover and mutation, the
best individual found so far. Therefore, the offspring of
two of the worst individuals in the population resulting
from an orthogonal array experiment will be, in most
cases, a low-quality individual, resulting in a waste of
function calls, i.e. a waste of computational time. To
avoid this, we propose some modifications of the HTGA
code. The main one is that, at each generation of the
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GA process, only one of the new offspring is produced
via Taguchi method, the best individual found so far
being one of its parents. With this, we expect to save
computational resources as we avoid useless matrix ex-
periments between individuals whose offspring don’t have
much chance of improving the performance of the best
individual in the population. Moreover, the number of
experiments needed to find the optimal solution in the
whole nHTGA process is further reduced by requiring a
certain degree of diversity of the two chromosomes to be
mated via Taguchi method.

This paper is organized as follows. Section II briefly
describes the Taguchi method, the fundamentals of the
nHTGA and compares the performance of the new algo-
rithm with that of HTGA and that of other algorithms
frequently used in engineering applications. As an ex-
ample of application, in Section III the nHTGA is used
to optimize the performance of a log-periodic thin-wire
antenna.

II. THE NHTGA

A. The Taguchi Method
The Taguchi method is a robust design approach

based on improving the quality of a product by mini-
mizing the effect of the causes of variation without elim-
inating the causes [18]. Two major tools are used in the
Taguchi method, orthogonal arrays (OAs) and the signal-
to-noise ratio (SNR). In laboratory experimentation, OAs
are used for determining which combinations of factor
levels to use for each experimental run and for analyzing
the data. OAs are matrixes of numbers arranged in rows
and columns where a row represents the level of all factors
in a given experiment, and a column represents the values
assigned to a specific factor in the various experiments.
The array is called orthogonal because columns can be
evaluated independently of one another.

In this paper, we will work with two-level OA whose
general nomenclature is Ln(2n−1) where n is the number
of experimental runs, n-1 the number of columns in the
array (or number of factors involved in the experiments),
and 2 the number of possible different values (or lev-
els) that a factor can take. A simple algorithm for the
construction of OAs can be found in [16]. An example
of an OA is given in table 1, where the OA indicates 8
possible experiments determined by specific combinations
of two levels (values 1 or 2) of 7 different variables (A-G).
According to OA’s theory, the 8 experiments are selected
so that they provide a balanced comparison of the two
possible levels of any factor.

The other parameter concerning the Taguchi method
is the SNR, which has been traditionally used in engi-
neering to measure the quality of a product corresponding
to a specific choice of the values taken by the variables
involved in a design. The SNR, for a set of quality
characteristics of a given product, is related to the mean

Table 1. Orthogonal array L8(27).

Factors
A B C D E F G

experiment column number
number 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

squared deviation from the target value of those quality
characteristics. Several definitions of the SNR can be
found depending on the type of characteristic and on the
type of problem. Taguchi has generalized the concept of
SNR and applied it to the assessment of the influence
of the possible values of the different factors involved
in a set of experiments. SNR is usually defined so that
it is large for favorable situations. For example, in the
GA application described in this paper, the SNR of a
given experiment (chromosome or individual) will be
defined in terms of the fitness function corresponding to
that experiment in such a way so that better individuals
correspond to greater values of SNR.

The SNR helps on converting several repetitions
of the value taken by a variable into a single number
that accounts for the quality of the final product if that
repeated value of the given variable is used. To this end,
given a set of N experiments described by a specific OA,
the effect of each variable involved is defined as,

Ei,j =
n∑
k

δ(level(i, k)− j)SNR(k)

i = 1, ..., Nv; j = 1, 2

(1)

where Nv is the number of variables; i represents the
ith-variable; k is the number of experiment; level(i, k)
is the level (1 or 2) taken by the ith-variable in the
kth-experiment and j is either 1 or 2 (two effects are
defined for each variable). The sum includes only the
SNR of experiments where the level of factor i is equal
to j as indicated by the delta of Kronecker symbol δ.
For example, in the two-level OA of table 1, Ei,1 and
Ei,2 can be defined for a given column i (i=1,..,7); Ei,1
corresponds to the sum of the SNR of all experiments
where the value of factor i is equal to 1, and Ei,2
corresponds to experiments where the value of the ith-
factor is equal to 2. An example of application is given
in the next subsection, and, for further details, the reader
is refereed to [18].
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B. Generation of optimal offsprings by Taguchi method
The Taguchi method can be used to generate an

optimal offspring from the mating of two parents with
Nv genes. The process starts by selecting an appropriate
orthogonal array Ln(2n−1) with with n − 1 ≥ Nv and
by defining a fitness function that measures the quality
of a given chromosome. The fitness function F (k), k =
1, ..., n is evaluated for each of the n experiments in
the OA and a signal-to-noise ratio, SNR(k), is defined
in terms of F (k). Subsequently the effect, Ei,j , of the
various factors in the SNR is calculated for each factor
(gene or column in the array) (i = 1, .., Nv) and each
level (j = 1, 2) of that factor using equation (1).

To clarify the process, let us consider the problem
of finding a chromosome, kbest, formed by the 7 genes,
C(i, kbest), i = 1, ..., 7, that maximize the test function,

f(k) =
7∑
i=1

sin (C(i, k)) (2)

where k refers to an specific chromosome whose genes
take the values C(i, k), i = 1, ..., 7, respectively. The
values permitted for each C(i, k) are discrete fractions
of π, ranging from 0 to π. In this context, we would
perform the mating of the two 7-gene chromosomes (7
factors) given in Table 2 via Taguchi with the aid of the
L8(27) OA given in Table 1. Table 3 shows the eight
different chromosomes corresponding to the eight differ-
ent experiments. The process starts with the definition
of the fitness function that evaluates the goodness of a
chromosome as F (k) = f(k)

7 and the calculation of the
SNR(k), defined in this case as SNR(k) = F (k)2, for
each experiment, k = 1, ..., 8, in the OA. The values of
F (k) and SNR(k) are shown in the 9th and 10th columns
in Table 3. Then the effects, Ei,1 and Ei,2, of the various
genes are calculated for i = 1, .., 7 using equation (1),
resulting in the values given in Table 3. As the optimal
level for each factor is decided by the larger value of either
Ei,1 or Ei,2, the process resulted in the optimal levels ”2,
1, 1, 2, 2, 2, 1” for each of the seven factors respectively
and therefore in the optimal chromosome given in Table
3.

Table 2. The two 7-gene chromosomes.

Chromosome 1: π/9 π/2 π/2 π/3 π/9 4π/5 π/2

Chromosome 2: π/2 π/3 π/5 π/2 π/2 π/2 2π/3

C. The HTGA method
The HTGA is based on the insertion of the Taguchi

method between the crossover and mutation operations in
a CGA. The stages in the HTGA algorithm are [19]:

1) Appropriate parameters needed for the implemen-
tation of the algorithm are decided such as the

probability of crossover, pcross, and probability of
mutation, pmut.

2) A suitable two-level OA for matrix experiments is
selected.

3) A population of Npop individuals is randomly cre-
ated.

4) The Npop individuals performance is evaluated ac-
cording to the specific objective or fitness function
at hand.

5) A roulette wheel selection is applied.
6) On average, pcross chromosomes undergo one-point

crossover as in the CGA.
7) Two chromosomes from the current population are

randomly selected and mated via the Taguchi exper-
iments, producing an optimal offspring as explained
in the previous subsection. This step is repeated
1
2 × pcross ×Npop times.

8) Mutation with a probability of pmut is applied.
9) The Npop better chromosomes are selected to be the

parents of the next generation.
10) Steps 5 to 9 are repeated until the stopping criterion

is met.
This hybrid algorithm, which combines the powerful

global exploration capabilities of GA with that of the
Taguchi method for producing optimum offspring, was
proven in [19] to be fast converging, robust, and sta-
tistically sound when applied to optimize several high-
dimension benchmark problems.

D. The nHTGA method
In this paper we propose a new hybridization of the

Taguchi and GA methods (i.e. the nHTGA) which is
sketched in Figs. 1 and 2. The objective is to improve the
efficiency of the Taguchi method by decreasing the total
number of fitness-function evaluations (function calls)
needed to find the optimal solution of the problem at
hand. To this aim, as we commented in the Introduction,
instead of applying Taguchi method 1

2 × pcross × Npop
times to mate two randomly selected individuals each
time (step 7 in the previous subsection), we just produce
an ’optimal’ offspring per generation using the Taguchi-
based crossover operator. That offspring is the descendant
of the best chromosome found so far and one chromo-
some randomly selected with the only condition of being
different enough from its mate according to a criterion
explained below. This means that the number of function
calls per generation is reduced from 1

2×pcross×Npop×n
in the HTGA to n in the nHTGA, being n the num-
ber of experiments in the appropriate Taguchi OA. The
idea behind the modifications is that two bad-quality
individuals will not likely be candidates to produce a
chromosome with a better performance than that of the
best chromosome in the current population.

Aiming to reduce even more the number of function
calls, we set a rule to select the second individual to be
mated via Taguchi in such a way that we avoid redundant
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Table 3. Generating a better chromosome from two chromosomes by using the Taguchi method.

Factors

A B C D E F G

Experiment Column number

Number(k) 1 2 3 4 5 6 7 F(k) SNR(k)

1
π

9

π

2

π

2

π

3

π

9
4
π

5

π

2
0.7340 0.5387

2
π

9

π

2

π

2

π

2

π

2

π

2
2
π

3
0.8869 0.7865

3
π

9

π

3

π

5

π

3

π

9

π

2
2
π

3
0.6957 0.4840

4
π

9

π

3

π

5

π

2

π

2
4
π

5

π

2
0.7691 0.5915

5
π

2

π

2

π

5

π

3

π

2
4
π

5
2
π

3
0.8439 0.7122

6
π

2

π

2

π

5

π

2

π

9

π

2

π

2
0.8471 0.7176

7
π

2

π

3

π

2

π

3

π

2

π

2

π

2
0.9617 0.9249

8
π

2

π

3

π

2

π

2

π

9
4
π

5
2
π

3
0.8088 0.6542

Ei1 2.4007 2.7551 2.9044 2.6599 2.3945 2.4967 2.7727

Ei2 3.0090 2.6546 2.5053 2.7498 3.0152 2.9130 2.6370

Optimal level 2 1 1 2 2 2 1

Optimal chromosome
π

2

π

2

π

2

π

2

π

2

π

2

π

2
1 1

experiments. Note that if, for example, we perform a
matrix experiment using the OA in Table 1 with two
individuals in which factors D to G are the same for
both, experiments 1 and 2 will be the same, as also
will be experiments 3 and 4, 5 and 6, and 7 and 8.
Thus in this application of the Taguchi method, we waste
four function evaluations since several experiments are
repeated. In Appendix A, we describe an empirical study
aimed at deciding how many experiments are redundant
as a function of the number of genes with repeated values
of the two mating individuals. We give an example for the
case of an OA L32(231) and Nv = 30. We conclude that
no matrix experiments should be made if the difference
between individuals is less than 15%, since nearly half
of the experiments will have been already performed,
resulting in a waste of computational resources. As a rule
of thumb, in the present work we increase this threshold
up to 25%.

E. Benchmark testing

Next we assess the performance of the nHTGA al-
gorithm by solving several global numerical optimization
problems, which fulfill the conditions to form a suitable
touchstone to check the performance of evolutionary algo-
rithms [19]. In particular, we consider the minimization of

the 30-dimensional functions (N = 30) described in table
4 by applying the nHTGA and subsequently compare our
results with the ones reported in [19].

We apply the nHTGA using a smaller population
(Npop = 20) than the one reported in [19], where HTGA
was employed to solve the same problems with Npop =
200. Therefore, in order to make a fair comparison, we
increase the crossover and mutation rates to pcross = 1
and pmut = 0.2 so that we have the same number
of fitness-function evaluations per generation due to the
action of the genetic operators than in HTGA. On the
other hand, as it was previously commented, we use a
Taguchi-based crossover operator was used only once in
each evolutionary cycle, on individuals with at least one
quarter of the genes being different. Both the nHTGA and
the HTGA use real encoding where each chromosome is
represented by a vector of N floating-point numbers, i.e,
x1, ..., xN . The criterion for stopping the execution of the
nHTGA algorithm is that the value of the fitness function
of the best individual in the population should be less than
or equal to the mean function value reported in [20] using
HTGA. Aiming for statistically robust results, each test
function minimization problem is performed 50 times.

The mean number of fitness-function evaluations, the
mean function value of the optimized solution calculated
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Table 4. Benchmark of test functions.

Test Function Feasible
Solution Space

f1 =
N∑
i=1

(
−xi sin

(√
|xi|
))

[−500, 500]N

f2 =
N∑
i=1

(
x2
i − 10 cos (2πxi) + 10

)
[−5.12, 5.12]N

f3 = −20 exp

(
−0.2

√
1

N

N∑
i=1

x2
i

)
− exp

(
1

N

N∑
i=1

cos (2πxi)

)
+20 + exp (1)

[−32, 32]N

f4 =
1

4000

N∑
i=1

x2
i −

N∏
i=1

cos

(
xi√
i

)
+ 1 [−600, 600]N

f5 =
1

10

{
sin2 (3πx1) +

N∑
i=1

−1(xi − 1)2
[
1 + sin(3πxi+1)

]
+(xN − 1)2

[
1 + sin(3πxN )

]}
+

N∑
i=1

u(xi, 5, 100, 4)

[−50, 50]N

f6 =
N∑
i=1

x2
i [−100, 100]N

f7 =
N∑
i=1

|xi|+
N∏
i=1

|xi| [−10, 10]N

over the 50 runs, and the standard deviation of the func-
tion values were all calculated for each test function and
are presented in Table 5. Note as the table reflects, the new
nHTGA gives closer to optimal solutions than the HTGA
and moreover uses a lower mean number of fitness-
function evaluations, greatly improving the efficiency of
the algorithm. In this table we also show these data when
a CGA is used (numerical results extracted from [16]).

III. LOG PERIODIC ANTENNA DESIGN

The Taguchi method has been applied to some elec-
tromagnetic optimization problems [21, 22] with success.
In this work we employ the nHTGA hybrid GA and
Taguchi method algorithm to optimize the design of a
thin-wire antenna that must fulfill the following require-
ments throughout the operating band, which ranges from
450MHz to 1.35GHz:

1) Standing voltage wave ratio (SVWR) less than 2
(referenced to 75Ω)

2) Gain range (GR) less than 3dB.
3) Gain (G) greater than 5dB.
4) Front-to-back ratio (FTB) greater than 15dB.
5) Beamwidth (BW) in azimuth greater than 120◦.
6) Vertical polarization.

Moreover, as the antenna is going to be mounted on a
pole, its environmental impact needs to be reduced and
therefore, its greatest dimension is required to be less than
or equal to half of thewavelength at the lowest frequency,
i.e. λlow/2 = 0.33m.

To satisfy the above requirement we have consid-
ered symmetrical log-periodic antennas (LP) as suitable
starting points in our designs, because LP antennas are
vertically polarized, endfire radiators, and possess good
FTB ratios [23].

A. LP antenna geometry
Log periodic antennas are radiators for which the

geometry is chosen so that the electrical properties are
repeated periodically with the logarithm of frequency.
The first successful design of this type of antenna was
proposed by DuHammel and Isbell in [24], setting a
new starting point for a variety of sheet and wire LP
designs [25], [26]. Among this family of antennas, the
symmetrical log-periodic antennas [27] focus our interest
since they provide a promising model to be optimized
with the nHTGA tool in an effort to fulfil all the design
specifications described above. In particular, log-periodic
bent zigzag antennas (LPBZA) as the one studied in [28]
were considered the starting point of our design because
they do not need any phase-reversal transformers to
achieve broadband performance and they are less sensitive
than the bent-monopole antenna [23]. An example of a
basic thin-wire LPBZA antenna is schematized in Fig. 3,
where only one arm of the antenna is represented, as the
antenna is symmetric with respect to the XY plane. The
geometrical factor τ is the ratio of two adjacent similar
dimensions of the antenna (τ = Rn+2/Rn < 1); αE and
αS are the angles between tip to tip on the vertical and
horizontal planes of the zigzag antenna, respectively; ξ
is the distance between the two antenna arms and Nt
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Table 5. Comparison between HTGA and nHTGA under the same evolutionary environment.

Test
Mean number of

function evaluations
Mean function value
(standard deviation)

Globally
minimal

function nHTGA HGTA CGA nHTGA HGTA CGA
function

value

f1 14677 163468 458653
-12569.4655

(0.0077)
-12569.46

(0)
-8444.7583
(65.7326)

-12569.5

f2 5596 16267 335993
0

(0)
0

(0)
22.967

(0.7800)
0

f3 7989 16632 336481
0

(0)
0

(0)
2.697

(5.668× 10−3)
0

f4 19282 20999 346971
0

(0)
0

(0)
1.258

(1.657× 10−2)
0

f5 14405 59003 348356
0.9× 10−4

(1× 10−5)
1× 10−4

(0)
2.978

(7.210× 10−2)
0

f6 8917 20844 181445
0

(0)
0

(0)
4.9655

(11.3614)
0

f7 6747 14285 170955
0

(0)
0

(0)
7.9315× 10−1

(5.5943× 10−1)
0

the number of tips in one arm (in the particular case
shown in Fig. 3 Nt = 7). The antenna is excited with a
voltage source at its center (see Fig. 3). In our designs, the
radius of the wire, r, is constant, despite breaking the log-
periodicity, in order to facilitate the future construction of
the antenna.

Next, we modify the geometry of the LPBZA an-
tennas in order to reduce their size so that the design
specifications regarding the compact size of the antenna
are fulfilled. With this aim, we have considered two alter-
native ways of keeping the antennas maximum dimension
smaller that λlow/2: 1) either we reduce to λlow/4 (since
the antenna is symmetrical over the XY plane) the height
of the tooth that exceed the limit imposed (as in Fig.
4(b)); or, 2) following the ideas already presented in [29],
we bend the antenna tooth in a quasi-fractal way until
the antenna shrinks to the appropriate dimensions (see
Fig. 4(c)). With the first option the number of peaks is
kept invariant, while the second option maintains the total
length of the wire.

Furthermore, to increase the electrical size of the an-
tennas without increasing their physical size, we propose
to use resistive loads located along the antenna geome-
tries. The use of resistive loading is crucial to operate
within the required frequency range and to broaden the
bandwidth. This is due to the fact that, in LP antennas,
most of the radiation takes place in the region where the
dipole length ranges from λ/2 to 3λ/2 [23]. Then, since
the maximum height of our antenna must be less than
λlow/2, energy with a wavelength greater than approxi-
mately λlow/3 will not be fully radiated if the antenna
is made of perfect electric conducting wires. One way to
solve this is to lengthen the wires electrically by means

of loading the antenna segments with a resistive profile.

B. Antenna optimization

In this subsection, we describe how the nHTGA ap-
proach has been applied in conjunction with the method-
of-moments-based NEC code to optimize the performance
of an LPBZA. The design parameters are αE , αS , τ , ξ
and the value of the resistance per unit length loading the
antenna structure, which, to keep the problem tractable,
is chosen to be constant for each tooth of the LPBZA
and ranges from 0 Ω/m to 100 Ω/m. LPBZA, both
with reduced tooth size and with bent teeth, are being
considered. The radius of the wire is r=2mm, the number
of tips Nt = 25 and, for practical reasons, designs
with segments shorter than 2cm are not permitted. The
variation range of the geometrical design parameters is
shown in Table 6.

