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Abstract – This paper contains a review of the FDTD
algorithm as applied to the time-dependent Schrödinger
equation, and the basic update equations are derived
in their standard form. A simple absorbing boundary
condition is formulated and shown to be effective with
narrowband wave functions. The stability criterion is
derived from a simple, novel perspective and found to
give better efficiency than earlier attempts. Finally, the
idea of probability current is introduced for the first time
and shown how it can be used to radiate new probability
into a simulation domain. This removes the need to
define an initial-valued wave function, and the concept is
demonstrated by measuring the transmission coefficient
through a potential barrier.

I. INTRODUCTION

Most electrical engineers are already familiar with
the Finite-Difference Time-Domain (FDTD) algorithm as
a popular tool for simulating the progression of time-
dependent Maxwell equations. However, as the push for
miniaturization brings us closer to the realm of nanoscale
devices, Maxwell’s equations can no longer be relied upon
to provide useful insight. Nanoscale integrated circuits,
quantum computers, and solid-state devices are just a few
of the emerging electronic technologies that cannot be un-
derstood using classical electromagnetic theory. Instead,
we must delve into the realm of quantum mechanics,
where the laws of physics are more correctly governed
by the Schrödinger equation. It will therefore be useful
for electrical engineers to gain a deeper understanding of
the Schrödinger equation, as well as develop a rigorous
set of software tools for simulating the time-development
of complex quantum systems. In particular, FDTD is a
well-suited tool for this task, and can be easily modified
for quantum simulation.

The first attempt to create a working FDTD algo-
rithm for the Schrödinger equation was published by
Goldberg et. al. in 1967 [1], but remained relatively
obscure for many years. After 1990, the topic began to
receive greater attention in the literature [2–4], most of
which has been based on the Crank-Nicholson scheme.

In 2004, Soriano et. al. rigorously formulated a more
efficient FDTD algorithm and dubbed it ”FDTD-Q” in
order to distinguish its application for quantum systems
[5]. Meanwhile, quantum FDTD has already been used for
many practical applications such as numerical simulation
of quantum dots [6] and the time-progression of quantum
logic gates [7].

Despite the recent activities surrounding FDTD-Q,
the number of publications on the topic are a tiny fraction
of what has been devoted to Maxwell’s equations. Further-
more, many subtle nuances inherent to the Schrödinger
equation tend to emerge when an FDTD-Q is applied.
Thus, the goal of this paper is to review the basic FDTD-Q
algorithm and to introduce new topics for future research.
It is assumed that the reader is reasonably familiar with
the Maxwellian FDTD, and so little time needs to be
spent on the minor details and terminology. It is further
assumed that the reader is at least familiar with basic
quantum theory, though the more important expressions
are reviewed in section II. For a more complete study of
quantum mechanics, the reader is referred to [8] and [9].

The basic update equations of the FDTD-Q algorithm
are derived in section III, and the information here is
similar to what can be found in [5]. The issue of numer-
ical stability is discussed in section IV, and the critical
time step is derived from a unique, and hopefully more
intuitive, perspective from that given by [10]. A Mur
absorbing boundary condition is studied in section V,
after which a simple example of quantum tunneling is
simulated in section VI. Finally, we will introduce the
novel concept of probability currents in section VII and
show how they can be used to inject plane waves into a
quantum simulation domain.

II. BACKGROUND

Just as Maxwell’s equations are fundamental to all of
electromagnetics, the Schrödinger equation is fundamen-
tal to all of quantum mechanics. The three-dimensional,
time-dependent Schrödinger equation is therefore given
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as [8],

jh̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) (1)

where ψ(r, t) is the wave function at position r and time
t, V (r) is the potential function, m is the particle mass,
and h̄ is the reduced Planck’s constant. Although ψ(r, t)
is not a physically measurable quantity, it is necessary in
order to compute the function ρ(r, t) defined by,

ρ(r, t) = ψ∗(r, t)ψ(r, t) = |ψ(r, t)|2 . (2)

The interpretation of ρ is that of a time-varying
probability density function (pdf) for the position of the
particle. Thus, the total probability P of finding the
particle in some volume V is found by integrating ρ over
all points within that volume, [8]

P =
∫

V

ρ(r, t)dr . (3)

Due to this probabilistic interpretation, the wave
function must be normalized so that integration of ρ over
all space produces a value of 1. It also serves to emphasize
how the wave-particle duality of nature is really only
an expression of how the positional pdf of a particle is
governed by a wave-like equation.