Table 6. Parameter design range.

Parameter Min. Value Max. Value
αE 25 (deg) 65 (deg)
αS 25 (deg) 65 (deg)
τ 0.8 0.95
ξ 6 (mm) 20 (mm)
Ω 0 (Ω/m) 100 (Ω/m)

The nHTGA starts by generating an initial population
of Npop = 20 LPBZA antennas which are encoded using
real values. Then, to measure the goodness of a given
individual, we define a fitness function as a weighted
aggregation of the different objectives described at the
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END

no
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Fig. 1. Flowchart of the nHTGA for global numerical
optimization problem.

A

Choose the best
individual and a

random suitable one

Calculate the fitness
value and the SNR

of the n experiments

Calculate the effects
of the various factors

One optimal
individual

is generated

B

Fig. 2. New implementation of the Taguchi method over
a GA.

Fig. 3. Geometry of a single arm of the LPBZA.

beginning of this section as,

F =
1
Nν

Nν∑
i=1

$(νi)×[
1
4

Θ
(

2
SVWR(νi)

)
+

1
8

Θ
(

3
GR(νi)

)
+

1
8

Θ
(
G(νi)

5

)
+

1
4

Θ
(
FTB(νi)

15

)
+

1
4

Θ
(
BW (νi)

120

)]
(3)

where

Θ(x) =

{
1 if x ≥ 1

x otherwise
(4)
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(a) Original

(b) Option 1

(c) Option 2

Fig. 4. Miniaturization techniques applied to an over-
sized tooth (a), by decreasing the tooth height (b), and by
bending the tooth on a quasi-fractal way (c).

and $(ν) = C(1/ν3 + ν8) is a normalized weighting
function that gives more importance to the accomplish-
ment of the objective functions at the edges of the fre-
quency band. Nν is the number of frequency samples and
ν the frequency in GHz. F is defined so that its maximum
value, 1, is achieved by any antenna that fulfils all the
design requirements. Thus, the application of the nHTGA
operators makes the population evolve towards better
antenna designs, i.e. towards individuals with higher F
values.

C. Numerical results
The nHTGA code has been applied three times to

ensure that the code has not been trapped in a local
maximum. The best antenna found had a value of the
fitness function F equal to 0.9856. Its geometry, shown
in Figure 5(a), corresponds to τ = 0.815, αE = 44.691◦,
αH = 41.000◦, ξ = 6.746 mm. The 25 teeth in each
arm have been miniaturized in a quasi-fractal way and
the resistive profile for each teeth is shown in Fig. 5(b)
(the tooth are numbered from larger to smaller sizes).

The performance of the resulting antenna has been
analyzed using NEC and the results are given in Figs. 6
and 7. The input impedance, normalized to Z0 = 75Ω, is
plotted on a Smith chart in Fig. 6(a). The impedance plot
lies at the center of the Smith chart, with all the points
inside the 2:1 circle, meaning the fulfilment of objective
1 (SVWR ≤ 2). Moreover, the impedance is balanced
and can be matched to a 75Ω commercial coaxial cable
without using an impedance transformer. From Fig. 6(b),
which represents the gain versus frequency, it can be seen

(a)

(b)

Fig. 5. Optimized LPBZA. (a) Geometry of the opti-
mized antenna. (b) Resistive loading profile for each tooth
in the optimized antenna.

that the gain ranges from 5dB to 8dB within the band,
satisfying requirements 2 (GR ≤ 3dB) and 3 (G ≥ 5dB).

Figure 6(c) plots the antenna 3dB horizontal
beamwidth vs. frequency, which is found to be greater
than 120◦ throughout the frequency range except for
three frequency samples that, in any case, correspond
to beamwidth values quite close to 120◦. On the other
hand, the front-to-back ratio, which is represented in
Fig. 6(d) vs. frequency, is greater than 15dB, except
for a couple of frequencies near the low-frequency part
of the band, where values are around 12dB. Therefore,
objectives 4 (FTB ≥ 15dB) and 5 (BW ≥ 120◦) have
been approximately accomplished.

Finally, Fig. 7 displays, for five different frequencies
within the operating antenna bandwidth, the gain as a
function of the horizontal angle φ. The behavior of the
gain with frequency is similar in the five cases, therefore
corroborating the broadband antenna performance, and
the figure also confirms that the design objectives in terms
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(a)

(b)

(c)

(d)

Fig. 6. Performance of the optimized LPBZA. (a) Input
impedance on the Smith chart referenced to Z0 = 75Ω
.(b) Gain in the endfire direction. (c) Beamwidth on the
horizontal plane. (d) Front-to-back ratio.

of gain, beamwidth, and front-to-back ratio, have been
accomplished for the five selected frequencies.

Fig. 7. Gain in the horizontal plane (θ = 90◦) versus φ
for the optimized LPBZA. νlow = 450MHz is the lowest
frequency of the considered band.

IV. CONCLUSION

A new implementation of the HTGA is proposed
in this paper. Hybrid techniques combining the Taguchi
method with traditional GAs incorporate Taguchi orthog-
onal arrays between the crossover and mutation operators
to produce chromosomes with the best combination of
design variables or genes. After the conventional GA
gene-mating process, the new HTGA proposed here pro-
duces only one individual in each generation via the
Taguchi-based crossover operator. The new individual is
the Taguchi children of the best individual found so far
and one selected at random. This process differs from
previous versions of HTGA, where a percentage of the
whole population at each generation is generated via
Taguchi method. The computational solution of several
test cases demonstrates that the proposed hybrid algorithm
outperforms the HTGA and traditional GAs in terms of
evolutionary efficiency. Finally an example of application
of the nHTGA is given carrying out the optimization of
a log-periodic thin-wire miniature antenna.

APPENDIX A
EFFICIENCY OF MATRIX EXPERIMENTS

L32(231)

In this appendix, we explain how to perform a
numerical experiment conceived to determine how many
function evaluations are redundant in a matrix experiment
when two individuals with several genes in common are
crossed via Taguchi method. We propose to implement
the following steps:

1) Two Nv-genes chromosomes are randomly gener-
ated.
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2) Nequal genes of the two previous chromosomes are
forced to be identical. The specific equal genes are
selected at random.

3) The matrix of experiments that results from crossing
the two chromosomes via Taguchi is built.

4) The number of different experiments is counted.
The numerical experiment is conducted one hundred
times, each time varying Nequal = 1 . . . Nv (instead of
considering all the Nv!

(Nv−Nequal)!Nequal! possibilities for
Nequal). The number of different experiments found in
average are plotted versus Nequal

Nv
× 100 and, from that

graph, conclusions can be reached on how to select Nequal
in order to avoid a certain percentage of redundant matrix
experiments. As an example, Fig. 8 shows the results for
the case of N=31 genes and the OA L32(231). It plots
the number of different matrix experiments (in average)
versus the percentage of different genes in the pairs of
31-genes mating chromosomes considered. It can be seen
that if at least 25% of the genes of the individuals going
to be mated through Taguchi are different, just around the
2% of the matrix experiments are repeated. Therefore it
seems reasonable to require the differences in genes to
be greater than at least 25%. Numerical experiments with
other OA lead to similar conclusions.

Fig. 8. Number of different experiments versus the
percentage of different genes for the case of the OA
L32(231).
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Abstract −−−− Three fractal monopole antennas using the 

Sierpinski carpet geometry is described in this paper. The 

idea for these designs is gotten from semi-log-periodic 

behavior of fractal antenna. In this paper, we noted input 

impedance matching of antennas throughout the passband 

of them. In this point of view, we will apply the 

wideband, broadband and multiband for these antennas. 

Our first wide-band design is named antenna-1. This has 

a good input impedance match throughout the passband 

2-20GHz. Second antenna is named antenna-2. This 

antenna has an interesting behavior while has a multi-

band behavior from 1-7GHz and has broad-band behavior 

from 7-20 GHz. However, because of two slots in ground 

plane of this antenna, the 6-7GHz band is eliminated. 

Third of antennas is named antenna-3. It has a multi-band 

behavior from 0.5-17GHz. On average, we could match 

input impedance of proposed antennas, for three desired 

behavior.  The dimension of main- square for antenna-1, 

antenna-2 and antenna-3 is 45, 60 and 132 mm 

respectively. These antennas are suitable for the operating 

bands of GSM, ICMS, UMTS, Bluetooth, WLAN and 

HIPERLAN systems. 

 
Keyword: Fractal antenna, sierpinski-carpet, semi-log-

periodic behavior. 

 

I. INTRODUCTION 

       

Modern telecommunication systems require antennas 

with wider bandwidths and smaller dimension rather than 

conventional ones. In recent years several fractal 

geometries have been introduced for antenna applications 

with different level of success in antenna characteristics 

improvement. Some of these geometries are reported 

recently [1, 2]. These are low profile antennas with 

moderate gain, and are able to be operative at multiple 

frequencies [3]. Generated monopolar mode polarization 

is interested especially for applications in ICMS, UMTS, 

Bluetooth, WLAN and HIPERLAN systems [4, 5].  

Several fractal shapes have been introduced in recent 

years too. Certain fractal designs have been shown to be 

self-similar, small, space filling and have log periodic 

performances when used as antennas [6, 7]. In [8] 

capability of two new fractal geometries for application in 

antenna design is described. In [9] dual-band monopole 

antenna using the concept of Sierpinski carpet shape and 

semi-circular geometry is introduced and has interesting 

property. 

In this paper, the behavior of Sierpinski carpet 

monopole antenna is described by means of experimental 

and computational results and we could match input 

impedance of antenna, for three desired behavior. 

 

II. THE PROPOSED ANTENNA CONFIGURATION 

  

The square patch was selected for initial design. 

Figure 1 shows the Sierpinski carpet iteration up to third 

repetitions. 

 

 
Fig. 1. Sierpinski carpet antenna up to third iteration. 

 

Figure 2 and table 1 show the geometrical parameters of 

the Sierpinski carpet antenna for three desired designs. 

 

Table 1. The geometrical parameters of the three 

Sierpinski carpet antennas. 
 

 
W1 

(mm)  

W2 

(mm) 

W3 

(mm) 

W4 

(mm) 

Antenna-1 45 15 5 1.67 

Antenna-2 60 20 6.67 2.22 

Antenna-3 132 44 14.67 4.9 

 

 
                 (a)                                              (b) 

 

Fig. 2. Geometrical parameters of Sierpinski carpet 

antenna in proposed design. 
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The ground plane of this antenna is very interesting 

and is the same as ground plane in [8, 9]. The size of 

ground-plane is approximately 110 mm for all antennas 

[8]. 

The radiation elements of antenna-1 and antenna-2 

are printed on Rogers RO4003 with thickness of 60mil. 

For antenna-3, radiation element is printed on FR4-epoxy 

with thickness of 63mil. These elements are fed at apexes. 

Figure 3 shows the final design and the pictures of three 

antennas. 

 

   
            

             (a)                         (b)                               (c) 

 

Fig. 3. The pictures of proposed antennas (a) Antenna-1,  

(b) Antenna-2, and  (c) Antenna-3. 

 

 

III. INPUT RETURN LOSS OF ANTENNAE  

 

These antennas were simulated on Ansoft HFSS V10 

using a FEM algorithm. The return loss of proposed 

antennas was also measured with hp8720  network 

analyzer from 0.5-20GHz. Figure 4 (a), (b), and (c) show 

the reflection coefficient relative to 50Ω of three-

monopole together. The plots corresponding to the 

antenna-3 antenna-2 and antenna-1 appear at the top row, 

middle row and bottom row respectively.  Figure 5 shows 

all measured proposed antennas in one plot from 0.5 GHz 

- 20 GHz. 

Antenna-1 achieved a good match with return loss 

about -9dB throughout the pass-band from 2 to 20 GHz. 

But, antenna-2 has the multiband behavior from 1-7 GHz 

and has broadband behavior from 7-20 GHz. However, 6-

7GHz eliminated for this antenna. Because, two slots is 

made in ground plane of this antenna. These slots aren't 

simulated in HFSS and it can be seen for this band 

simulation and measurement results and they don’t 

resemble together. Multi-band behavior for antenna-3 is 

very obvious. The obtained results for this antenna shows 

this antenna can operate in most commercial bands, such 

as: GSM900, ICMS, DECT, WLAN and HIPERLAN. 

Of course, we used tiny absorber in back of antenna-1 

which is shown in Fig. 6. This absorber has imaginary 

part of permittivity and permeability, and we couldn't 

simulate effect of this in our design. Because of this, there 

is noticeable difference between simulation and 

measurement results in higher frequencies. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 4. Input reflection coefficient of three monopole 

Sierpinski carpet antenna (a) Antenna-3, (b) Antenna-2, 

and  (c) Antenna-1. 
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Fig. 5. Compare the measured reflection coefficient of the 

proposed antennas. 

 

  
(a)                                      (b) 

 

Fig. 6. Absorber is used in antenna-1 (a) simulation, (b) 

implementation. 

 

To get better insight on the log-periodic behavior of 

these antennas, in Fig. 7 the measured input impedance 

frequency is shown in logarithmic scale to emphasize the 

semi-log-periodic behavior of the proposed antennas. 

 

 
 

 
(a) Antenna-1 

 
 

 
(b) Antenna-2 

 

 
 

 
(c) Antenna-3 

 

Fig. 7. Measured input resistance (top) and input 

reactance (bottom) of three monopole antennas.  

 

 

IV. RADIATION PATTERNS 

 

Figure 8 (a) and (b) show radiation patterns of 

antenna-1 and antenna-2 correspond to operating bands of 

1.89, 2.4 and 5.2 GHz representing DECT, WLAN and 

HIPERLAN bands respectively. Figure 8 (c) shows 
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radiation patterns of antenna-3, correspond to operating 

bands of 0.9, 2.4 and 5.2 GHz representing GSM900, 

WLAN and HIPERLAN bands. In all plots, the black-line 

is Co-polarization pattern and the gray-line shows Cross-

polarization pattern. The top row of each plot shows the 

E-plane radiations while the bottom row shows the H-

plane radiations. Because of symmetry and flatness, good 

radiation patterns are obtained for these bands. However, 

it should be noticed that the effect of the finite size of the 

ground-plane must be taken into account when analyzing 

the patterns on these figures [10]. For instance, those at 

upper bands show characteristic ripple, which is due to 

diffraction at the edges of the plane. The variations on the 

ripple are faster when frequency is increased since the 

squared plane is not self-scalable and edges are spaced a 

longer distance in terms of corresponding wavelength. 

Also, the expected null in the z-axis direction is hidden by 

the contribution of the anti-symmetrical mode of the 

ground plane overall radiated power [10]. 

 
 

 

 
1.89 GHz           2.4 GHz            5.2 GHz 

 

 

 

 

 

(a) Antenna-1 

 

 

 

 
1.89 GHz             2.4 GHz            5.2 GHz 

 

 

 

 

 

(b) Antenna-2 

 

 

 
0.9 GHz             2.4 GHz               5.2 GHz 

 

 

 

 

 

(c) Antenna-3 

 

  Co-polarization 

  Cross polarization 

 

Fig. 8. Radiation pattern of proposed antennas (Top row 

of each plot is E-plane, Bottom row is H-plane). 

 

V. MEASURED GAIN 

  

The peak gain of the proposed antennas was 

measured (in dB) for some of frequencies in operating 

bands of each one. These are shown in Table 2. Minimum 

gain is 3.23 dB in measurement frequencies. In results, 

these antennas have moderate gain. Increase in peak 

antenna gain is expected when operating frequency is 

increased. But the minimum gain is in higher frequencies. 

The reason of this event is back-scattering from edge of 

ground plan. It forms ripples and nulls in radiation pattern 

of antennas. That cause reduction in gain of proposed 

antennas and the gain doesn't depend on frequency and 

geometry of antenna, exactly. 

 

Table 2. Gain of proposed antenna, measured at various 

frequencies in operating bands. 
 

 Antennas Gain (dB) 

Frequency 

(GHz) 

Antenna-

1 

Antenna-

2 
Antenna-3 

0.9   4.43 

1 3.69 3.23  

1.89   5.96 

2.4 4.03 5.46 4.97 

5.2 6.6 6.3 9 

8 5.47 7.62  

11 6.05 9.74  

14 5.48 9.4  

17 4.91 8.57  

20 6.98 9.64  
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VI. THE PHISICAL INSIGHT FOR THESE 

DESIGNS 

  

The idea for these designs is gotten from semi-log-

periodic behavior of fractal antenna. In each conventional 

fractal structure and each repetition, many resonance 

edges are made. The edges of the each square are 

subtracted from the original square contribute to make 

resonance behavior with other edges of fractal shape. 

However, the resonance behavior of each edge in relation 

with other edges in Sierpinski carpet is very complicated 

and requires further study about the resonance behavior of 

this shape. For the antenna-1, the resonance edges of each 

repetition have balanced resonance frequency and with 

small increase in frequency in smaller wavelength, cause 

the majority of edges contributes to produce resonance 

behavior. However, we observed small mismatch in lower 

operating frequencies (between 2 GHz - 3.5 GHz) 

obviously, because of unbalancing resonance frequency of 

each iteration edges from other iteration edges. In 

antenna-2, the same phenomenon occurs. But mismatches 

cause multi-band behavior from 1 GHz - 7 GHz. Because 

of balanced resonance frequencies of iteration edges, 

broad-band behavior is observed from 7-20 GHz. In 

antenna-3, this reason (unbalancing resonance frequencies 

edges) cause multi-band behavior in all operating 

frequencies. 

 

VII. CONCLUSION 

  

The three fractal monopole antennas are designed 

using Sierpinski carpet geometry.  For antenna-1 designs 

achieved an approximate 10:1 match for 50 Ω feeding 

port. Antenna-2 has multi-band behavior from 1-7 GHz 

and has broadband behavior for 7 GHz - 20 GHz. For this 

antenna, band from 6-7 GHz is eliminated. Antenna-3 has 

multi-band behavior and can apply for most of 

commercial bands. On average, the radiation patterns are 

suitable for current application in the GSM900, ICMS, 

UMTS, Bluetooth, WLAN and HIPERLAN bands. The 

results obtained for the antennas show capabilities of 

fractal geometry for wireless communications considering 

multi-band and wideband operations. 

 Furthermore, with such an antenna design, a wide 

range of wireless communication systems, considering 

frequency selective channel characteristics with multi-

media transmission would become possible [8, 9]. 
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Abstract −−−− In this paper, a specialized genetic algorithm 

(GA) combined with Rayleigh-Ritz method is used to 

obtain the dimensions of elliptical dielectric resonators 

(EDRs) for dual-band, wide-band, or circular polarization 

(CP) operation. Slot-coupled elliptical dielectric resonator 

antennas (EDRA’s) and their characteristics are 

investigated. Parametric studies are presented to study the 

dependence of the return loss on the slot parameters. 

These parametric studies are used to optimize the slot 

dimensions and its position to excite given desired 

modes.  

 

I. INTRODUCTION 

 

Dielectric Resonators (DR’s) have traditionally been 

used in many applications, such as microwave devices 

and antennas. Open dielectric resonators are potentially 

useful antenna elements  [1]. Indeed, they offer several 

attractive features such as small size, high radiation 

efficiency [1-3], compatibility with MIC’s, intrinsic 

mechanical simplicity, and the ability to obtain different 

radiation patterns using different modes. Many of the 

concepts used in the design of microstrip antennas can 

also be used in the design of dielectric resonator 

antennas. Dielectric resonator antennas (DRA’s) have 

many similarities with microstrip antennas, such as small 

size, many possible shapes, lightweight, and ease of 

feeding with different excitation mechanisms. In addition, 

several modes can be excited, and each mode has 

different radiation characteristics. Dielectric resonator 

antennas have also some advantages over microstrip 

antennas, such as a wider bandwidth, higher radiation 

efficiency, wider range of dielectric materials, more 

geometrical parameters, and higher power capabilities. 

Systematic experimental investigations on dielectric 

resonator antennas (DRA’s) have first been carried out by 

Long et al. [4-6]. Since then, theoretical and experimental 

investigations have been reported by many investigators 

on DRA’s of various shapes such as spherical, cylindrical 

(or cylindrical ring), rectangular, etc. [7-14].  

Generating dual-band operation, wide-band 

operation, and circular polarization (CP) using DRA’s are 

other reasons of their attractiveness for antenna designers. 

Recently more attention has focused on the circularly 

polarized DRA’s [10] since it allows a more flexible 

orientation for both the transmitter and receiver. 

Generation of CP requires two orthogonal modes in a 

phase-quadrature signal. Circular polarizations can be 

obtained using multiple feeds or by alternating the shape 

of conventional DRA’s. The main advantage of single-

feed circularly polarized DRA’s is their simple structures 

that do not require an external polarizer. 

The application of genetic algorithms (GA) has 

recently attracted the attention of researchers in the field 

of artificial intelligence. From the literature, it is clearly 

seen that genetic algorithms can provide powerful tools 

for optimization [15-19]. Genetic algorithms are used as 

parameter search techniques, which utilize genetic 

operators to find near optimal solutions. The advantage of 

a GA technique is that it is independent of the complexity 

of the performance index considered. It suffices to 

specify the objective function and to place finite bounds 

on the optimized parameters. 

In this paper, we apply the Rayleigh-Ritz method 

 [21],  [22] combined with GA optimization to design 

EDRA’s with desired characteristics and study the effect 

of different feed design parameters on their input 

impedance. A GA is used as a parameter search technique 

which utilizes the genetic operators to arrive at a design 

for a dual-band, wide-band, or CP EDRA. To this end, 

we combine the Rayleigh-Ritz method with GA 

optimization to reach appropriate dimensions of EDR’s. 

To validate this technique, some examples are given and 

discussed in the following sections.  

 

 II. ANALYSIS OF EDR 

 

 In this section, the three-dimensional wave equation 

in elliptic cylinder coordinates is first expressed, and its 

solution for an EDR is then investigated. The geometry of 

EDR is shown in Fig. 1. The EDR is mounted on a 

ground plane with a and b are the semi-major and semi-

minor axes, respectively, and h is the height of the EDR. 

Image theory can be immediately applied where the 

ground plane is replaced by an image portion of the 

cylinder extending to z = -h. For a DR with very large 

37

1054-4887 © 2009 ACES

ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009



dielectric permittivity, the dielectric air interface can be 

approximated by a hypothetical perfect magnetic 

conductor (PMC), which requires that the tangential 

components of the magnetic field vanish on that surface. 

Rayleigh-Ritz procedure  [21] is used in this section to 

find cut off frequencies of the structure elliptical cross-

section field patterns of the DRA. In elliptical 

coordinates, the scalar Helmholtz equation can be written 

as, 
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Fig. 1. Schematic diagrams of an EDR. 
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where S is the EDRA cross section area. The two-

dimensional field, X , may be expanded as a series of 

polynomials iφ , 

∑
=

=
m

i

iiCyxX
1

),( φ                              (3) 

where
iC  is constant and

iφ  is polynomial to be 
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The i-th polynomial,
iφ , is defined in terms of a new 

polynomial ),( yxzi . It is generated by the following 

procedure. Let [ ])1( −= ir , where the square brackets 

represent the integer portion of 2)1( rit −−= . We define 

a parameter v such that, 
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The polynomial ),( yxzi has a degree of r + v and 

iφ is defined as, 
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where ψ is a constraint function for the elliptical cross-

section and given by, 
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ψ is added to satisfy the geometrical boundary conditions 

[21]. In equation (3), m depends on the order of X(x,y) 

and determines the overall accuracy and efficiency of the 

optimization process. By solving equation (5) for 
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[ ]C  , we obtain solutions for 
zE  and 

zH  and hence other 

field components at any point in the resonator. Table 1 

shows some resonant frequencies of an EDR and a 

circular cylindrical dielectric resonator (CDR) with the 

same height and same cross section area and for different 

eccentricity (e = fo/a). As shown in the table 1, for the 

same range of frequency the number of resonant 

frequencies of EDR is more than the number of resonant 

frequencies of CDR with the same volume. 

 

Table 1. Resonant frequencies of EDR and CDR with 

cross section area of 157mm
2
 and height of 20 mm (same 

volume) and permittivity  εr = 12. 
 

Mode e=fo/a 
Resonant 

Frequency (GHz) 

TM110 

0 (Circle) 

3.748 

TM111 4.840 

TE010 6.051 

TM210 6.494 

TE011 6.781 

TM112 7.547 

TM211 8.046 

TE012 8.144 

TM113 8.260 

TE013 8.809 

Even TM110 

0.866 

3.371 

Even TM210 5.188 

Odd TM110 5.334 

Even TE010 5.636 

Odd TM210 6.756 

Even TM111 6.990 

Even TM310 7.132 

Even TE110 7.234 

Even TM211 8.026 

Odd TM111 8.121 

Even TE011 8.323 

Odd TM310 8.339 

Even TE020 8.990 

Odd TM211 9.118 

Even TM410 9.245 

Even TM311 9.400 

Even TE111 9.478 

Even TM010 9.572 

Odd TE110 9.684 

Odd TM311 10.346 

 

Figures 2 and 3 show field contours of the four 

lowest TM and TE modes for b/a=0.75, which are 

calculated using Rayleigh-Ritz method  [21]. It is clear 

that we can obtain more excitation modes for an EDR 

case compared to a circular one, and also we can control 

priority order of modes frequencies by changing the axial 

ratio of the ellipse (a/b). Such field distribution patterns 

may be used to determine the feed location for a special 

modes excitation. Mode contour patterns can also be used 

to recognize paths on which electric or magnetic fields 

are zero. This allows the study of different EDR portions 

for different modes. For example, in Fig. 2© there are 2 

paths with Hz = 0 with 3 portions of EDR for even TE02P 

mode. If wavenumbers of several modes are less than the 

cutoff wavenumber, then a feeding system can be design 

such that more than one mode are excited to potentially 

generate dual-band, circular polarized, or wide-band 

EDRAs. 

 

 
Fig. 2. 

zH  Field contour plot of TE modes. 

 

 
Fig. 3. 

zE  Field contour plot of TM modes. 

 

 

 III. SYNTHESIS OF EDR FOR DESIRED 

MODES AT A GIVEN FREQUENCY 

 

In short, Genetic Algorithms are search methods 

based on the principles and concepts of natural selection 

and evolution [22-25]. These optimization methods 

operate on a group of trial solutions in parallel, and they 

operate on the coding of the function parameters rather 

than the parameters directly. In a Genetic Algorithm, four 

operators are usually used: cross over, mutation, elitism 

and selection to make a new population from previous 

one. The single-point crossover, which is the simplest 

form and also the best in our case, was used in our 
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algorithm. In this combination form, genetic information 

(bits) of two parent chromosomes which are chosen with 

probability Px from the current population are exchanged 

from a random bit through their ends to form two new 

children. In order to perform a mutation operator, a 

chromosome is randomly chosen with probability Pm and 

one of its genes (bits) changes. Mutation is generally 

considered to be a background operator that ensures the 

probability of searching a particular subspace of the 

problem space, which is never zero. This has the effect of 

tending to inhibit the possibility of converging to a local 

optimum, rather than the global one. After crossover and 

mutation, the individual strings are selected according to 

their fitness to form a new generation. To ensure that the 

best individual of each population survives, we use 

elitism operator and transfer the fittest chromosome to the 

next generation. This process continues through 

subsequent generations and the average performance of 

individuals in a population is expected to increase, as 

good individuals are preserved and bred with one another 

and the less fit individuals die out. The GA used in this 

paper is terminated either when the fitness function of the 

best chromosome meets a predefined desired threshold or 

the number of generations exceeds a predefined 

maximum.  

Resonant modes and frequencies of an EDRA are 

dependent on EDR dimensions, therefore dimensions of 

elliptical cross-section are the most important parameters 

to control resonant frequencies of an EDRA. In this 

study, the problem is defined in terms of choosing the 

geometric parameters a and b in such a way that the two 

elements of the eigenvector, obtained using Rayleigh-Ritz 

technique, have the desired values. To do this, first we 

define an appropriate encoding scheme that maps each set 

of feasible parameters to a bit stream. The encoding 

scheme is very simple: all parameters change to binary 

values. Using this encoding scheme, we randomly 

produce bit streams or chromosomes that make the first 

generation. In other words, each chromosome of this first 

population has the information of the parameters to be 

found. The next step is to apply the fitness function to 

each chromosome of the population. The fitness function 

for each chromosome is defined as the MSE difference 

between the eigenvector elements related to parameters 

obtained from that chromosome and the desired values of 

those eigenvector elements. Better individuals who have 

the higher fitness value have higher chances to survive 

according to the selection operator applied to the 

population. By applying cross over, mutation, elitism and 

selection operators to the population, the next generations 

are produced successively. The optimization process is 

shown step by step in Fig. 4. The seed chromosome is 

used to formulate a population of random chromosomes 

(parents) for simulation in the Rayleigh-Ritz procedure. 

The priority of primary modes can be approximately 

determined by the following formulas, 

 

 
 

Fig. 4. Flowchart of Genetic Algorithm. 
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where  TE

mnP  and TM

mnP  are notations for the priority of the 
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TE and TM mn
th

 modes, respectively. If the resonant 

frequency of one mode is smaller than the resonant 

frequency of another mode, then the priority of that mode 

is also smaller. For TE and TM modes, m and n, 

respectively, denote the number of contour lines valued 

zero in the contour plot in a (x) and b (y) directions (Figs. 

2 and 3). The resulting mode frequencies for each 

geometry are obtained by the Rayleigh-Ritz procedure. If 

the GA converges on the target, the GA process is 

terminated. The selection operation determines the 

number of trials for which a particular chromosome 

(parent) is chosen for reproduction from the created 

population. The GA keeps looping by creating new 

generations until it converges to an optimum solution. 

A population is created with a group of individuals 

created randomly in a define range. It can be seen from 

equations (13) and (14) for different values of a and b, the 

priority of primary modes changes. But this priority does 

not change for ranges of a and b which can be obtained 

by equations (13) and (14). If two best fitness of the 

population stock for 100 successive iterations and the 

objective function was not satisfied then we switch to 

another ranges of a and b with different priority of 

primary modes. The evaluation function (fitness) gives 

the individuals a score based on how well they perform at 

the given task. For the given ranges of a and b the 

objective vector and fitness function are defined as 

follow, 
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This continues until a suitable solution has been 

found or a certain number of generations have passed. In 

roulette wheel selection, individuals are given a 

probability of being selected that is directly proportionate 

to their fitness.  

IV. APPLICATION OF GA TO DESIGN EDRA 

WITH GIVEN CHARACTERISTICS 

 

Having control over excitation modes’ frequencies 

gives us a flexibility to achieve certain design 

requirements or given characteristics. For example, an 

EDRA can be designed such that it has two desired 

resonant modes close to given frequencies to generate CP 

wave at those frequencies, and so on. Designing multi-

band, wide-band or circularly polarized antennas is 

remarkably simple using this method. The previously 

described hybrid technique, i.e. GA and Rayleigh-Ritz 

procedure, is applied to EDRs. Figure 5 shows the 

geometry of an offset slot-coupled EDRA fed by 

microstrip line. The finite ground plane with an etched 

slot is located on the top of the surface of a substrate. To 

examine this issue, some examples to show different slot-

coupled EDRAs are presented and discussed in the 

following sub-sections. Mode patterns presented in Figs. 

2 and 3 lead us to locate the feeding system to excite two 

desired modes.  

 
Fig. 5. Schematic diagrams of the proposed EDRA. (a) 

Top view. (b) Side view. 

 

A. Dual-Band EDRA 

 

Dual band operation of DRAs may be obtained by 

proper excitation of the DR. Consider an EDRA with a 

required dual-band operation at 2.5 and 4 GHz. The GA 

is applied in order to obtain a and b.  

We set two different modes (for example here we 

chose odd TM210 and even TM310) at 2.5GHz and 4GHz. 

To compensate for the PEC approximation to calculate 
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fields of the EDRA, the size of the slot and its position 

with respect to the EDR can be tuned. We fixed the 

values of h=26mm, lm=22mm
,
 ls=24mm, ws=1.2mm, 

α=23
0
, gx=gy=80mm, t=1.5mm and obtained suitable DR 

dimensions based on GA: a=13.37mm, and b=16.49mm. 

Figure 6 illustrates the magnitude of the return loss of the 

offset slot-coupled EDRA. By applying GA, the 

simulated center frequencies are 2.48GHz and 4.03GHz. 

Ansoft-HFSS  [27] simulations with optimizing size and 

position of slot, give mode resonant frequencies 2.51 and 

4.00GHz, respectively. Figures 7 and 8 plot the simulated 

radiation patterns at 2.5 and 4GHz in the y-z and x-z 

planes. From these results, the patterns are similar to 

those radiated by a horizontal magnetic dipole at these 

two frequencies.    

 

 

 
 

Fig. 6.  Return Loss of the Designed Dual-Band EDRA. 

 

  

 
Fig. 7.  Far Field Pattern of the EDRA at 2.5 GHz.  

 
Fig. 8. Far Field Pattern of the EDRA at 4 GHz. 

 

B. Wide-Band EDRA 

 

In this example, we discuss the design of a wideband 

slot-fed EDRA at 2.9GHz. Using the proposed GA, the 

second and eighth modes were set at 2.7 and 3.1GHz, 

respectively. Varying the slot offset has some effect on 

the resonant frequencies of the excited modes.  Figure 9 

shows the simulated return loss as a function of frequency 

for an EDRA after GA and feed tuning were used. A 

bandwidth of 21.7% around 2.9GHz is achieved. The 

optimized parameters are h=30mm, lm=25mm
,
 ls=18mm, 

ws=1.5mm, α=17
0
, a=15.02mm, b=19.53mm, 

gx=gy=80mm, and t=1.5mm. The radiation patterns of the 

proposed antenna in both x-z and y-z planes were 

simulated at 2.70, 2.90, and 3.10 GHz, and are shown in 

Figs. 10 to 12. As shown in Figs. 10 to 12, variation of far 

field patterns is not too much over the band. 

 

 
 

Fig. 9. Return Loss of the Designed Wide-Band EDRA 

dB 

dB 
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Fig. 10. Far Field Pattern of the EDRA at 2.7 GHz. 

 

 
Fig. 11.  Far Field Pattern of the EDRA at 2.9 GHz. 

 

 
Fig. 12.  Far Field Pattern of the EDRA at 3.1 GHz 

C. Circularly Polarized EDRA 

 

Recently, the circularly polarized (CP) DRA has 

received increasing attention because of its insensitivity 

to antenna orientation between the transmitter and 

receiver, which is very useful in satellite 

communications. Quadrature feeds and special DRAs 

have often been used for CP DRA design. However, the 

former increases the size and complexity of the feed 

network, whereas the latter is not easily available on the 

commercial market. Recently, most CP DRA work has 

concentrated on a single feed using normal DRAs. In this 

third example, we focus on the design of a CP DRA at 3 

GHz. Applying GA, we set even TE020 mode at 2.95GHz 

and odd TE110 mode at 3.05GHz. Similar to the two 

previous sections, by tuning the slot size and its position, 

good results are obtained for an EDRA with h=29mm, 

lm=25mm
,
 ls=18mm, ws=1.5mm, α=15

0
, a=14.97mm, 

b=20.96mm, gx=gy=80mm, and t=1.5mm. Figure 13 

shows the return loss versus frequency. Figure 14 shows 

the corresponding axial ratio (AR). From these results, it 

is observed that the -3dB AR bandwidth is 2.7%, which is 

reasonable for a single-fed CP EDRA. The simulated x-z 

and y-z plane radiation patterns at 3.03GHz are displayed 

in Fig. 15, where broadside field patterns are observed, as 

expected.  

 
Fig. 13. Return Loss of the Designed Circular polarized 

EDRA.  

 
Fig. 14.  Axial Ratio of The EDRA at θ=0

0
. 

dB 

dB 

dB 
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Fig. 15. Far Field Pattern of the EDRA at 3.03 GHz. 

 

V. CONCLUSION 

 

In this paper, a genetic algorithm has been 

introduced and presented for numerical optimization to 

obtain suitable dimensions of an EDRA with resonant 

modes at specified frequencies. The Rayleigh-Ritz 

method together with GA is used to calculate minor and 

major radii of the ellipse. Since each element of the 

calculated eigenvector using the Rayleigh-Ritz technique 

related to a mode frequency, we can require that a 

particular mode become excited at a certain frequency. 

Therefore, this technique is used to design EDRAs with 

desired characteristics. Examples are given to 

demonstrate the design of a dual band EDRA at two 

desired frequencies, and a wide band EDRA with 21.7% 

bandwidth at a given centered frequency. Also, an 

example is presented to show a single fed EDRA with 

two resonant modes close to each other to generate CP 

with 2.7% CP bandwidth. This paper illustrates that 

EDRA is a good candidate for a small antenna with wide 

range of given antenna characteristics including circular 

polarization, wide-band and dual-band operation.  
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Abstract – The analytical characterization of coupled
composite righ/left-handed ladder networks is presented.
Relying on closed-form polynomials, the two-port repre-
sentation of the composite right/left-handed ladder net-
work is obtained in a rational form, leading to identify its
poles and residues and, thus, the state-space macromodel
of the network. The proposed macromodel is successfully
validated by comparing the numerical results with those
obtained using conventional frequency domain techniques
of finite periodic structures.

Keywords:Metamaterials, composite righ/left-handed lad-
der networks, transient analysis, rational macromodeling.

I. INTRODUCTION

Over 30 years ago Veselago [1] theoretically investi-
gated materials with simultaneously negative permittivity
and permeability, or left-handed (LH) materials. Recently
a transmission line approach of left-handed (LH) materials
has been presented in [2, 3] where an equivalent circuit for
a left-handed transmission line (LH-TL) is proposed. Such
equivalent circuit has been also extended to composite
right/left handed (CRLH) metamaterials in [4].

The low insertion loss and broad bandwidth of the
LH-TL make it an efficient candidate for microwave
frequencies. Due to their negative propagation constant,
LH-TLs exhibit phase advance instead of a phase delay
as the conventional right-handed transmission lines. This
characteristic leads to new designs for many microwave
circuits, antennas and couplers.

Artificial CRLH structures are periodic networks
whose unit cell consists of a conventional transmission
line which is electrically short and loaded with series and
shunt elements such that it exhibits a CRLH behavior.
Typically the transmission line is loaded by longitudinal
(interdigital) capacitances and transverse (short-stub)in-
ductances. As a consequence, the analysis of such type of
structures requires modeling either the continuous nature
of the transmission line or the discrete behavior of lumped
elements. In [5] this task is carried out by solving the

Telegrapher’s equations for a continuous transmission line
problem.

As long as the spatial period of loading lumped
elements is electrically short, the resulting structure can
be regarded as a finite periodic half-T ladder network
(HTLN) which is the best candidate to model composite
right/left handed structures.