The wavenumber amplitude φ(k) is defined by the
Fourier transform of ψ at t = 0. In three dimensions, this
is given by, [8]

φ(k) =
1

(2π)3/2

∫ +∞

−∞
ψ(r, 0)e−jk·rdr (4)

where k is the wave-vector. In particular, k is important
because it tells us the particle’s momentum, which is
given by p = h̄k. The function φ, like ψ, is not directly
observable, but is only used to compute the pdf defined by
|φ(k)|2. This quantity represents the probability density
of detecting the wave-vector k after a given experiment.
Thus, like before, the total probability Pk of detecting
some wave-vector (or equivalently, some momentum)
within the volume Vk (in k-space) is found by, [8]

Pk =
∫

Vk

|φ(k)|2 dk . (5)

From this interpretation, it is clear that the Heisenberg
uncertainty principle is merely a result of the Fourier
relationship between probabilities in position-space and
momentum-space. In other words, any restriction of vari-
ance within one domain will inevitably increase variance
within the other.

III. UPDATE EQUATIONS

This next section parallels the derivations found in
[4, 5], but with more explicit detail and clarification. We
begin by noting that complex-valued arithmetic can be
numerically costly, so it is helpful to first break up the

wave function into real and imaginary components such
that,

ψ(r, t) = ψR(r, t) + j ψI(r, t) . (6)

This step allows us to treat each component sepa-
rately and perform only real-valued computations with
each function. Plugging the real and imaginary compo-
nents back into the Schrödinger equation thus produces
two coupled partial differential equations of the form,

h̄
∂ψR(r, t)

∂t
= − h̄2

2m
∇2ψI(r, t) + V (r)ψI(r, t) (7)

h̄
∂ψI(r, t)

∂t
= +

h̄2

2m
∇2ψR(r, t)− V (r)ψR(r, t) .(8)

The next step is to define a mesh that discretely
samples grid points in space and time. Using the standard
FDTD notation for grid spacings of ∆x, ∆y, ∆z, and time
spacings of ∆t, this gives,

xi = i∆x (9)
yj = j∆y , (10)
zk = k∆z , (11)
tn = n∆t . (12)

Note that in this context, j is not to be confused with
the imaginary unit

√
−1 as implied by equation (1), nor

is k to be confused with the particle wavenumber. We
next define a short-hand notation for the wave function
evaluated at the mesh points. This is given by,

ψR(xi, yj , zk, tn) = ψn
R(i, j, k) (13)

ψI(xi, yj , zk, tn) = ψn
I (i, j, k) . (14)

With the wave function sampled on a discrete grid,
the derivatives will now be approximated by using finite-
differences. For convenience, it helps to define the imag-
inary part of the wave function to exist at half-step time
intervals from the real part. This is analogous to the way
E-fields and H-fields are placed at half-step intervals in
conventional FDTD because it facilitates the use of the
central-difference method for the time derivatives. Thus,
the time derivatives on the real- and imaginary-valued
wave functions are approximated by,

∂

∂t
ψ

n+1/2
R (i, j, k) ≈

ψn+1
R (i, j, k)− ψn

R(i, j, k)
∆t

(15)

∂

∂t
ψn

I (i, j, k) ≈
ψ

n+1/2
I (i, j, k)− ψn−1/2

I (i, j, k)
∆t

.

(16)

Similarly, we apply a central-difference on the spatial
derivative to obtain the well-known approximation to the
second-partial, given by,

∂2

∂x2
ψn

R(i, j, k) ≈

ψn
R(i+ 1, j, k)− 2ψn

R(i, j, k) + ψn
R(i− 1, j, k)

∆x2

(17)
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with a similar expression for all other spatial derivatives.
Plugging these approximations back into equations (7)
and (8) and solving for the update equations then gives
the formulation as given by [5], which is,

ψn+1
R (i, j, k) = ψn

R(i, j, k)

− cx

[
ψ

n+1/2
I (i+ 1, j, k) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i− 1, j, k)

]
− cy

[
ψ

n+1/2
I (i, j + 1, k) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i, j − 1, k)

]
− cz

[
ψ

n+1/2
I (i, j, k + 1) − 2 ψn+1/2

I (i, j, k)

+ ψ
n+1/2
I (i, j, k − 1)

]
+ cvV (i, j, k)ψn+1/2

I (i, j,k)
(18)

for the real part, and

ψ
n+1/2
I (i, j, k) = ψ

n−1/2
I (i, j, k)

+ cx [ψn
R(i+ 1, j, k)− 2ψn

R(i, j, k) + ψn
R(i− 1, j, k)]

+ cy [ψn
R(i, j + 1, k)− 2ψn

R(i, j, k) + ψn
R(i, j − 1, k)]