HTLNs have been widely used in transmission lines
modeling [6] under the hypothesis that electrically small
sections of length∆` are assumed (∆` � λg, λg being
the guided wavelength [3]). In the case of artificial CRLH
structures obtained by periodically loading transmission
lines or by cascading lumped elements, half-T ladder
networks represent their exact model [7, 8].

While a great attention has been devoted to
frequency-domain analysis of composite right/left handed
structures [3, 9], their time-domain analysis is a relatively
new issue. The fact that transient analysis provides infor-
mation about the system response over many frequencies,
makes it attractive to investigate metamaterials properties
in a fast and efficient way. In addition, non-linear termi-
nations call for time-domain macromodels.

Time-domain transmission line matrix (TLM) mod-
eling of metamaterials with negative refractive index
has been derived in [10]. A composite right/left-handed
equivalent circuit FDTD method is presented in [11]
and applied to investigate several transient and refractive
phenomena occurring at the interface between a CRLH
metamaterial and a purely right-handed (PRH) structure.
More recently, a stability analysis of 1-D double negative
transmission lines is presented in [5] where a method of
moments (MOM) [12] approach is employed to perform
time-domain computations.

In [13] a systematic approach to composite righ/left-
handed ladder networks (CRLH-LNs) has been presented.
The aim of this work is to extend such a methodology
to coupled composite righ/left-handed ladder networks.
Metamaterial coupled-line couplers have the advantage
of providing arbitrary coupling level in addition to the
broad bandwidth of conventional coupled-line couplers.
A comprehensive frequency-domain analysis of this type
of structures is presented in [14] where mechanisms of

45

1054-4887 ' 2009 ACES

ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009



coupling are derived in the framework of generalized
transmission lines.

Based on the ladder structure of the system, a rigor-
ous analysis of coupled CRLH-LNs is developed, which
is based on closed-form polynomials, leading to a rational
macromodel of the transfer functions of the system. In the
recent years new and effective techniques have been de-
veloped to generate macromodels from frequency-domain
response of electromagnetic systems [15–17]. CRLH-LN
structures can be regarded as periodic and finite; as a
consequence, any electrical quantities of the CRLH-LNs,
such as voltages and currents, can always be expressed in
a rational form due to the RLCG nature of the network.
This target is achieved by using closed-form polynomials
depending on the cell matrixK(s) = Y 2(s)Z1(s) of
the ladder network. Polynomial coefficients area-priori
analytically computed and stored. The resulting rational
macromodel is the exact representation of the CRLH-
LN and can be used for both time and frequency-domain
analysis of coupled CRLH-LNs.

The paper is organized as follows: Section II presents
the polynomial model of CRLH ladder networks leading
to a rational multiport representations of coupled CRLH-
LNs, described in Section III, which is suitable for an effi-
cient computation of poles/residues and, thus, for a time-
domain macromodel. Section IV presents the computation
of the dispersion diagram and a comparison with that of
CRLH-TLs. Numerical tests are carried out and reported
in Section V. The conclusions are drawn in Section VI.

II. POLYNOMIAL MODEL OF CRLH-LNS

Composite right/left handed transmission lines can be
modeled as the cascade ofn elementary identical half-T
cells, as shown in Fig. 1, characterized by both longi-
tudinal and transversal inductances and capacitances [4].
In addition, longitudinal resistances and transverse con-
ductances are added to take the ever existing losses into
account.
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Fig. 1. Half-T ladder network.

The resulting structure is ahigh-passfilter mimick-
ing a composite right/left handed transmission line. The
equivalent circuit shown in Fig. 2 represents a possible
model of a cell although other topologies can be consid-
ered [2].

The transmission line model can still be adopted
under the hypothesis that the unit cell is electrically small
[2, 18], but a rigorous analysis of practical realizations of

CRLH structures is desirable and useful to designers. The
main difference with respect to the continuous transmis-
sion line model relies on the fact that the half-T ladder
network is a periodic structure which is characterized
by having any transfer function to be written as rational
function. Obviously, standard multiport network theory
can be used to analyze the ladder network in the frequency
domain [19] but such an approach is not suitable to
provide a time-domain macromodel.

R
 L
R
 C
L


C
R
 L
L
G


Fig. 2. Elementary half-T cell for a composite right/left
handed ladder network (CRLH-LN).

To the aim to develop the closed-form macromodel
of a CRLH-LN, is useful to define the unit cell impedance
and admittance in the Laplace domain,

Z1 (s) = R+ sLR +
1

sCL
=
s2LRCL + sRCL + 1

sCL

Y2 (s) = G+ sCR +
1

sLL
=
s2LLCR + sGLL + 1

sLL
,

(1a)

which are rational functions.
In [20] it is shown that, in the hypothesis of a

uniform, linear and time invariant HTLN, the voltage
at the generic nodeβ in the Laplace-domain can be
expressed as,

Vβ (s) =
Pn−β

b (K (s))

Pn
b (K (s))

Vin (s) (2)

where the cell factorK(s) is,

K (s) = Y2 (s)Z1 (s) (3)

and

Pn−β
b (K(s)) =

n−β
∑

j=0

bj,n−βK
j (s) (4)

is a polynomial inK (s), of ordern−β with 0 ≤ β ≤ n.
Polynomial coefficientsb are generated as [21],

bi,j =

(

i+ j
j − i

)

=

(

i+ j
2j

)

(5)

which leads to the generation of the following triangle
known as DFF triangle [20], shown in Table II.

The general expression of the longitudinal branch
currentIβ1(s) is,

Iβ1 (s) =
1

Z1(s)

Pn−β+1
c (K(s))

Pn
b (K(s))

Vin (s) (6)
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Table 1. DFF triangle.

ij 0 1 2 3 4

0 1

1 1 1

2 1 3 1

3 1 6 5 1

4 1 10 15 7 1

. . . . . . . . . . . .

where the corresponding roots are,

Pn−β+1
c (K(s)) =

n−β+1
∑

j=0

cj,n−β+1K
j+1 (s) (7)

is a polynomial inK (s) of order n − β + 1 and the
coefficientsc are obtained as [21],

ci,j =

(

i+ j + 1
j − i

)

=

(

i+ j + 1
2j + 1

)

(8)

leading to the triangle known as DFFz triangle [20],
shown in Table II.

Table 2. DFFz triangle.

i
j

0 1 2 3 4

0 1

1 1 1

2 1 3 1

3 1 6 5 1

4 1 10 15 7 1

. . . . . . . . . . . .

It is worth noticing that polynomialsPn
b (K(s)) and

Pn
c (K(s)) allow to describe any kind of finite periodic

structure, provided the cell factorK(s) is given. In
particular it can be used to model CRLN-LNs.

III. COUPLED CRLN-LNS

As stated before, no assumption is done either on
the cell factorK(s) as for the nature of longitudinal
impedanceZ1(s) and transverse admittanceY 2(s) or its
dimension; hence, the extension to the multidimensional
case is straightforward. To this aim, let us considerN
coupled CRLH-LNs (Fig. 3 shows an example withN =
2) and define the longitudinal impedance and transverse
admittance matrices as,

Z1 (s) = R+ sLR +
1

s
C−1

L (9a)

Y 2 (s) = G+ sCR +
1

s
L−1

L , (9b)

whereR and G are diagonal matrices containing the
resistance and conductance of each half-T cell,LR and
CR are the right-handed inductance and capacitance
matrices andLL andCL are the left-handed inductance
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C
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L
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G
1
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L
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 C
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G

2
C
R12


L
M


Fig. 3. Elementary half-T cell for a coupled composite
right/left handed ladder network (CRLH-LN).

and capacitance matrices, respectively. These latter are
diagonal matrices.

In the multidimensional case, the cell factorK(s)
becomes a matrix and can be defined as,

K (s) = Y 2 (s)Z1 (s) . (10)

The polynomialsPn
b (K(s)) andPn

c (K(s)) become
polynomial matrices,

Pn
b (K(s)) =

n
∑

j=0

bj,nK
j (s) (11a)

Pn
c (K(s)) =

n
∑

j=0

cj,nK
j+1 (s) . (11b)

When general terminal conditions need to be consid-
ered, the chain parameters [6] of the half-T ladder network
can be obtained as,

Φ11(s) =

n−1
∑

j=0

bj,n−1K
j(s) = Pn−1

b (K(s)) ,(12a)

Φ12(s) = −





n
∑

j=0

cj,nK
j+1(s)



 · Y −1
2 (s) (12b)

= −Pn
c (K(s)) · Y −1

2 (s),

Φ21(s) = −





n
∑

j=0

cj,nK
j+1(s)



 ·Z−1
1 (s) (12c)

= −Pn
c (K(s)) ·Z−1

1 (s),

Φ22(s) =
n

∑

j=0

bj,nK
j(s) = Pn

b (K(s)) . (12d)

PolynomialsPn−1

b (K(s)) and Pn
c (K(s)) can be

factored into zero-pole pairs. Their factorization is ac-
complished by using the poles given by the expressions
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presented in [21],

Pn−1
b (K(s)) =

n−1
∏

j=1

(K(s) − uj,n−1UN ) (13a)

Pn
c (K(s)) =

n−1
∏

j=1

(K(s) − vj,n−1UN ) ·K(s), (13b)

whereUN is the identity matrix of orderN and poly-
nomial rootsuj,n andvj,n can be computed analytically
as,

uj,n = −4 sin2

[

(2j − 1)

(2n+ 1)

π

2

]

(14a)

vj,n = −4 sin2

[

j

(n+ 1)

π

2

]

, (14b)

for j = 1 · · ·n.
The knowledge of the chain parametersΦ allows to

obtain the rational form of any other two port matrix
representation. TheZ(s) matrix entries can be evaluated
in terms ofPn

b (K(s)) andPn
c (K(s)) polynomials as,

Z11(s) = Pn
b (K(s)) ·

(

Pn
c (K(s)) ·Z−1

1 (s)
]

−1
(15a)

Z12(s) = −
(

Pn
c (K(s)) ·Z−1

1 (s)
)−1

, (15b)

Z21(s) = −
(

Pn
c (K(s)) ·Z−1

1 (s)
)

−1
, (15c)

Z22(s) = Pn−1
b (K(s)) ·

(

Pn
c (K(s))Z1(s)

−1·
]

−1
.

(15d)

The previous expressions (15a)- (15d), taking into
account thatK(s) ·Y −1

2 (s) = Z1 (s), can be factored in
the following way,

Z11(s) =

n
∏

j=1

(K (s) − uj,n−1UN )

·





n−1
∏

j=1

(K (s) − vj,n−1UN ) · Y 2 (s)





−1

(16a)

Z21(s) = Z12

= −





n−1
∏

j=1

(K (s) − vj,n−1) · Y 2 (s)





−1

(16b)

Z22(s) =

n−1
∏

j=1

(K (s) − uj,n−1UN )

·





n−1
∏

j=1

(K (s) − vj,n−1UN ) · Y 2 (s)





−1

(16c)

The poles of the open-ended CRLH-LN are obtained
as the zeros of the following equation,

P(s) = det





n−1
∏

j=1

(K (s) − vj,n−1UN ) · Y 2 (s)



 = 0

(17)

which can be rewritten as,

n−1
∏

j=1

det
[

K (s) − vj,n−1UN

]

· det
[

Y 2 (s)
]

= 0. (18)

The poles of the CRLH-LN can be identified as,

1) the roots of polynomial,

det
[

Y 2 (s)
]

. (19)

2) the roots of polynomials,

det
[

Y 2 (s)Z1 (s) − vj,n−1UN

]

, j = 1 · · ·n− 1.

(20)

Residues of thei-th pole can be obtained as,

R11,i = (21)
n

∏

j=1

(K(s) − uj,n−1UN ) · (s− pi)|s=pi

·adj





n−1
∏

j=1

(K(s) − vj,n−1UN )Y 2(s)



 /P(s)

R12,i =

−adj









n−1
∏

j=1

(K(s) − vj,n−1U)



Y 2(s)



 /P(s)

·(s− pi)|s=pi
, (22)

R21,i =

adj









n−1
∏

j=1

(K(s) − vj,n−1U)



Y 2(s)



 /P(s)

·(s− pi)|s=pi
, (23)

R22,i =
n−1
∏

j=1

(K(s) − uj,n−1UN ) · (s− pi)|s=pi

·adj





n−1
∏

j=1

(K(s) − vj,n−1UN )Y 2(s)



 /P(s), (24)

for i = 1 · · ·PZ , beingPZ the total number of poles of
theZ matrix entries and adj indicates the adjugate oper-
ator. The reciprocity of the LN guarantees that matrices
R21,i = R12,i.

A. Remarks

If we consider two identical coupled HTLNs some
observations can be addressed when computing poles of
equation (20). In fact, in this case, the diagonal elements
of all matrices are identical and exists a unique nonsingu-
lar transformation which diagonalizes both matricesLR

andCR. As stated before, matricesR,G,CL andLL

are already diagonal. The transformation is,

T =
1
√

2

[

1 1
1 −1

]

. (25)
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Hence, multiplying the original matrixY 2 (s)Z1 (s)
in equation (20) on the left byT−1 and on the right byT ,
the determinant remains the same sinceT is nonsingular
and can be written as,

det
[

T−1Y 2 (s)Z1 (s)T − vj,n−1U2

]

= (26)

det
[

(

R+ T−1LRT +
1

s
C−1

L

)

(27)

·

(

G+ T−1CRT +
1

s
L−1

L

)

− vj,n−1U2

]

.

From equation (26), it is worth noticing that poles of
equation (20) can be computed as the roots of two quartic
equations,

det
[

Z̃1cỸ2c − vj,n−1

]

= 0 (28a)

det
[

Z̃1dỸ2d − vj,n−1

]

= 0, (28b)

where

Z̃1c = R+ s (LR + LM ) +
1

s
C−1

L , (29a)

Ỹ2c = G+ s (CR + CM ) +
1

s
L−1

L , (29b)

Z̃1d = R+ s (LR − LM ) +
1

s
C−1

L , (29c)

Ỹ2d = G+ s (CR − CM ) +
1

s
L−1

L , (29d)

and LR, LM represents the self and mutual inductance
of the lines, CR, CM represents the self and mutual
capacitance of the lines, respectively.

Hence, the poles of the coupled CRLH-LN can be
computed by solving two quartic algebraic equations cor-
responding to two separate CRLH-LNs, characterized by
common and differential mode right-handed parameters.
The quartic equations (28) can be analytically solved
using the method described in [22]. Since the system
is physically stable, the exact solution of equations (28)
ensures the stability of both the decoupled and coupled
CRLH-LNs because the transformation (25) is purely real.

It is also to be pointed out that the proposed method is
general as far as the topology and nature of impedanceZ1

and admittanceY 2 which can be eventually dispersive.
In [8] an equivalent circuit is used to model double-

negative metamaterial lenses; recursive relations are pro-
vided giving the node voltages and branch currents and
the link with the Fibonacci problem is pointed out.
The proposed method completely exploits the polynomial
nature of the problem, leading to closed-form models
of CRLH-LNs. The polynomial coefficients reduce to
Fibonacci’s numbers whenZ1(s) = Y 2(s)

−1 so that
K(s) = IN [20].

B. Rational macromodel

The explicit knowledge of poles and residues allow
to select the dominant poles according to the frequency
range of interest; among the selected poles, only those

whose residues significantly impact the frequency re-
sponse are retained. This two-step process leads to gen-
erate a reduced order model of the CRLH-LN.

The poles-residues representation of the impedance
matrix Z allows to generate a macromodel in the state-
space form, leading to a set of first order differential
equations which reads,

d

dt
x (t) = Ax (t) + Bu (t)

y (t) = Cx (t) + Du (t) , (30)

whereA ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, D ∈ Rq×q, p is
the number of states andq is the number of ports. Since
the impedance matrix representation is used, the input and
the output vectors,u (t) andy (t) respectively, correspond
to port currentsi (t) and voltagesv (t), respectively. The
set of first order differential equations (30) are completed
with the terminal conditions and solved numerically.

It is to be remarked that the proposed macromodeling
methodology can be used for longitudinal impedance
Z1(s) and transverse admittanceY 2(s) different from
the series ones of equations (9a) and (9b) (e.g. see [2]).

IV. DISPERSION RELATION OF THE
PERIODIC CRLH-LN

The dispersion relation of a CRLH-LN is obtained
by applying periodic boundary conditions to the unit cell
represented by itsABCD matrix. As a consequence,
the output voltages and currents are related to the input
voltages and currents by the propagation terme−γ`, being
` the length of each cell. Hence, in the multidimensional
case, according to the Bloch-Floquet theorem, the follow-
ing relations hold,

[

A B

C D

]

·

[

V in

Iin

]

= ψ

[

V in

Iin

]

(31)

which is an eigensystem with eigenvaluesψn = e−γn`.
For a half-T unit cell,ABCD parameters are,

A = IN +Z1Y 2 (32a)

B = Z1, (32b)

C = Y 2, (32c)

D = IN . (32d)

The computation of the eigenvaluesψn leads to
determine the dispersion relations. The eigensystem (31)
can be rewritten as a homogeneous linear system which
must have a zero determinant to provide non trivial
solution [3]. For coupled CRLH-LNs, the eigenvaluesψn

are computed as the solution of the following equation,

det

[

A−ψn B

C D −ψn

]

= 0. (33)
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From its solutionsψn, the propagation constants are
obtained as,

γn = −
1

`
logψn (34a)

αn = Re(γn), (34b)

βn = Im(γn). (34c)

For a single CRLH-LN with a half-T unit cell, it is
trivial finding,

γ = −
1

`
log



1 +
Z1Y2

2
±

√

(

1 +
Z1Y2

2

)2

− 1





(35)

where` is the length of each section.
In [4] it is shown that CRLH-LN is equivalent to

the homogenous CRLH-TL for small electrical lengths
and the dispersion relation obtained applying periodic
boundary conditions reduces to the homogenous disper-
sion relation. Since such a condition holds only within a
limited frequency range, the transmission line model can-
not be used for accurate broadband time-domain analysis
of CRLH-LN structures. In fact, due to the left-handed
lumped elementsCL and LL, for a fixed length`, the
imaginary part of the propagation constant greatly differs,
at low frequencies, from that of the transmission line, as
confirmed by the numerical results in the next section.

V. NUMERICAL RESULTS

A. Dispersion diagram analysis

To the aim of investigating the difference between
the continuous and the periodic structures, the CRLH-LN
described in [4] has been considered. It is characterized
by global parametersR = 10−3 Ω, LR = 2.45 nH,CL =
0.68 pF,G = 10−3 S,CR = 0.5 pF andLL = 3.38 nH;
10 unit cells have been considered of length` = 6.1 mm.

Figure 4 shows the dispersion diagram of the CRLH-
LN described in ( [4], page 41) using the Bloch-Floquet
theorem [3], the approximated one under the hypothesis
of electrically small sections and that of a homogeneous
CRLH-TL. It is seen that the hypothesis of electrically
small network leads to significantly different results from
the Bloch-Floquet theorem in the gigahertz range.

This result is expected since the wavelength is in-
versely proportional to the phase constantβ. At frequen-
cies below 1 GHz the phase constant of the CRLN-LN
is larger than that of the CRLH-TL, leading to smaller
wavelengths. Figure 5 shows the phase velocity diagram.
Again, a significant difference is observed, below 1 GHz,
between the result of the Bloch-Floquet theorem and those
obtained assuming the hypothesis of electrically small
sections.

Figure 6 shows the attenuation constant as evalu-
ated using the homogeneous CRLH-TL and the discrete
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Fig. 4. Dispersion diagram. The solid line refers to
the Bloch-Floquet theorem, the dashed line refers to the
approximation under the hypothesis of electrically small
network, the dashdot line refers to the homogeneous
CRLN-TL (example V-A).
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Fig. 5. Phase velocity diagram. The solid line refers
to the Bloch-Floquet theorem, the dashed line refers to
the approximation under the hypothesis of electrically
small sections, the dashdot line refers to the homogeneous
CRLN-TL (example V-A).

CRLH-LN models. A significant difference is observed
up to few gigahertz.

The previous results point out that the homogeneous
CRLH-TL may be not accurate at low frequencies and
may generate inaccuracies when adopted for broadband
macromodeling of CRLH-LN structures.

Figure 7 shows the poles in the complex plane. A
large number of poles is clustered close to zero and de-
termine the left handed low frequency oscillatory behavior
of the response.The selection of dominant poles may be a
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difficult task due to the presence of many clustered poles
which leads to ill-conditioning.
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Fig. 6. Attenuation constant (example V-A).
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Fig. 7. Location of poles in the complex plane (example
V-A).

The chain parameters of the CRLH-LN of order
10 have been computed using the proposed polynomial
method and compared with those obtained by inversion
of the global transmission matrix computed as cascade of
ten identical sections and those of the equivalent CRLH-
TL. Figure 8 shows the magnitude spectrum ofΦ11 up to
0.5 GHz. It is clearly seen that the polynomial approach
is in a very good agreement with the result of the CRLH-
LN while, again, the equivalent CRLH-TL exhibits a
significant difference.

The CRLH-LN has been excited by a pulse with
100 ps rise and fall times and width 5 ns. The input is
terminated on 50Ω resistance, the output port is left open.
Figure 9 shows a sample of the output voltage as evaluated

using the equivalent CRLH-TL model via IFFT, the half-
T ladder network via IFFT and the proposed time-domain
macromodel.
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Fig. 8. Chain parameterΦ11. The solid line refers to
the equivalent CRLH-TL, the dashed line refers to the
result obtained by inversion of the global transmission
matrix, the dashdot line refers to the proposed polynomial
approach (example V-A).
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Fig. 9. Output voltage. The solid line refers to the
equivalent CRLH-TL via IFFT, the dashed line refers to
the result obtained by inversion of the CRLH-LN model
via IFFT, the dashdot line refers to the proposed time-
domain macromodel (example V-A).

As before, the polynomial-based macromodeling ap-
proach is in perfect agreement with the analysis of the
global ladder network while the equivalent CRLH-TL
exhibits a significant difference. In particular, the CRLH-
LN is characterized by a larger attenuation than the
CRLH-TL, as expected from Fig. 6. Furthermore, the use
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of the IFFT, combined with a underestimated attenuation,
causes a not accuratedc value of the CRLH-TL results.

B. Two coupled CRLH-LNs

In the second example a coupled CRLH-LN is con-
sidered. It is constituted by 40 half-T cells with param-
etersLR1 = LR2 = 1.938 nH, CR1 = CR2 = 0.841
pF, LL1 = LL2 = 0.749 nH, CL1 = CL2 = 0.416 pF,
LM = 0.361 nH, CM = −0.189 pF,R1 = R2 = 10 mΩ,
G1 = G2 = 1 mΩ. The coupled ladder networks are
terminated on 50Ω resistances at the input ports and
1.5 pF capacitances at the output ports. The rational
macromodel has been generated leading to 316 poles;
among them only 172 have been selected as dominant
in the 0-20 GHz range. Figure 10 shows the location of
poles in the complex plane: the circles refer to the set
of poles of the CRLH-LN, the stars to those selected as
dominant.
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Fig. 10. Location of poles in the complex plane (example
V-B).

Figure 11 reports the magnitude of the corresponding
residues: circles refer to the set of poles computed by
equations (19) and (20), stars indicate those selected as
dominant in the frequency range of interest.

A sample of the magnitude and phase spectra of
the impedancesZ11 and Z12 is presented in Figs. 12
and 13. For the sake of comparison impedances are
computed using both the polynomial (HTLN-pol) and
the pole/residue (HTLN-RP) forms; as seen, a perfect
agreement is obtained.

The knowledge of poles and residues of the HTLN
has allowed to generate a rational macromodel in a state-
space form. Figure 14 shows the transient voltage at
the input port of the second line as evaluated by using
the standard frequency-domain model combined with the
IFFT to obtain the time-domain results and the proposed
reduced macromodel; as seen, no significant difference is
observed.
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Fig. 11. Magnitude of residues of impedanceZ13

(example V-B).

0 5 10 15 20
10

−2

10
0

10
2

10
4

10
6

Frequency [GHz]

|Z
11

| [
Ω

]

HTLN−pol
HTLN−RP

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frequency [GHz]

P
ha

se
 o

f Z
11

 [r
ad

]

HTLN−pol
HTLN−RP

Fig. 12. Magnitude and phase spectra ofZ11 (example
V-B).
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C. Four coupled CRLH-LNs

In the third test the CRLH-LN is obtained using
four equally spaced coplanar microstrips (` = 0.1m, σ =

5.8 · 107 S/m) on a alumina substrate (εr = 9.8). The
cross section of the CRLH-LN structure is sketched in
Fig. 15. The width of the strips isw = 241 µm, the
spacing iss = 800 µm, the thickness of the dielectric and
conductors areh = 254 and t = 34.8 µm, respectively,
the shoulderd = 2021.6 µm. The computation of the
per-unit-length parameters has been performed using the
method of moments [23], yielding,

Lr =







0.3982 0.01369 0.00387 0.00203
0.01369 0.3979 0.01357 0.00387
0.00387 0.01357 0 − 3979 0.01369
0.002037 0.00387 0.01369 0.3982







µH/m

(36a)

Cr =







172 −0.5501 −0.1206 −0.0616
−0.5501 172 −0.5462 −0.1206
−0.1206 −0.5462 172 −0.5501
−0.0616 −0.1206 −0.5501 172







pF/m,

(36b)

R =







80.83 2.399 0.7926 0.4507
2.399 80.80 2.381 0.7926
0.7926 2.381 80.80 2.399
0.4507 0.7926 2.399 80.83







Ω/m, (36c)

G =







0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0







S/m. (36d)
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Fig. 15. Coplanar microstrips cross section (example
V-C).

The microstrips are loaded with 15 longitudinal ca-
pacitancesCL = 0.15 nF and transverse inductances
LL = 0.2 µH.

The presence of the longitudinal capacitanceCL and
the transverse inductanceLL causes a complex resonant
behavior even at low frequency. Figure 16 shows an ex-
ample of the magnitude spectrum of the input impedance
Z11 evaluated using both the polynomial approach and
the residue-pole form. The spectrum exhibits several
resonances from 0 to 500 MHz while the inductive nature
dominates at higher frequencies.

This fact is confirmed by the location of the poles
in the complex plane, shown in Fig. 17. It is easy to
recognize four families of poles, corresponding to four
decoupled CRLH-LN and a cluster of poles close to
zero determining the highly oscillating behavior at low
frequency.
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Fig. 16. Magnitude spectrum of impedanceZ11 (example
V-C).
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Fig. 17. Location of poles in the complex plane (example
V-C).

The rational macromodel has been generated in the
state-space form. The four CRLH-LNs are terminated on
50 Ω at the input ports and 2 pF capacitances at the
output ports. Figure 18 shows the transient voltages at the
output of the first and fourth CRLH-LN as evaluated using
the frequency-domain approach via inverse fast Fourier
transform (HTLN-IFFT) and the proposed macromodel
(HTLN-macromodel). Again, a very good agreement is
obtained.

VI. CONCLUSIONS

In this work a systematic approach to coupled CRLH-
LNs is presented. The closed-form two-port represen-
tation of CRLH-LNs is obtained relying on analytical
polynomials which allow to exactly represent voltages
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Fig. 18. Transient voltages at the output port of the first
(top) and forth (bottom) CRLH-LNs (example V-C).

and currents along the network. The rational form of the
impedance matrixZ allows an easy identification of the
true poles and the corresponding residues of the CRLH-
LN and, thus, the generation of a rigorous state-space
macromodel which is proved to be accurate fromdc to
daylight. Hence, the proposed method is well suited to
representN -coupled CRLH-LNs with general topology
of longitudinal impedanceZ1 and transverse admittance
Y 2. The presented numerical results have validated the
method and confirmed its accuracy when compared with
standard frequency-domain techniques.

REFERENCES

[1] V. G. Veselago, “The electrodynamics of substances
with simultaneously negative values ofε andµ,” Sov.
Phys. Usp., vol. 47, pp. 509–514, Jan.-Feb., 1968.

[2] C. Caloz and T. Itoh, “Transmission line approach
of left-handed (LH) materials and microstrip im-
plementation of an artificial LH transmission line,”

54 ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009



IEEE Transactions on Antennas and Propagation,
vol. 52, no. 5, pp. 1159–1166, May 2004.

[3] ——, Electromagnetic Metamaterials: Transmission
Line Theory and Microwave Applications. Wiley-
IEEE Press, 2005.

[4] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-
handed transmission line metamaterals,”IEEE Mi-
crowave Magazine, pp. 34–50, Sep. 2004.

[5] Y. Zhang and B. E. Spielman, “A stability analysis
for time-domain method of moments analysis of 1-D
double-negative transmission lines,”IEEE Transac-
tions on Microwave Theory and Techniques, vol. 55,
no. 9, pp. 1887–1898, Sep. 2007.

[6] C. R. Paul,Analysis of Multiconductor Transmission
Lines. New York, NY: John Wiley & Sons, 1992.
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Abstract −−−− A new method, based on the complex images 

technique is presented for solving the electromagnetic 

scattering from the infinite metallic and dielectric 

gratings. The main idea of this method lies in 

representing the infinite summation of the structure 

period Green's functions in terms of finite summations of 

complex images. The method of moments (MoM) is then 

employed to find the current distribution, reflection and 

transmission coefficients of the gratings. The validity of 

the presented method is shown through various examples 

for different grating geometries and incident wave 

polarizations. Fast convergence, simple formulations and 

flexibility of the method in analyzing different structures 

are the main advantages of the proposed method. 

 

Keywords: Integral equation, grating, Green's function, 

complex image. 

 

I. INTRODUCTION 

 

Theoretical studies of electromagnetic scattering 

from periodic metallic or dielectric structures or gratings 

go back to more than a hundred years ago [1, 2]. Since 

then various analytical or numerical techniques have been 

developed to formulate the electromagnetic scattering 

from the periodic scatterers [3, 4]. 

The interesting feature of these structures as 

frequency and polarization selective devices and their 

extra degree of freedom in controlling the scattered fields, 

have made them an important choice in design and 

fabrication of various devices especially at microwave 

and optical frequencies. In fact they have been used 

extensively in the fabrication of devices such as filters, 

waveguides, couplers, sensors, antenna substrates and 

reflectors [5, 6]. 

In recent years the emergence of photonic bandgap 

devices in discrete periodic dielectric and metallic 

structures and their potentials in realizing narrow-band 

filters, high-quality resonators, linear waveguides and 

mirrors have attracted much attention toward the topic of 

periodic structures. Beside photonics, plasmonic 

phenomena dealing with periodic metallic structures in 

optical frequencies further improved this topic. The 

observation of enhanced transmission phenomena in 

subwavelength perforated metallic screens has directed 

lots of studies to the investigation of transmittance and 

reflectance behavior of the metallic gratings in those 

devices [7, 8].  

A one-dimensional periodic array of cylindrical 

objects made of metal or dielectric is a typical geometry 

of periodic structures. The frequency response of the 

array is determined by the scattering characteristics of 

each cylinder and the multiple scattering under the 

presence of the periodic scatterers. A two-dimensional 

photonic bandgap structure can be obtained with 

multilayered one-dimensional arrays. The multiple 

interaction of the scattered space harmonics from these 

layers modifies the electromagnetic properties of the final 

structure  [9]. Various frequency responses can be 

obtained by using different types of scatterers and 

arranging them in different geometries. During the past 

decade, a vast amount of investigation on the 

electromagnetic scattering by layered periodic arrays of 

cylindrical objects has been done.  In these investigations 

various techniques such as mode matching method, 

homogenization method, Fourier modal method, finite 

difference method and time domain techniques have been 

applied to the periodic structures [9-17]. Integral equation 

methods are among the most accurate and flexible semi-

analytical approaches that have been used in analyzing 

such structures  [18]. Efficient computation of the slowly 

convergent series of periodic Green's functions 

encountered in these methods is still the main challenge 

of their applications in this domain.  

  In this paper, we will present an accurate integral 

equation method for dealing with a two-dimensional 

electromagnetic scattering from periodic arrays of 

cylindrical objects based on the complex images Green's 

function, for the first time. The approach is quite general 

with the capability to be applied on various 

configurations of periodic arrays of two-dimensional 

metallic or dielectric cylindrical objects. In the proposed 

method the periodic Green's function has been efficiently 

approximated with a finite series of complex images and 

a closed form can be obtained through this 

approximation. This approximated Green's function has 
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been used afterward in the analysis of the one-

dimensional periodic cylindrical objects. The reflectance 

and transmittance behavior of metallic and dielectric 

gratings with circular and rectangular cross-sectioned 

rods for different polarizations have been computed and 

compared as a representation of the method versatility. 

This paper is organized as follows. In section II, the 

complex images representation of the Green's function 

for one-dimensional periodic structures is developed. 

Section III is devoted to the MoM formulation of the 

problem based on the developed complex images Green’s 

function. As E and H-modes are two independent 

solutions of the 2D case, the formulation has been done 

for these two cases, separately. The diffraction properties 

of a general polarization can be obtained through its 

decomposition to these two fundamental modes.  

In section IV numerical results will be presented. At 

first the validity of the complex images Green's function 

is shown through an example. Then the grating 

simulation results will be presented showing the behavior 

of different gratings against various polarizations. The 

validity of these results has been investigated by checking 

the energy balance and edge conditions. Concluding 

remarks with be given in section V. 

 

II. COMPLEX IMAGES REPRESENTATION OF A 

1-D PERIODIC GREEN'S FUNCTION 

 

According to Floquet-Bloch theorem Eigen modes in a 

periodic lattice can be expressed as ( ) exp( ).G r jk r −
�� �

 where 

G is the distribution in a unit cell and k
�

is the lattice 

wavevector  [19]. This simply means that the propagation 

of a mode in a periodic lattice leads to a phase change 

without any variations in the form of its distribution. 

Using this concept, it is quite straight forward to show 

that the Green's function of a one-dimensional periodic 

structure, as shown in Fig.1 can be expressed as, 

 

( | ') ( | ' , ', ') xjmdkper

m

G r r G r x md y z e
→ → →∞

−

=−∞
= +∑  (1) 

 

where G is the Green's function of a source of the array 

and d is the period of the lattice (Fig. 1). As the gratings 

are composed of two-dimensional cylindrical objects, 

one-dimensional array of line sources should be 

considered here. Therefore G(r,r') can be written as, 

 

(2) 2 2
00

1
( ( ' ) ( ') )

4
G H k x x md y y

j
= − − + −  .        (2) 

 

The series in equation (1) converges very slowly 

especially when the observation point is far from the field 

point. It is also known that applying Poisson's transform 

to that series leads to its corresponding modal series 

which suffers from slow convergence for near fields. In 

order to accelerate the convergence of these kind of series 

different methods such as Kummer's transform, Ewald 

transform and Shank's transform have been proposed in 

the literature [20, 21]. Although these methods can be 

successfully applied to the periodic Green’s functions in 

the form of equation (1), it must be kept in mind that 

these Green's functions are used in the kernel of the 

integral equations. Therefore the employed integral 

equation methods will suffer from numerical deficiency 

as the Green’s functions would have no closed form 

representation. In the complex images representation 

developed below however, the periodic Green’s function 

of equation (1) is given in a closed form which is valid 

for all the sources and field points. This will bring 

numerical efficiency to the relevant integral equation 

techniques. 
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Fig. 1. One-dimensional array of line sources. 

 

 In order to derive the complex images representation 

of equation (1) while G(r,r') has been replaced with 

equation (2), we can use the following identity, 
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       (3) 

 

where 2 2
0x yk kβ = − . 

By substituting equation (3) in equation (1) and 

changing the order of summation and integration 

operators, a geometric series will be obtained. For field 

points in a unit cell i.e. 0<x<d ( ' 0x =  is assumed) after 

some simple manipulations the following equation can be 

obtained, 
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.   (4) 

 

As the name of complex images technique implies 

the main goal is to preserve the form of the original 

sources and find an approximation that its terms resemble 

the ones in the first series  [22]. Obviously this aim can be 

fulfilled if the fractions in the kernel of inverse Fourier 
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Transform integral of equation (4) can be approximated 

by a finite series of exponential. That is, 
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Prony's method [22], GPOF  [23] or least square 

methods can be used to realize these approximations 

accurately. The approximation path of Fig. 2 in the xβ  

plane has been found to be appropriate to perform the 

above approximations.  In this path T0 is determined 

according to the relative distance between field and 

source points [22]. It may be mentioned that the existence 

of poles which may occur near the approximation path 

(Fig. 2) can deteriorate the above mentioned 

approximation. In that case one can extract the poles from 

the approximating function and include its effects 

manually [22]. 

Substituting the above approximations in equation (4) 

and using the identity equation (3) leads to, 
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This completes the derivation of complex images 

representation of the periodic Green’s function of 

equation (1). It can be seen that the first two terms in 

equation (6) correspond to the two of sources in the array 

that have the most effects on the field points located in a 

unit cell. The presence of these two terms in the final 

representation guarantees satisfactory results for the near 

fields especially in the vicinity of the boundaries. The 

two finite summations in equation (6) correspond to the 

complex images which have the same forms as real 

sources in the array except that they are located in 

complex positions and have complex values. They are 

more important when the field point is located away from 

the boundaries within a unit cell. It is clear that equation 

(6) offers a closed form representation of the Green’s 

functions in terms of two finite summations; so the issue 

of convergence for infinite series does not exist anymore. 

It is clear that the same procedure can be applied to an 

array of point sources. Moreover it can be easily extended 

to 2-D periodic Green’s functions of line sources, and to 

the 2-D and 3-D periodic Green’s functions of point 

sources. 
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Fig. 2. The approximation path in the βx plane. 

   

Examination of the accuracy of the developed complex 

images Green’s function will be deferred until section V. 

 

III. MOM FORMULATION OF THE PROBLEM 

 

Figure 3 shows a grating of typical cylindrical 

objects studied in this paper illuminated by a plane wave 

with wavevector k
��

. Since there is no variation along the 

z-axis, TE and TM polarizations can exist independently.  

In TM polarization (Hx, Hy, Ez) are the only existing 

components of the EM fields. For PEC rods in the array, 

by applying the proper boundary condition on the rod 

located in the unit cell, the following electric field 

integral equation (EFIE) determines the current flowing 

on the rod. 

 

  
Fig. 3. Cross section of a grating of typical cylindrical 

objects. 
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0( ) ( , ') ( ') 'inc per
z z

body

E l j G l l J l dlωµ= ∫� .       (7) 

 

In TE polarization (Ex, Ey, Hz) are the only existing 

components of the EM fields. Considering the same PEC 

rods and formulating the problem for magnetic field after 

applying the proper boundary condition on the rod, the 

following magnetic field integral equation (MFIE) gives 

the current distribution. 