+ cz [ψn
R(i, j, k + 1)− 2ψn

R(i, j, k) + ψn
R(i, j, k − 1)]

− cv V (i, j, k)ψn
R(i, j, k) ,

(19)

for the imaginary part. The constant coefficients are given
by,

cx =
h̄∆t

2m∆x2
(20)

cy =
h̄∆t

2m∆y2
, (21)

cz =
h̄∆t

2m∆z2
, (22)

cv =
∆t
h̄

. (23)

From this point on, FDTD-Q is performed exactly
the same as the Maxwellian FDTD. That is, an iterative
loop solves for the state of the system at incremental time
steps and ”leap-frogs” between the real and imaginary
components. Between each increment, the appropriate
boundary conditions are applied.

It is interesting to compare the similarities between
the Schrödinger and Maxwellian FDTD algorithms. For
example, the real and imaginary wave functions are some-
what analogous to the electric and magnetic fields in the
way they couple together in space and time. However,
because of the second-order spatial derivatives, the real
and imaginary wave functions can both exist at the same
spatial grid point. Compare this with the Maxwellian
FDTD, where the first-order derivatives require the elec-
tric and magnetic field stencils to be defined at half-step
increments from each other in both space and time.

IV. STABILITY

The critical time step for stable FDTD-Q simulation
was first derived by Soriano et. al. in 2004 by using
an argument based on the ”growth factor” of the wave
function eigenvalues [5]. In 2005, Dai et. al. re-derived
the stability criterion from the perspective of accumulated
numerical error, and arrived at a similar, but more correct,
solution [10]. This next section offers a third derivation
that simply preserves the natural bounds of the wave
function, and provides a more complete result than either
[5] or [10]. For simplicity, the derivation is limited to one
dimension and then briefly extended to three.

Suppose the potential function is a constant value
such that V (x) = V0. Solutions to the Schrödinger
equation then take on the form of free particles with wave
functions given by,

ψ(x, t) = α1e
j(kx−ωt) + α2e

j(kx+ωt) (24)

where k is the particle wavenumber and ω is the angular
frequency. Without any loss of generality, consider the
simple case of a free particle traveling to the right where
α1 = 1 and α2 = 0. The real and imaginary components
are then simply,

ψR(x, t) = cos(kx− ωt) (25)
ψI(x, t) = sin(kx− ωt) . (26)

In terms of the FDTD stencil, these can be written
as,

ψn
R(i) = cos(ki∆x− ωn∆t) , (27)
ψn

I (i) = sin(ki∆x− ωn∆t) . (28)

For convenience, let us now define A = ki∆x −
ωn∆t so that,

ψn
R(i) = cos(A) (29)
ψn

I (i) = sin(A) . (30)

Furthermore, define the constants B = k∆x and C =
ω∆t so that,

ψn+1
R (i) = cos(A− C) (31)

ψ
n+1/2
I (i) = sin(A− C/2) , (32)

ψ
n+1/2
I (i+ 1) = sin(A+B − C/2) , (33)

ψ
n+1/2
I (i− 1) = sin(A−B − C/2) . (34)

Next, substitute equations (29) to (34) back into
equation (18) to find,

cos(A− C) =− cx [ sin(A+B − C/2)
− 2 sin(A− C/2)
+ sin(A−B − C/2)]

+ cvV0 sin(A− C/2) + cos(A) . (35)

The importance of equation (35) is that it places
constraints on the available choices for cx and cv . If these
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constants are not properly defined, then equation (35) can
not be satisfied with real values for A, B, or C. As a
result, numerical error quickly accumulates and the wave
function increases without bound.

In order to maintain a stable simulation, it is neces-
sary to choose the constants cx and cv such that equation
(35) is satisfied by only real values of A, B, and C. The
simplest way to do this is by choosing a time step ∆t
that prevents the right-hand side from ever exceeding the
natural bounds of the left-hand side. In other words, we
must enforce the condition that,

−1 ≤ cos(A− C) ≤ 1 . (36)

After applying this restriction to the right-hand side
of equation (35), we find that cx and cv are limited by
the extreme values of their multiplicative factors. For
the positive bound of equation (36), this leads us to the
expression,

4cx + cvV0 ≤ 2 (37)

or equivalently

2h̄∆t
m∆x2

+
∆tV0

h̄
≤ 2 . (38)

Finally, solve for ∆t to find,

∆t ≤ h̄
h̄2

m∆x2 + V0
2

. (39)

The upper bound on ∆t is called the critical time
step, ∆tc, and represents the maximum allowable time
increment that will maintain a stable simulation [5]. It is
also the same result that is found by exploring the lower
bound of equation (36) instead of the upper.