( , ')
( ) ( ) ( ') '

'

per
inc
zl l

body

G l l
J l H l J l dl

n

∂
= +

∂∫�  .   (8) 

In the above integral equations perG is given by 

equation (6) while l represents the transverse coordinate 

on a rod  [24].  

For a grating made of dielectric rods instead of PEC 

(Fig. 3), one can derive the integral equations by using 

the equivalent surface electric and magnetic currents and 

boundary integral equations (BIE). The equivalent 

surface currents are given by, 

 
^

^

( ) ( )

( ) ( )

s t

s t

J l n H l

M l n E l

α

α

→ →

→ →

= ×

= − ×

 .                    (9) 

 

Where subscript t represents the total field on the 

boundary of the rod and α is a factor equal to 1 and -1 for 

exterior and interior problems, respectively. Using these 

equivalent currents the following equations can be written 

for exterior and interior regions in TM polarization, 

respectively, 

( ) ( ) 0    

( ) 0    .

inc sca

sca

E l E l l interior region

E l l exterior region

→ →

→

+ = ∈

= ∈

     (10) 

 

Similarly the above equations can be written for H in 

a TE polarized illumination. 

To solve for the unknown current distribution in the 

above integral equations, the method of moments has 

been employed by using pulse basis functions and 

applying the point matching technique [24]. When the 

current distribution has been determined all the 

diffraction characteristics of the grating can be obtained 

using the scattered fields. 

 Because of the periodic nature of the structure the 

reflected and transmitted electromagnetic waves contain 

infinite diffraction orders. The parallel component of the 

diffraction orders can be obtained from the following 

formula, 

|| 0
2 2

sinx
m m

k k k m
d d

π π
θ= + = + ∈ Ζ .      (11) 

The reflectance and transmittance of a grating order 

have been defined as the ratio of the power carried in that 

order to the incident power. For a diffracted plane wave 

to carry energy away from the grating, the following 

condition must be satisfied, 

0 0
2

| sin |
m

k k
d

π
θ≥ +     .                  (12) 

In the above relation m is an algebraic integer 

representing the order of diffraction. The above formula 

explicitly shows that the number of propagating waves 

that carry energy away from the grating depends on the 

incident angle and the normalized frequency as well. The 

power transmitted to each diffraction order can be 

controlled by the geometry of the grating and the type of 

elements composing the array. Using multilayer gratings 

with various elements one can control the diffraction 

characteristics of the gratings as well.   

Applying different optimization algorithms on the 

structure it can be optimized to carry power in a 

determined diffraction order or to obtain a desired 

frequency response.  

In the next section the simulation results of plane 

wave scattering by different gratings in both polarizations 

will be presented. 

 

IV. NUMERICAL RESULTS 

 

In this section, first the numerical accuracy of the 

developed complex images Green's function is examined 

by using an example. In this example d=4, λ=5 and kx=0 

are assumed in the array of line sources (Fig. 1). Table 1 

gives the values of exponential coefficients in the 

complex images representation (5) for M1=M2=5 found 

through the GPOF algorithm when the path truncation 

parameter T0=15 is assumed (Fig. 2).   

 

Table 1. Exponential coefficients for d=4, λ=5 and kx=0. 
 

am bm 

(-0.1416-j0.2625)×10
-10

 17.7235-j17.9114 

(-0.1226-+j0.9336)×10
-4

 7.6704-j13.2827 

0.0554-0.0106 2.0320-j9.5251 

0.7973-j0.6096 -0.04528-j7.6087 

1.00425+j0.00564 0.00123-j4.0030 

 

Figure 4 shows the magnitude of the error between 

the exact spectral function (5a) and its finite summation 

approximation found through the GPOF technique. The 

error has been computed along the approximation path of 

Fig. 2 for different number of exponentials used in the 

summation. It can be seen that for just 3 terms in the 

exponential summation an accurate approximation of the 

spectral function is achieved almost along the whole path. 
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This demonstrated the efficiency of the proposed 

approximation. 

Figure 5 compares the magnitude and phase of 

G
pre

(r,r’) found by complex images representation of 

equation (6) with the values of the Green’s function in the 

form of infinite images and modal series accelerated with 

the Shanks' transform. It can be seen that the results 

obtained by the complex images method are in excellent 

agreements with those obtained from image and modal 

series. Also it can be observed that the complex images 

results show the singularity of the source near the 

boundary while the modal series has difficulty in showing 

this behavior as its convergence deteriorates in the near 

fields.  

Figure 6 shows the convergence of the approximate 

complex images Green’s function versus number of terms 

in the summation by evaluating the errors between the 

results obtained form the infinite modal series and the 

finite summation of complex images. It is clear that even 

for small number of terms, i.e., for M=6 negligible errors 

occur in the proposed complex images representation. 
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Fig. 6. The magnitude of error at different field points in 

complex images Green’s function for different 

exponential terms. 

 

The proposed approach has been used in the analysis 

of various metallic and dielectric gratings. All gratings 

have been investigated for their reflectance behavior in 

subwavelength regime where d/λ<1. In order to study the 

frequency and polarization selectivity of these structures 

their responses for different normalized frequencies and 

polarizations have been obtained. Since, as a filter, the 

sensitivity of the response to the incident angle is an 

important factor, this factor has been studied by 

considering the arrays in a fixed normalized frequency 

for various incident angles. Finally the effect of the shape 

on the responses has been studied with comparison of the 

results of the circular cross sectioned cylinders with 

square ones. The reflected and transmitted EM fields in 

each order have been evaluated on a constant line above 

and below the grating. 
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Fig. 4. The magnitude of error between the spectral 

function and its corresponding finite summation 

approximation for different number of exponential terms. 
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Fig. 5. (a) Magnitude, (b) phase of the periodic Green's 

function of 1-D line sources with d=4, λ=5 and kx=0 for 

field points on the x-axis. 
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The first example (Fig. 7) compares the zeroth order 

reflection coefficient, R0, of a metallic grating composed 

of PEC rods with 0.15r d= with one of a dielectric 

grating with 0.3r d= and 2rε =  for TM polarization. In 

this case, since the zeroth order is the only propagating 

component that carries power away from the grating, the 

figure contains that diffraction order only. Good 

agreements can be observed between these results and 

those reported in  [25]. In the above figure there is a 

resonance frequency in the dielectric case while PEC 

array does not show this behavior.   
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Fig. 7. R0 versus normalized frequency for gratings 

composed of PEC rods with r=0.15d and dielectric rods 

with r=0.3d. 

 

Figure 8 shows the frequency response of a grating 

composed of PEC rods with r/λ=0.08 located in a 

medium with εr1=2.33 when a TM polarized plane wave 

illuminates the array at θ=45
o
. Variations of the reflection 

coefficients R0, R-1, R-2 are given versus the normalized 

frequency /NF d λ= . 

In this case the metallic grating reflects all the power 

in a wide range of frequencies and behaves as a reflector. 

At NF=0.39 the -1
st
 diffraction order gains the power and 

decreases the power carried by the zeroth order. At 

NF=0.77 the -2
nd

 order carries power as well.  Figure 9 

shows the response of the same array at NF=0.5 when the 

TM polarized incident plane wave illuminates the grating 

at different angles. 

The last example compares the effect of the rods 

geometry on the diffraction characteristics of the grating. 

Figure 10 compares the frequency response of the zeroth 

order reflection coefficient of two metallic gratings, one 

made of rods with circular cross-section (with r/λ=0.08) 

and the other made of rods with square cross-section 

(with a/λ=0.16, where a denotes the square side). Both 

gratings are located in a medium with εr1=2.33 and are 

illuminated with a TE-polarized plane wave at θ=45
o
. 
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Fig. 8. R0, R-1 and R-2 versus normalized frequency for a 

metallic grating with εr1=2.33, r=0.08λ and θ=45
o
 for TM 

polarization. 
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Fig. 9. R0 and R-1 vs. incident angle for a metallic grating 

with εr1=2.33, r=0.08λ and NF=0.5 for TM polarization. 
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Fig. 10. Comparison of R0 versus incident angle for two 

metallic gratings made of rods with circular cross-section 

with r=0.08λ, and square cross-section with a/λ=0.16 at 

NF=0.5 for TE polarization. 

61ALAEIAN, FARAJI-DANA: NOVEL GREENS FUNCTION ANALYSIS OF WAVE SCATTERING



 

 

Comparing these results with those presented in Fig. 9 

reveals that the response of a metallic grating varies 

drastically as the polarization changes. While most of the 

power is reflected by the grating in TM polarization, in 

the TE case considerable amount of power is transmitted 

except for an anomalous increase observed at θ=18
o
 

angle. Also it can be observed that the rods geometry 

affects the diffraction characteristics of the grating 

significantly.  

 

V. CONCLUSION 

 

In this paper a novel complex images representation 

of the free-space periodic Green's function has been 

presented. Using this closed form representation, fast and 

accurate computation of the Green's function is possible 

for all the field points. Moreover each term in this 

representation has the same form as the sources forming 

the periodic array, i.e. a line source for 2-D sources and a 

point source for 3-D sources. This will facilitate the 

application of integral equation techniques for analyzing 

the periodic structures under study significantly. 

Using the developed complex images Green’s 

functions in the integral equations, 1-D periodic 

structures made of PEC or dielectric rods have been 

investigated and their diffraction characteristics in TE and 

TM polarizations have been studied.  

Although single-row 1-D periodic arrays were 

considered here, the method can be easily applied to 

multi-row gratings with different periods and various 

elements in each row.  
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Abstract −−−− A tumor is visible by a passive microwave 

radiometer scanning the breast surface if it changes the 

radiometer output of a healthy breast to an extent that 

overcomes the radiometric resolution for the given 

sensing antenna and integration time. In this paper the 

breast is intentionally squeezed between the radiometric 

antenna and the chest wall and the temperature is 

evaluated for the deformed breast together with the 

generated radiometric signal. To be compared with the 

radiometric resolution, the difference signal between the 

outputs in the presence of a lesion and in its absence has 

to be evaluated. To achieve this, a mechanical, thermal 

and electromagnetic model of the breast has been 

developed.  A finite-element code has been used to 

solve for the mechanical and thermal problems, while 

FDTD has been exploited for electromagnetic 

computations. We show that compressing the breast 

improves the radiometric visibility depending on tumor 

depth and deformation. 

 

I. INTRODUCTION 

 

In principle microwave radiometry, i.e. passive 

detection of spontaneous thermal radiation from a body in 

the microwave frequency band can provide information 

on the thermal status of tissues to a depth of some 

centimeters [1]. In clinics, microwave radiometry has 

been considered in the attempt to cope with two major 

challenges, i. e. non-invasive temperature monitoring 

during thermal treatment of extended regions of tissue, 

and early detection of tumor malignancies. First-type 

applications have been proposed in [2,3] and, recently, 

revived in connection with a curtain of radiofrequency 

radiators for antitumoral hyperthermia treatment of chest 

wall recurrences [4]. The diagnostic application has been 

investigated also in connection with the problem of 

retrieving a temperature profile from a set of radiometric 

data [5-8]. In spite of some positive evidence, however, 

microwave radiometry has not yet reached a general 

consensus as a screening modality for early detection of 

cancer although recent results seem encouraging [9]. A 

renewed interest in clinical microwave radiometry can be 

explained on the basis of the improved performance of 

both microwave instrumentation and computer modeling 

of complex systems.  

During a typical session a contacting antenna scans 

the surface of a breast. When a thermal anomaly is 

located within the radiation solid of the antenna, i. e. the 

volume of breast that contributes almost all the net real 

power entering the antenna from the breast, the receiver 

output increases to some amount. The anomaly is 

radiometrically visible if such amount is larger than the 

instrumental resolution. In spite of the simplicity of the 

underlying rationale, measurements on patients may fail 

because inadequacies of the instruments and presence of 

artifacts due to spurious radiation. When the antenna 

explores the breast, in fact, the data may vary because any 

change in the antenna match causes a variation in the back 

reflection of thermal noise from the receiver. An ideal 

radiation-balance radiometer [10] prevents this drawback. 

Moreover, the increment in received power due to a 

visible thermal anomaly must overcome the floor power 

due to thermal emission from normal tissue. A parametric 

study on the radiometric visibility of thermal anomalies 

has been presented in [11] for an elementary antenna 

consisting of a circular aperture in a perfectly conducting 

screen. An improved model of breast, which includes a 

portion of chest and a skin layer, has been considered in 

[12]. The results of these investigations show that a 10mm 

spherical lesion is radiometrically visible by a system 

with 0.1 C° resolution if it is not deeper than  2.5cm. 

When a contacting sensor is scanned on the breast a 

pressure is normally exercised. The breast is deformed so 

that the distance of a lesion from the contacted surface is 

lowered while its visibility is changed. While breast 

flattening has been treated as a negligible effect in the 

modeling by previous authors, in this paper the breast is 

intentionally squeezed between antenna and thorax and 

we estimate the thermal behavior and the corresponding 

radiometric signal for the deformed breast. Breast 

compression is routinely performed during compression 

mammography to an extent that is indicated by regulatory 

agencies [13].   

For the signal S in output to a radiation balance 

microwave radiometer we shall use, 

 

               ∫= Ω )dVr)T(rW(S                         (1) 
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where W is called weighting function, T is the physical 

temperature and Ω is the overall volume that is sensed by 

the antenna. Due to reciprocity in antenna theory W can 

be obtained as, 

 

              

∫
=

Ω

d

d

)dVr(P

)r(P
)rW(                         (2) 

 

where Pd(r) is microwave power deposition at point 

r∈Ω  when the antenna radiates onto the body in active 

modality [14]. The presence of a malignancy may result 

in an excess of temperature ∆T as well as in a change 

∆Pd within Ω, due to a change in permittivity of tumor 

tissue with respect to normal tissue. The radiometric 

resolution (sensitivity) will be denoted by δS.  In the 

next Section the breast deformation due to a 

compression exercised normally to the chest wall will be 

studied, while the thermal and electromagnetic models 

that are necessary to estimate S will be presented in 

Section III. The mechanical and thermal problems have 

been solved in a finite-element frame using the 

commercial tool COMSOL Multiphysics [15]. The 

electromagnetic problems have been solved by FDTD 

using a proprietary code. Preliminary results will be 

presented showing the increase in visibility that are 

consequent to breast compression. 

 

II. BIOMECHANICAL MODEL 

 

To evaluate the radiometric signal the mechanical, 

thermal and electromagnetic properties of the breast must 

be specified for each tissue component. The normal breast 

consists of a tree-like structure of glandular tissue 

supported by connective tissue, immersed in fat and 

surrounded by skin. However, to simplify the problem, we 

model the breast as a homogeneous hemisphere 

supported by a square box of muscle (Fig. 1). Assuming 

that the breast is made of an equal amount of fat and 

glandular tissue, the homogeneous model results from 

averaged mechanical properties. 

To model the breast deformation under 

compression, a simulation model, which can handle 

large deformations and nonlinear, nearly incompressible 

materials, must be implemented. In literature breast-

deformation modeling is receiving attention due to the 

need of data fusion from X-ray mammography in 

different views and Magnetic Resonance Imaging in 

early cancer diagnostics as well as to achieve suitable 

information for  surgery or needle insertion during a 

biopsy [16-20]. Biological tissues have been shown to 

exhibit non-linear stress-strain laws [21, 22] and this is 

the case for the range of strains involved during 

mammographic screens.   Different material models for 

breast tissues are proposed in the literature. A review of  

strain-stress relationships can be found in [17]. The 

resulting stress for a given strain is largely dependent on 

the model, while a criterion for model validation can be 

the plausibility of the achieved deformation in the 

comparison with experimental outcomes. E.g. in [23] 

the displacement of a set of landmarks positioned on a 

patient has been measured for increasing net 

deformation. The exponential models are more accurate 

than linear and neo-hookean ones in retrieving large 

breast deformation. However, as a drawback, they 

originate non-realistic compression forces [23,24].  

 

 
 

Fig. 1. Hemispherical model of undeformed breast on a 

muscle box. 

 

The kinematic problem is to find the coordinates x  

of the deformed body, given the coordinates X  of the 

undeformed body. The displacement vector and the 

Green-Lagrange strain tensor are respectively defined as, 

 

                                   XxU −=                              (3) 
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where summation over repeated indices is intended. The 

deformation gradient tensor Fij = ∂xi /∂Xj is introduced. 

The Second Piola-Kirchoff tensor, Tmn, is generally used 

as stress definition in large deformation problems. Tmn is  

defined as the force acting on the undeformed body 

measured per unit undeformed area. In an equilibrium 

deformed state, all forces must balance, and it can be 

shown that this leads to, 

 

   
x

i(T ) f 0, (i 1, 2,3)mn iX Xm n

∂∂
+ =    =

∂ ∂
        (5) 
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where fi is volume external force component per unit 

volume. To relate stress to strain, a strain energy function 

W(Eij) is assumed to exist. The principle of virtual works 

allows the equilibrium problem (5) to be reformulated as 

an energy minimization problem. We have made the 

assumption that the tissue is isotropic. If a material is 

isotropic, the strain-energy density function W can be in 

general expressed as a function of the strain invariants  

1I , 2I , 3I  where )(1 ij

T

ij FFtrI = and 
T

 is for 

transposed. 
2

3 JI = , with J  volume ratio. J = 1 for a 

perfectly incompressible material. Practically, tissues 

have a Poisson’s ratio that ranges from 0.49 to 0.5. The 

Poisson’s ratio for the tissue used in this study is 0.498. 

We assumed an exponential constitutive law [18], 

 

               1)(I
2

p
1)a(eW 3

3)b(I1 −−−= −
              (6) 

 

where a and b are average fit parameters between fat and 

glandular tissue calculated from uniaxial stress-strain 

experiments using a tissue sample [25], p is the internal 

pressure that represents a Lagrangian multiplier 

introduced to impose the constraint  01 =−3I .  

Finally, the mechanical boundary conditions must be 

specified to obtain the solution. We admit that the 

radiometric antenna is frontally pressed against the breast, 

which is squeezed between the planar antenna and the 

thorax plane, coincident with the pectoral muscle wall. 

The two planes are parallel. The muscle wall is fixed. 

Zero displacement on the muscle wall in contact with the 

breast and zero pressure on the free skin surface are 

suitable boundary conditions. The antenna itself has been 

modeled as a compression plate with the mechanical 

coefficients of aluminum. At the interface between 

antenna and breast a non-penetration condition holds 

[18].  Owing to this condition the breast modeling under 

compression is not a standard elasticity problem. Let D be 

the distance of the antenna plate from the chest wall. The 

compression plate is supposed to move in the direction of 

the z-axis, towards the chest. D equals the hemisphere 

radius R in the undeformed configuration, when the plane 

is contacting the breast at a single point (Fig. 2(a)). 

During compression D is reduced while the plate/breast 

contact area increases (Fig. 2(b)). If the total 

displacement of the plate is C, then the relative net 

deformation is C/R=(R-D)/R. The following numerical 

analysis will be performed for a net deformation of 35%, 

which is between the limit values of mammography (20-

50%).  In order to model such a large deformation we 

divided C into N small displacements. Then we solved N 

linear deformation problems as a sequence of steps. At 

the end of each step, we know the flattened breast surface 

in contact with the antenna. However, we don’t know ‘a 

priori’ which additional surface the antenna will contact 

as a consequence of the deformation at the next step. The 

problem of determining the additional contact surface of a 

deformable body under compression is known as a 

contact analysis problem. It has been formulated and 

solved as an Augmented Lagrangian optimization [26]. 

 

 
 

 

Fig. 2. a) Geometry of the undeformed breast, sagittal 

view. b) Geometry of the deformed breast.                       

c) Undeformed breast. Partition into triangular elements. 

 

Due to axial symmetry a quarter of the structure has 

been modeled, therefore the further condition of zero 

displacement normally to the symmetry walls has been 

introduced. The finite-element mesh consists of 15150 

tetrahedral elements, 14620 for the breast and 530 for the 

compression plate. A view of the partition into elements is 

shown in Fig. 2(c). Mesh density is higher near the initial 

point of contact between the breast and the antenna while 

an element size of 2.5 mm is specified on the breast 

external surface. To solve for the non-linear mechanical 

behavior, after a small displacement increment of the 

compression plate, the internal pressure is computed 

together with the displacement at each point. 

In mammography breast deformation studies, the 

relative reduction of a breast diameter is imposed, while 

the net force between the plates is computed from the 

resulting stress. The diagram in Fig. 2(b) refers to a breast 

deformation of about 35% for frontal compression. The 

compression force results in about 1750 N. As expected, 

this value is larger than the net force experienced in X-ray 

mammography, which ranges between 49 and 186 N [24]. 

In Fig. 3 the displacement is shown versus particle depth 

in the undeformed state on a sagittal plane. The 

displacement is practically linear with depth, with 35% 

slope.  

We modeled a tumor as a sphere. In this preliminary 

work the sphere is located on the symmetry axis (z-axis) 

perpendicular to the chest wall. Tumor-center distance 

from the antenna contact point in the undeformed state is 

referred to as tumor depth. For simplicity the mechanical 

properties of the tumor have been taken coincident with 

those of the host tissue. After frontal compression the 

sphere is deformed into an ellipsoid whose axes can be 

estimated using the diagram in Fig. 3 for the 
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displacements of the tumor-diameter end-points along the 

z-axis, while the two other axes are found by tumor 

volume conservation. 

 

 
 

Fig. 3. Particle displacement vs. depth on z-axis. 

 

 

III. THERMALAND ELECTROMAGNETIC 

MODELS 

 

We assume the temperature satisfies the steady-state 

bio-heat equation, 

 

         0)( =−−+∇⋅∇ bbbbm TTwcqT ρκ         (7) 

 

where κ is the effective thermal conductivity which 

includes the enhancement in conductivity due to blood 

perfusion, qm is the metabolic heat generation rate, cb is 

the specific heat, ρbwb is the blood perfusion rate per 

unit mass of tissue and Tb is the arterial blood 

temperature. The boundary condition at the interface Sa 

between breast and air is, 

 

                    0)(ˆ =−+⋅∇ aaa TThnTκ                (8) 

 

with an̂  the unit vector normal to the boundary, ha a heat 

transfer coefficient, and Ta the air temperature. T is 

continuous at the interface between breast and pectoral 

muscle. We assume an adiabatic condition ∂T /∂n=0  at 

the boundary Sb with the main body. The solution T(r) to 

equations (7) and (8) is diagrammed in Fig. 4(a) on a 

sagittal plane for the geometry of Fig. 2.       

In previous work [11,12] the contact between 

antenna and breast was ideally confined to a small area 

and to a very short time interval, in such a way to neglect 

temperature variations in the breast due to the soft contact 

with the antenna. Two limiting cases can be envisaged in 

the presence of large deformations. In a first case the 

antenna is instantaneously compressed against the breast, 

while the radiometer takes the data in that instant. No heat 

exchanges are allowed, so that the temperature of a 

particle at a point  x in the compressed state coincides 

with its temperature at the initial location X in the 

undeformed state (Fig. 4(b)). We shall refer to this 

temperature as adiabatic temperature. In a second case, 

the radiometric data acquisition takes enough time (about 

15 minutes as shown in Fig. 5) to let the temperature 

reach the steady state within the deformed breast in the 

presence of a larger contact surface between antenna and 

breast (Fig. 4(c)). We shall refer to this temperature as 

steady-state temperature. We expect that the temperature 

that is sensed by the antenna during a realistic 

measurement be between these limiting cases. The heat 

transfer coefficient is assumed  ha=13.5 W/(m
2
·K) [27], at 

the breast/air interface. At the boundary between antenna 

and breast, equation (8) still holds, with a heat transfer 

coefficient ha=135 W/(m
2
·K), i.e., ten times the 

coefficient for the air/breast interface. The antenna is 

supposed to be kept at a reference temperature Ta, by 

circulating de-ionized water.  

 
(a) 

     
(b)                                            (c) 

 

Fig. 4. a) Isotherms (step 1°C) on a sagittal plane for 

undeformed normal breast. b) Isotherms (step 1°C) for 

deformed normal breast in the adiabatic case. c) 

Isotherms (step 3°C) for deformed normal breast in the 

steady-state case. For normal breast: κ=0.48W/m·°C, 

qm=700 W/m
3
, ρb=1060 Kg/m

3
, cb=2600 J/Kg·°C, 

wb=0.00054 s
-1

. For muscle: κ=0.48 W/m·°C, qm=700 

W/m
3
, wb=0.0008 s

-1
. Ta=20°C, TA=20°C, Tb=37°C. 
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Fig. 5. Temperature T vs. time at the points labeled as in 

Fig. 2(b). The curves start for t=0 from the adiabatic 

values. 
 

A tumor may change T(r) into a new temperature 

T′(r) differing by ∆T(r) from the normal breast 

temperature mainly in the tumor volume and in the 

surrounding tissue. Thermogenesis and angiogenesis are 

considered responsible for this change [28]. 

Thermogenesis is accounted for by a value qm that is 

related to the tumor doubling time by a hyperbolic law, 

while the tumor size is exponentially related to the 

doubling time [29]. Diagrams of ∆T vs. lesion depth are 

shown in Fig. 6 along a line through the lesion center, for 

a 10 mm tumor centered at 1cm, 2cm, 3cm and 4cm from 

the surface, in the adiabatic and steady-state cases. The 

tumor depth is the tumor-center distance from the surface 

before compression. 

 

 
 

Fig. 6. Temperature difference (unhealthy-normal) ∆T for 

a 10mm lesion and compressed breast. Steady-state (gray 

line) and adiabatic (bold line) temperatures. Tumor 

parameters: κt=0.511 W/m·°C, qmt=65400 W/m
3
, wtb=0.01 

s
-1

 [27]. 

 

From the diagrams in Fig. 4 we observe that the 

breast peripheral temperature is lower for steady-state 

because of the more effective superficial cooling forced 

by the contacting antenna. Therefore the tumor steady-

state over temperature ∆T is higher than the adiabatic one 

as shown in Fig. 6.    

For the sake of generality we shall not specify any 

particular radiometric antenna letting the size be its only 

characteristic feature. The electromagnetic model consists 

of a circular aperture of diameter 2a, center at z = 0, in an 

infinite conducting plane. We assume the half-space in 

front of the aperture is filled by breast tissue. Accounting 

for the heterogeneity of breast tissue is a difficult task 

since the adipose tissue  is inseparably intermixed with 

fibroglandular parenchyma (except in the subcutaneous 

region) [30,31]. For simplicity we assume a homogeneous 

medium with dielectric properties as in [11,32]. We refer 

to [33] for tumor dielectric properties. Recently, the 

dielectric properties of normal and malignant breast 

tissues have been experimentally characterized  in the 

microwave frequency range by Lazebnik et al. [34,35].  

Basing on the percentage of adipose tissue content, they 

classified samples of normal breast into three groups. The 

dielectric properties we adopted for normal breast are 

similar to those in the third group in [34] (85-100% 

adipose tissue content).   

The field is radiated by a uniform linearly-polarized 

electric field Ea on the aperture. The center-band 

frequency is 2.6 GHz, which is close to widely used 

frequencies in medical application of microwave 

radiometry [4], [36-39]. Electromagnetic field 

computations have been performed by a proprietary 

FDTD code using Mur absorbing boundary conditions at 

the walls. The FDTD computation has been repeated in 

the presence of the spherical lesion with its center at 

various depths. Contour-level plots of Pd are shown on 

two orthogonal principal planes in Fig. 7. 

   

IV. RESULTS 

 

The radiometric signal S has been computed by 

equation (1) after the temperature and power Pd delivered 

to tissue have been determined within both normal and 

unhealthy breast. Denote the difference between 

unhealthy and normal breast signals by ∆S, 

 

∫ ∫
Ω Ω

−=∆ dVrTrWdVrTrWS )()()()( ''
       (9) 

 

where the prime is used for the unhealthy breast.  

Therefore ∆S is a useful parameter in breast tumor 

detection by microwave radiometry. Diagrams of  ∆S are 

shown in Fig. 8 as a function of tumor depth and refer to 
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non-compressed breast. The two curves have been 

obtained from two different sets of dielectric parameters 

for comparison. Significant differences cannot be 

appreciated between the two diagrams. This is due to the 

fact that ∆S is slightly dependent on the dielectric contrast 

between malignant and normal tissue, which is lower for 

the second group of dielectric properties, while it mainly 

depends on the over-temperature localized in the tumor 

volume [11].  

 

 
(a) 

 

 
(b) 

 

Fig. 7. Contour-level diagrams of Pd=1/2 σ ׀E׀
2
 on the 

principal plane perpendicular a) and parallel b) to the 

aperture field, respectively. For normal breast: εrb=10, 

σb=0.2 S/m, for muscle : εrm=50, σm=1.5 S/m [32]. 

 

The diagrams in Fig. 9(a) refer to the compressed 

breast  and to the adiabatic (bold line) and steady-state 

(gray line) temperatures. A realistic curve for ∆S lies 

between these diagrams.  A tumor is radiometrically 

visible if the difference signal overcomes the resolution, 

i.e. ∆S>δS  is the condition for a tumor to be visible. A 

reference value can be δS =0.1°C  with 1s integration 

time. We conclude that the visibility of a 10mm tumor 

increases passing from about 25mm (Fig. 8) in the 

undeformed breast to a value between 30mm and 38mm 

in the deformed breast and 35% net deformation if the 

dielectric parameters are chosen as in [11] (between 30 

and 45mm with parameters in [34, 35], Fig. 9(b)). ∆S is 

greater when the second group of parameters is 

considered due to the shift of the maximum of Pd, as 

shown in Fig. 10. 

 

 
 

Fig. 8. Difference radiometric signal (unhealthy-normal) 

of a 10mm lesion vs. depth and a 3cm aperture antenna 

for non-compressed breast. The line with circles refers to 

εrb=10, σb=0.2 S/m for normal breast and εrb=50, σb=1.5 

S/m  for malignant breast, as in [11], while the line  with 

diamonds refers to εrb=39, σb=1.18 S/m for normal breast 

[34] and εrb=55, σb=2 S/m for malignant breast [35]. 

 

 
(a) 

 

 
(b) 

 

Fig. 9.  Difference radiometric signal ∆S (unhealthy-

normal) of a 10mm lesion vs. depth and a 3cm aperture 

antenna for compressed breast: adiabatic temperature 

(bold line), steady-state temperature (gray line). Dielectric 

parameters a) as in [11], b) as in [34,35]. 35% net 

deformation. 

69IUDICELLO, BARDATI: FUNCTIONAL IMAGING OF COMPRESSED BREAST BY MICROWAVE RADIOMETRY



 
 

Fig. 10.  Normalized Pd along the z-axis passing through 

the center of a 3cm aperture for undeformed breast. 

Dielectric parameters (bold line) as in [11],  (gray line) as 

in [34]. 

 

V.  CONCLUSION 

 

The problem of estimating the visibility of a breast 

tumor by a passive radiometric device has been addressed 

when the sensing antenna is pressed against the breast. A 

mechanical and thermal model of the breast under 

compression by the contacting antenna has been 

developed, based on the data available in the literature. 

The mechanical behavior has been modeled by a non-

linear constitutive equation, while the temperature 

satisfies the classical bio-heat equation. Both problems 

have been solved in a finite-element frame. The thermal 

radiation that is received by an ideal radiation-balance 

radiometer has been estimated solving the 

electromagnetic problem of antenna radiation onto the 

breast. According to the results of the numerical analysis, 

the excess in radiometric signal due to a 10mm tumor 

overcomes a typical radiometric resolution to a depth 

between 3 and 4 cm in the case of 35% compression. The 

above analysis has assumed that the tissue mechanical, 

thermal and electric properties are uniform within the 

normal breast. 

 

REFERENCES 

 
[1] F. Bardati and D. Solimini, “Radiometric sensing of 

biological layered media,” Radio Sci., vol. 18, no. 6, pp. 

1393-1401, 1983. 

[2] F. Sterzer, P. Paglione, F. Wozniak, J. Mendecki, E. 

Friedenthal, and C. Botstein, “Self-balancing microwave 

radiometer for non-invasively measuring the temperature of 

subcutaneous tissue during localized hyperthermia 

treatments of cancer,” IEEE MTT-S Int Microwave Symp 

Digest, vol. 82, no. 1, pp. 438-440, 1982. 

[3] M. Chivè, M. Plancot, Y. Leroy, G. Giaux, and B. Prevost, 

“Microwave (1 and 2.45 GHz) and   radiofrequency (13.56 

MHz) hyperthermia monitored by microwave 

thermography,” 12th European Microwave Conf, Helsinki 

(Finland), Sept. 1982. 

[4] S. Jacobsen, P. Stauffer, and D. Neuman, “Dual-mode 

antenna design for microwave heating and non-invasive 

thermometry of superficial tissue disease,” IEEE Trans 

Biomed. Eng., vol. 47, no. 11, pp. 1500-1509, 2000. 

[5] C. Gros, M. Gautherie, and P. Bourjat, “Prognosis and post-

therapeutic follow-up of breast cancers by thermography,” 

IEEE Trans Biomed Eng, vol. 6, pp.77-90, 1975. 

[6] J. Edrich, “A millimeter-wave thermography for human 

breast and spine scans,” 6th European  Microwave Conf, 

Rome, pp. 137-140, Sept. 1976. 

[7] A. H. Barret, P. C. Myers, and M. L. Sadowsky, “Detection 

of breast cancer by microwave radiometry,” Radio Sci., vol. 

12, no. 6(S), pp. 167, 1977. 

[8] K. L. Carr, A. M. El-Mahdi, and J. Shaffer, “Dual-mode 

microwave system to enhance early detection of cancer,” 

IEEE Trans Microwave Theory Tech, vol. 29, no.3,  pp. 

256-260, 1981. 

[9] J. W. Lee, S. M. Lee, K. S. Kim, W. T. Han, G. Yoon,  L. A. 

Pasmanik, I. A. Ulyanichev, and A. V. Troitsky, 

“Experimental investigation of the mammary gland tumor 

phantom for multifrequency microwave radio-

thermometers,” Med Biol Eng Comput, vol. 42, no.5, pp. 

581-590, 2004. 

[10] K. M. Ludeke, J. Kohler, and J. Kanzenbach, “A new 

radiation balance microwave thermograph for        

simultaneous and indipendent temperature and emissivity 

measurements,” J Microwave Power, vol. 14, pp. 117-121, 

1979. 

[11] F. Bardati and S. Iudicello, “Modeling the visibility of 

breast malignancy by a microwave radiometer,” to be 

published on IEEE Trans. Biomed. Eng.  

[12] F. Bardati and S. Iudicello, “Modeling functional imaging of 

breast by microwave radiometry,” ACES Conference, 

Verona, Italy,  pp. 871-875, 19-23 Mar. 2007. 

[13] “The European Protocol for the Quality Control of the 

Physical and Thecnical Aspects of Mammography 

Screening.” CEC Report EUR 14821, 3
rd

 edn 1999. 

http://ikrweb.uni-uenster.de/aqs/Richtlinien  

/qualitaet_mammo/qualitaet_mammo.html 

[14] G . M. J. Van Leeuwen, J. W. Hand, J. B. Van de Kamer, 

and S. Mizushina, “Temperature retrieval algorithm fro 

brain temperature monitoring using microwave brightness 

temperatures,” Electronics Letters, vol. 37, no. 6, pp. 341-2, 

2001. 

[15] COMSOL, www.comsol.com, Version 3.3a. 

[16] A. Samani, J. Bishop, M. J. Yaffe, and B. Plewes, 

“Biomechanical 3-D finite element modeling of the    human 

breast using MRI data,” IEEE Transactions on Medical 

Imaging, vol. 20, no. 4,   pp. 271-279, 2001. 

[17] N. V. Rviter, T. O. Muller, R. Stotzka, H. Gemmeke, J. R. 

Reichenba, and W. A. Kaiser,  “Automatic image  matching 

for breast cancer diagnostics by a 3D deformation model of 

the Mamma,” Biomed. Tech. (Berl), 47 Suppl1 Pt2, pp. 644-

7, 2002. 

[18] P. Pathmanathan, D. Gavaghan, J. Whiteley, S. M. Bredy, 

M. Nash, P. Nielsen, and V. Rajagopal, “Predicting tumor 

location by simulating large deformations of the breast using 

a 3D finite element model and nonlinear elasticity,” Proc. 

MICCAI2004, LNCS3217, Springer-Verlag, pp. 217-224, 

2004. 

[19] V. Rajagopal, P. M. F. Nielsen, and M. P. Nash,   

“Development of a three dimensional finite element model 

of breast mechanics,” Proceedings of the 26th Annual 

70 ACES JOURNAL, VOL. 24, NO. 1, FEBRUARY 2009



International Conference of the IEEE EMBS, San 

Francisco, CA, USA, 1-5 Sept. 2004. 

[20] N. V. Ruiter, R. Stotzka, T. O. Muller, H. Gemmeke, J. R. 

Reichenbach, and W. A. Kaiser, “Model-Based  registration 

of X-Ray Mammograms and MR images of the female 

breast,” IEEE Transactions on Nuclear  Science, vol. 53, 

no. 1, pp. 204-211, Feb. 2006. 

[21] V. Vuskovic and M. Kauer, “In vivo-measurement of elasto 

mechanical properties of soft biological tissue,” in  

European Medical and Biological Engineering Conference, 

Vienna, Austria, 1999. 

[22] R. D. Howe, “Identification of constitutive nonlinear 

constitutive law parameters of breast tissue,” in Summer 

Bioengineering Conference, Vail, Colorado, 22-26 June 

2005. 

[23] N. Ruiter, “Registration of X-Ray Mammograms and MR-

volumes of the female breast based on simulated 

Mammographic deformation.” PhD thesis, pp. 55-74, 

University of Mannehim, 2003. 

[24] D. C. Sullivan, C. A. Beam, S. M. Goodman, and D. L. 

Watt, “Measurement of force applied during   

Mammography,” Radiology, vol. 181, no. 2, pp. 355-357, 

1991.  

[25] P. Wellman, R. D. Howe, E. Dalton, and K. A. Kern, 

“Breast tissue stiffness in compression is correlated to  

histological diagnosis,” Tech. Rep., Harward BioRobotics 

Laboratory, Harward University, Cambridge, Mass, USA, 

1999.  

[26] A. R. Mijar, J. S. Arora, “An Augmented Lagrangian 

optimization method for conact analysis problem, 1: 

formulation and algorithm,” Struct Multidisc Optim, vol. 28, 

pp. 99-112, 2004. 

[27] E. Y. K. Ng and N. M. Sudharsan, “An improved three 

dimensional direct numerical modeling and  thermal analysis 

of a female breast with tumor,” Proc. Instn Mech Engrs, 

vol. 215, no. 1, pp. 25-37, 2001. 