In the event that V (x) is not a constant value,
then equation (39) is still true for sectionally constant
potentials, even if those potentials are only one grid point
in size. As a result, every point in the domain essentially
has its own limit for ∆t, and a stable simulation is
guaranteed only by ensuring that equation (39) is satisfied
over all points within the simulation. Thus, the maximum
allowable time step over a varying potential region V (x)
is found by,

∆tc = arg min
x

[
h̄

h̄2

m∆x2 + V (x)
2

]
. (40)

If one follows the above derivation in three dimen-
sions, it is straightforward to show that equation (37) will
be rewritten into,

4(cx + cy + cz) + cvV (r) ≤ 2 (41)

solving for the critical time step therefore yields,

∆t = arg min
r

 h̄

h̄2

m

(
1

∆x2 + 1
∆y2 + 1

∆z2

)
+ V (r)

2

 .

(42)

For comparison, the expression in equation (42) is
nearly identical to that given by [5], except there is now
a factor of 1/2 which divides V in the denominator. This
can make a significant difference for simulations where
V is large in comparison to h̄2/m∆x2.

The result in equation (42) is also similar to that given
by Dai et. al. in [10], except for two key differences. First
is the argument that the inequality of equation (42) should
be limited to a less-than relation (<), and that inclusion of
the upper bound does not necessarily guarantee stability.
Fortunately, numerical truncation within a computer’s
memory will always set ∆t to some value slightly smaller
than its exact mathematical assignment. As a result, there
is little practical difference in distinguishing between the
(<) and (≤) relations.

The second key difference in [10] is a replacement
of V (r) with |V (r)|, that is, all potentials are treated
as positive values. For the case of a positive-definite V ,
this makes no difference and the two formulations are
equivalent. However, for the case of negative potentials,
∆tc actually gets larger, and therefore does not influence
the minimum time step over a simulation domain. So even
though the formulation in [10] is certainly guaranteed to
be stable, it does not necessarily provide one with the
maximum stable value.

Interestingly, the critical time step seems to approach
infinity as V/2 → −h̄2/m∆x2 and stable simulation is
easily demonstrated for relatively large values of ∆tc.
Indeed, it may even be possible to exploit this effect
for faster quantum simulations. It remains unclear, how-
ever, what sort of trade-offs one incurs by pushing the
limits of very large time steps in a domain of all-
negative potentials. Experiments also demonstrate that for
V < −h̄2/m∆x2, the expression in equation (42) no
longer provides stability, while the formulation in [10] still
remains valid. Such behavior has yet to be fully analyzed,
and a general expression for the maximum stable time step
over all possible V remains unknown.

V. ABSORBING BOUNDARY CONDITIONS
(ABCS)

Because of the nonlinear dispersion relation that
arises from the Schrödinger equation, absorbing boundary
conditions (ABCs) can be difficult to implement. The
problem was first addressed by Shibata in 1991 [2], and
then expanded upon by Kuska in 1992 [3]. Both solutions
worked by devising a linear approximation to the disper-
sion relation and then formulating a corresponding partial
differential equation to enforce at the boundaries. The
problem was further addressed and formalized by Arnold
et. al. [11], and has even been expanded by others to
include the nonlinear Schrödinger equation [12]. To date,
however, all of these formulations have been based on
the Crank-Nicholson discritization, and none have been
demonstrated in the FDTD-Q formulation of equations
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(18) and (19). Therefore, this next section will introduce
a simple ABC that is compatible with FDTD-Q.

The simplest ABC is the first-order Mur condition,
which enforces a one-way wave equation at the bound-
aries. For a plane-wave traveling to the right in one
dimension, this is given by, [13]

∂

∂x
ψ(x, t) = − 1

vp

∂

∂t
ψ(x, t) (43)

where vp is the phase velocity of the wave impinging at
the boundary. As an example, we will consider the right-
most boundary where i = L, though the end result is
perfectly analogous at all other boundaries.