[28] T. Yahara, T. Koga, S. Yoshida, S. Nakagawa, H. Deguchi, 

and K. Shirouzu, “Relationship between microvessel density 

and thermographic hot areas in breast cancer,” Surg Today, 

vol. 33, pp. 243–248, 2003. 

[29] M. Gautherie, Y. Quenneville, and C. M. Gros, “Metabolic 

heat production growth rate and prognosis of early breast 

carcinomas,” Biomedicine, vol. 22, pp. 328–336, 1975. 

[30] W. B. Nickell, J. Skelton, “Breast fat and fallacies: more 

than 100 years of anatomical fantasy,” J of Hum Lact, vol. 

21, no. 2, pp. 126-130, 2005. 

[31] N. A. Lee, H. Rusinek, J. Weinreb, R. Chandra, H. Toth, C. 

Singer, and G. Newstead, “Fatty and Fibroglandular tissue 

volumes in the breast of women 20-83 years old: 

comparison of X-Ray Mammography and computer-assisted 

MR imaging,” AJR, vol. 168, no. 2, pp. 501-6, 1997. 

[32] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric 

properties of biological tissues: II. Measurements in the 

frequency range 10 Hz to 20 GHz ,” Phys. Med. Biol., 

vol.41, no. 41, pp. 2251-2269, 1996. 

[33] X. Li and S. C. Hagness, “A confocal microwave imaging 

algorithm for breast cancer detection,” IEEE Microwave 

Wireless Compon. Lett., vol. 11, no. 3, pp. 130–132, Mar. 

2001. 

[34] M. Lazebnik, L. McCarteney, D. Popovic, C. B. Watkins, 

M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. 

Booske, M. Okoniewsky, and S. C. Hagness, “A large-scale 

study of the ultrawideband microwave dielectric properties 

of normal breast tissue obtained from reduction surgeries,” 

Phys. Med. Biol., vol. 52, pp. 2637-2656, 2007. 

[35] M. Lazebnik, L. McCarteney, D. Popovic, L. McCarteney, 

C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. 

Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, 

J. H. Booske, M. Okoniewsky, and S. C. Hagness, “A large-

scale study of the ultrawideband microwave dielectric 

properties of normal, benign and malignant breast tissues 

obtained from cancer surgeries,” Phys. Med. Biol., vol. 52, 

pp. 6093-6115, 2007. 

[36] B. Bocquet, A. Mamouni, M. Hochedez, J. C. Van de Velde, 

and Y. Leroy, “Visibility of local thermal structures and 

temperature retrieval by microwave radiometry,” Elettronics 

Letters, vol. 22, no. 3, pp. 120–121, 1986. 

[37] P. C. Myers, N. L. Sadowsky, and A. H. Barrett 

“Microwave Thermography: Principles, Methods, and 

Clinical Applications,” J. Microwave Power, vol. 14, no. 2, 

pp. 105-115, 1979. 

[38] D. V. Land, S. M. Fraser, and R. D. Shaw “A review of 

clinical experience of microwave Thermography,” J. Med. 

Eng. Tech., pp. 109-113, 1986. 

[39] S. Mizushina, Y. Hamamura, and T. Sugiura “A three-band 

microwave radiometer system for noninvasive measurement 

of the temperature at various depths,” IEEE MTT-S Digest., 

vol. 86, no. 1,  pp. 759-762, 1986. 

 

 

Santina Iudicello received the M.S. degree in 

medical engineering from the Universita di 

Roma Tor Vergata, Italy, in 2005. She 

currently is a PhD student with interests in the 

microwave and radiofrequency techniques for 

diagnosis and therapy of breast cancer. 

 

 

 

 

Fernando Bardati was born in Rome, Italy, 

in 1941. He received the Laurea in Electronic 

Engineering (in 1965) and the Libera Docenza 

in Microwaves from the University of Rome 

in 1971. He was Assistant/Associate  

Professor of  Electronics and of Electrical 

Measurement at the  Universities of L’Aquila 

and Rome from 1973 to 1985. He currently is 

Full Professor of Electromagnetic Fields at the University  of 

Rome Tor Vergata. In 1995 he was a visiting professor at the 

Oncological  Department of the University of Arizona in Tucson. 

From 1980 he worked in medical applications of microwaves, 

such as antitumoral hyperthermia and the inverse problem of 

microwave radiometry. He has been involved with research in 

electromagnetic field propagation modeling in complex 

environments. His current research is focused on the development 

of a new generation clinical radiometer for temperature 

monitoring during thermal treatments and for early cancer 

diagnosis. 

     

 

71IUDICELLO, BARDATI: FUNCTIONAL IMAGING OF COMPRESSED BREAST BY MICROWAVE RADIOMETRY



Analysis and Estimation of Surge Impedance of Tower 

 
   
1
 M. O. Goni and  

2 
A. Ametani

 

 
1
Dept. of Electronics and Communication Engineering, Khulna University of Engineering and 

Technology, Khulna-9203, Bangladesh. E-mail:osman@ieee.org 
2
Faculty of Engineering, Doshisha University, Kyoto, Japan. E-mail: aametani@mail.doshisha.ac.jp 

         
Abstract −−−− Different mathematical formulas and 

analytical values of surge impedance of communication 

tower including high voltage transmission and 

distribution tower are presented. Those values and 

formulas have been utilized since 1934. Recently, the 

surge impedance of communication tower under the 

influence of direct and indirect lightning hit has drawn a 

lot of attention. Such value of lightning surge impedance 

and its associated parameters are becoming important 

factors for the protection system design in substation as 

well as low voltage communication equipments including 

home appliances.  

 

I. INTRODUCTION 

 

Several models have been proposed to estimate the 

surge impedance of vertical structures (tower), following 

either a transmission line [1-6], a numerical 

electromagnetic [7, 8], or an experimental approach [9-

12], though in some cases, more than one approach is 

used [13-16]. Jordan, in 1934, published one of the 

precursor works in this field [1]. Jordan’s formula to 

calculate the surge impedance of vertical conductors 

remained as the main reference to estimate the transient 

behavior of transmission towers subjected to lightning 

currents until the proposition of new theories in the 1960s 

(e.g.,[2,3]). It was later found that Jordan’s derivation 

contained a mistake and a correction was proposed [17]. 

Recently, the interaction of lightning with elevated 

strike objects has been attracting a lot of attention in the 

scientific community (e.g.,[18-24]). As a consequence, 

the development of simplified models to simulate 

transients in vertical metallic structures has gained 

importance. In this context, the equations and values of 

surge impedance derived theoretically or measured 

experimentally appear to be very promising, because they 

give insightful information for the designing and 

installing protection system against lightning surge.  

This paper presents investigation on surge impedance 

of an elevated structure with simple approximation to the 

shape of structure. Different expressions for the time-

domain surge impedance that are usually adopted for 

characterization of the transient behavior of towers are 

dependent on the excitation waveshape. This paper also 

summarizes the methods of excitation that have been 

considering in a lightning surge analysis by the technical 

community.  

 

II. JORDAN’S ORIGINAL FORMULA FOR 

TOWER SURGE IMPEDANCE 

 

The surge impedance of a tower can be approximated 

by considering the tower as a vertical cylinder having a 

length equal to the height above the ground plane of the 

actual tower, and a radius equal to the mean equivalent 

radius of the actual tower [1]. This equivalent cylinder 

should also be regarded as having its base located at the 

same elevation above the true ground plane as the 

ground-line base of the actual tower. In accordance with 

the theory of images, there should be conceived as 

associated with the equivalent cylinder an identical image 

cylinder located symmetrically with respect to the true 

ground plane. For such a system, it can be shown that the 

inductance of an element dy of the tower equivalent 

cylinder as shown in Fig. 1(b), at an elevation y above the 

true ground plane is, 
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where h = length of tower equivalent cylinder (height of 

tower above ground plane). 

           r = radius of tower equivalent cylinder (mean 

equivalent radius of tower). 

          a = depth of true ground plane below earth’s 

surface. 

Integrating equation (1) between the limits 

ahy +=  and ay = , dividing by h, multiplying by the 

speed of light to convert  from inductance to impedance 

(as , 1 /Z Lc c LC= Ω = = speed of light), and finally 

simplifying, the mean value of surge impedance over the 

cylinder equivalent to tower is, [1] 
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(a)                                            (b) 

 

Fig. 1.  Vertical conductor system. (a) Original system. 

(b) Equivalent representation. 

 

For the special case where the depth of true ground 

plane below the earth’s surface (e.g. a as in Fig. 1(b)) is 

close to zero, then equation (2) reduces to the 

comparatively simple expression, [1] 

 

.6090ln60

6090log2.138 10

Ω−+=
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h

r

r

h

h

r

r

h
Z s

             (3) 

 

The equivalent radius for a complex structure such as 

GSM tower, high voltage transmission tower etc. is 

difficult to compute precisely. At the outset, it is 

necessary to disregard the cross arms, and confine 

attention to the tower mast and hence, the expression, 

perimeter of section 2r π=  offers one method of 

approximating the equivalent radius [1]. Thus for square 

tower sections having a face width A, the equivalent 

radius would be 4 2 0.637r A Aπ= = ; for triangular 

sections with face width A, the equivalent radius would 

be 3 / 2 0.478r A Aπ= = ; and for rectangular sections 

with face widths A and B, the equivalent radius of the 

structure would be 2( ) 2 0.318( )r A B A Bπ= + = + . 

 

III. IEEE/CIGRE FORMULA OF TOWER SURGE 

IMPEDANCE 

 

A number of tower models have been proposed, but 

most of them are not general, i.e., a tower model shows a 

good agreement with a specific case explained in the 

paper where the model is proposed.   

The following IEEE/CIGRE formula of the tower 

surge impedance is well known and is widely adopted in 

a lightning surge simulation [25-26] (Fig. 2), 

    

Ω



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




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











= −

h

R
Z t

1tan5.0cotln60 ,            (4) 

 

 
   

Fig. 2. Tower model proposed by IEEE/CIGRE. 

 

where hhrhrhrR /)( 23211 ++=  is the equivalent radius of 

the tower represented by a truncated cone, h= h1+h2, and 

r1,r2,r3  tower top, midsection and base radii [m], 

h1 height from the midsection to top [m], 

h2 height from base to midsection [m]. 

When the tower is not a cone but a cylinder, then the 

above equation is rewritten by,  

 

Ω





=

r

h
Z t ln60 ,                (5) 

 

where  r is the radius of a cylinder representing a tower. 
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          IV. JORDAN’S REVISED FORMULA 

 

In [1], Jordan introduced the expression given by 

equation (3) to represent the surge impedance of a 

vertical conductor. Although the derivation of equation 

(3) is not entirely available in [1], one can suppose that 

Jordan applied the magnetic vector potential to calculate 

the inductance of a vertical cylinder. The system of     

Fig. 1(a) was equivalently represented as that in Fig. 1(b), 

where i is the current in the real conductor, i
’
 is the 

current in the image conductor, and P0 is a generic point 

with coordinates (x0, y0) where one wish to calculate 

magnetic vector potential A
��

. The parameter a is defined 

by Jordan [1] as the depth of true ground below the 

earth’s surface, which is assumed to be, as in [5], 

conceptually equivalent to the complex skin depth p 

introduced by Deri et al. [27] to represent losses due to 

finite ground conductivity. 

According to the method of images, i and i
’
 must 

have the same direction and sign, as illustrated in        

Fig. 1(b) [28]. Consequently, 
ir AAA += , where 

rA  is the 

magnetic vector potential associated with the real 

conductor, and 
iA  is the magnetic vector potential 

associated with the image conductor. Nevertheless, in the 

derivation of equation (3), Jordan considered the opposite 

sign for the current in the image conductor, and therefore, 

its contribution to the total magnetic vector potential 

became subtractive and not additive, as it should be. 

Consequently, the surge impedance given by equation (3) 

is underestimated. To evaluate the correct value of surge 

impedance of a vertical conductor following Jordan’s 

approach, a new expression is then required. 

Based on the system of coordinates of Fig. 1(b) and 

disregarding propagation effects, one can write the total 

magnetic vector potential at the generic point P0 as, 

y
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where the first integral in the right-hand side term 

corresponds to 
rA , the second integral corresponds to 

iA , and ŷ is the unit vector in the y-axis direction. After 

solving the integrals in equation (6) and knowing that 

idyAdL /= , one can write, 
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where dL is the differential inductance element. Note that 

if 
r i

A A A= −
�� ��� ���

 is incorrectly assumed, equation (7) becomes 

equal to the expression obtained by Jordan to represent 

dL [1].  

To calculate the external inductance L per unit length 

of the vertical conductor, it is necessary to integrate 

equation (7) in the interval haya +≤≤ 0
 , at rx =0

, 

and then to divide the result by h. To simplify, as in [1], 

an infinite ground conductivity is now assumed, making 

0=a  in equation (7). As a result, 
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Equation (8) can be further simplified if rh >> . 

Also if losses are neglected and a transverse 

electromagnetic (TEM) field structure is assumed, the 

surge impedance Zs of the vertical conductor can be 

obtained by multiplying equation (8) by the speed of 

light, resulting in, 

Ω−= 60
4

ln60
r

h
Z s

                   (9) 

which is the same expression obtained by Takahashi [17] 

but in a slightly different derivation. The theoretical 

formula of surge impedance with vertical wave incidence 

derived from Takahashi [17] and validated by Goni et al. 

[29] is,  
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             (10) 

 

And with horizontal wave incidence,  
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which is very close to the empirical formula of Hara et al. 

[9], 
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Also, equation (9) is similar to the expression 

independently derived by Wagner and Hileman [2] to 

calculate the average surge impedance of a vertical 

cylinder that was later modified by Sargent and 

Darveniza [3], reaching the final form, 
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In the derivation of Wagner and Hileman [2], a step 

or rectangular current was assumed to be injected at the 

top of vertical cylinder, and as a consequence, only the 

first term in the right-hand side of the above equation was 

obtained. 

 

V. APPROXIMATION OF LATTICE TOWER 

 

As an alternative to the frequently used cylindrical 

approximation of a steel tower, a conical representation 

has also been used. The use of a cone as a simplification 

of the tower element is not an unrealistic approximation 

as is shown in Fig. 3, where the cylindrical and conical 

representations are compared with the actual tower 

structure. Analyses of the response of these structures 

were performed using field theory concepts and will be 

mentioned in the succeeding sections.   

 

VI. ANALYSIS OF THE SURGE RESPONSE OF A 

CYLINDRICAL TOWER TO A RECTANGULAR 

WAVE OF CURRENT 

 

If Ei is the electric field due to currents at a point at 

any instant, and s is the distance along a curve through 

the point, then, 

∫ ∫ ⋅
∂
∂

−=⋅ ds
t

A
dsE i  

where A is the vector magnetic potential at the point. 

Consider an isolated cylindrical tower of height h 

and radius r normal to a perfectly conducting horizontal 

earth plane as shown in Fig. 4. Consider a rectangular 

wave of current I impressed on the tower at x = 0 at time t 

= 0. Then the surface current density is, 

r

I
J s π2

=  . 

Consider an element dx of the tower as shown in Fig. 

4, then the vector magnetic potential at a point (d, r) is, 
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where dS is the element of surface )( βdrdx ⋅⋅  and r′ is 
the distance from dS to the point (d, r). 

Hence, 
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Note that the expression in brackets is of the form of 

a surge impedance, for rct >> . Thus, following 

Wagner and Hileman, the transient surge impedance, 
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Fig. 3. Comparison of conical and cylindrical 

approximations of steel lattice communication tower. 

 

β βd

 
Fig. 4. Cylindrical tower used in field theory analyses. 
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VII. ANALYSIS OF THE SURGE RESPONSE OF A 

CYLINDRICAL TOWER TO A RAMP WAVE OF 

CURRENT, I = KT 

 

Consider the cylindrical tower of Fig. 4, with a ramp 

current wave impressed at x = 0 at time t = 0. Then the 

time retarded, surface current density is, 
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Using the nomenclature defined in Fig. 4 the vector 

magnetic potential at a point (d, r) is, 
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Integrating the electric field due to currents over the 

height of the cylinder, and for rct >>  
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Again the term in brackets is of the form of a surge 

impedance. Hence the transient surge impedance of a 

cylindrical tower, derived by Sargent and Darveniza for a 

ramp current wave impressed, may be defined as, 
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VIII. ANALYSIS OF THE SURGE RESPONSE OF 

A CONICAL TOWER 

 

The conventional double-circuit steel lattice tower 

can be conveniently approximated by a right cone of 

appropriate half-angle. 

Consider a conical tower of height h and half-angle 

θ, as shown in Fig. 5. A rectangular wave of current is 

impressed at the tower top (x = 0) at time t = 0, and 

consider an element of the tower at x (measured in a 

vertical direction) from the tower top. It is necessary to 

determine the vector magnetic potential at a general point 

(d, r) on the cone. 

Consider the contribution δA to the vector 

magnetic potential at (d, r) of an element (du, dβ) as 

shown in Fig. 5. Then, 
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Therefore the vector magnetic potential at (d, r), in 

the direction of the unit vector û is, 
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Fig. 5. Conical tower used in field theory analyses. 

 

 

The expression in above braces is of the form of a 

surge impedance. Hence the transient surge impedance of 

a cone is defined as, 

 

                ( )./2ln60 SZ =                           (15) 

 

where S is the sine of the half-angle of the cone. This 

equation provides realistic estimates of the surge 

impedance of a steel lattice tower because it is in 

excellent agreement, both in magnitude and time-

invariance characteristics, with values measured 

experimentally using geometric model technique [3]. 
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IX. CONCLUSION 

 

Different equations to calculate the surge impedance 

of vertical conductors including lattice tower are analyzed 

starting with Jordan’s original formula. The performed 

analyses indicate that Jordan’s revised formula is more 

than adequate to simulate electromagnetic transients in 

vertical conductors than the Jordan’s original formula. 

Furthermore, the value of surge impedance depends on 

the shape of triggered lightning current pulse. The 

validity of the Jordan’s equation has been tested by the 

well-known recent experimental and other analytical 

results mentioned in Table 1. 

The investigation reported here several ways to evaluate 

and compare the surge impedance of complex structure 

which is of greater interests for practical applications and 

future developments for insulation coordination and 

protection system designing. 

 

Table 1. Comparison of analytical values of surge 

impedance of steel lattice communication tower. 
 

Source 

Technique 

or 

Equation 

Tower 

Representati

on 

Current 

Waveshape 

Surge 

Impedance 

Jordan 

 

equation 

(3) 

cylinder 

 

any 

 
125 

IEEE/CIGRE 
equation 

(5) 
cylinder ramp 179 

Revised 

Jordan’s 

Formula 

equation 
(9) 

 

cylinder 
step 
 

201 
 

Takahashi 

equation 
(10) 

 

cylinder 

 

step( vertical 

injection) 
148 

Takahashi 

equation 
(11) 

 

cylinder 

 

Step 
(horizontal 

injection) 

122 

Hara et al. 

equation 

(12) 
 

cylinder 

 

Step(horizont

al injection) 

121 

 

Wagner and 

Hileman 

equation 

(13) 
 

cylinder 

 
Step 240 

Sargent and 

Darveniza 

equation 

(14) 

 

cylinder 
 

ramp and 

double 

exponential 

180 

Sargent and 

Darveniza 

equation 
(15) 

cone any 130—150 
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