Solving for the update equations at the far-right grid
point gives the familiar formulation, [13]

ψn+1
R (L) = ψn

R(L− 1) + r
[
ψn+1

R (L− 1)− ψn
R(L)

]
(44)

for the real part, and,

ψ
n+1/2
I (L) = ψ

n−1/2
I (L− 1)

+ r
[
ψ

n+1/2
I (L− 1)− ψn−1/2

I (L)
]
(45)

for the imaginary part, with the constant r given by,

r =
vp∆t−∆x
vp∆t+ ∆x

. (46)

By definition, the phase velocity is vp = ω/k, where
ω is the angular frequency of the wave. The dispersion
relation between ω and k is given by [2]

h̄k =
√

2m(h̄ω − V ) . (47)

Next, we note that the expression h̄ω represents the
total energy E = K+V of the particle. Back substitution
therefore yields,

vp =
h̄ω√

2m(h̄ω − V )
=
K + V√

2mK
. (48)

It is worthwhile to note how equations (44) and
(45) are very similar to the classical Mur boundary of
Maxwell’s equations. The main difference, however, is
that both ψR and ψI exist at the same grid point, while
E and H typically are defined at half-step increments. As
a result, the classical Mur ABC is only applied to the field
that exists at the boundary, which is either E or H , but
never both. Since both ψR and ψI exist at the boundary,
the ABC must be applied to both quantities after each
iteration of FDTD-Q.

Although the Mur ABC is relatively simple to im-
plement, it suffers from several major trade-offs. The
first is that performance diminishes with steep angles of
incidence, which is a well-known limitation from classical
FDTD. For simple simulations in one-dimension, this is
generally not a concern since all waves impinge perpen-
dicularly to the boundaries. In two or three dimensions,
however, the problem is much more significant.

A second problem arises from the fact that phase
velocity vp of a quantum wave packet varies with ω. As
a result, equations (44) and (45) exhibit a band-limited
response. This requires the user to manually ”tune” the
Mur boundary around some given center frequency. It
also means that wideband wave packets will exhibit
significantly greater reflection than narrowband packets.
For the case where V > 0, a local minimum actually
appears in vp at K = V , and the Mur ABC performs
best around this value. However, for regions where the
slope of vp is very large, the ABC performance diminishes
accordingly.

Despite its complex behavior, the simple Mur ABC
can still perform reasonably well under practical con-
ditions. To demonstrate, we generated a Gaussian wave
packet with a mean kinetic energy of K0 = 500 eV and
a standard deviation of 2.0 Å. The packet was placed
in a domain of V = 0 potential and directed against
a tunable boundary centered at the variable energy K.
Figure 1 shows a demonstration of this. If we neglect
the slight spectral variance that comes from using a
Gaussian envelope, the total remaining probability after
the packet collides with the boundary is a fair measure
of the reflection coefficient. As demonstrated in Fig. 2, a
properly tuned boundary still provides as much as 35 dB
of return loss on a Gaussian wave packet.

Fig. 1. Four snapshots of a Gaussian wave packet as it is
absorbed by the simple Mur boundary. The mean particle
energy is 500 eV and the boundary is ”tuned” to the same
value.

Finally, a word of warning must be noted for bound-
aries where V < 0. Under the condition K < |V |, ω takes
on a negative value, thereby forcing vp to be negative as
well. This means the Mur ABC actually requires waves
to enter the simulation from the boundaries instead of
leave. As a result, numerical error quickly accumulates
and destabilizes the simulation.

VI. EXAMPLE: QUANTUM TUNNELING

One of the more interesting predictions of quantum
mechanics is that a particle can penetrate through a
potential barrier of greater height than the particle’s ki-
netic energy. This phenomenon, called tunneling, is easily
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Fig. 2. Reflection coefficient of a one-dimensional
Gaussian wave packet with mean kinetic energy K0 as
it reflects from a Mur absorbing boundary tuned for K.

demonstrated by FDTD-Q. It is not difficult to imagine
how this could become a serious issue in the realm
of modern micro-electronics. For example, the potential
barrier separating the gate and source of a transistor is just
such a system. If the leakage current were significantly
affected by tunneling electrons, then quantum mechanics
would be the only means of understanding the problem.

To begin, we define an initial value for the wave
packet to represent a free particle traveling to the right,
and then localize it in space by multiplying with a
Gaussian envelope. For a potential barrier of thickness 2a,
the potential function is simply defined as V (x) = V0,
where −a ≤ x ≤ a and V0 is some potential energy
greater than K.

Figure 3 shows a simulated demonstration of just
such a system. A particle with kinetic energy of K =
500 eV is sent towards a potential barrier with V0 =
600 eV. The grid step size is fixed at dx = 0.005 Å,
and the barrier thickness is set to 2a = 0.25 Å, or 50
grid points. The simulation domain consists of 3000 grid
points. The figure shows four snapshots of the simulation
as it progresses in time. As the particle collides with the
potential barrier, some of the wave function is able to
penetrate through while the rest is reflected. In the end,
there is a finite probability for the particle to be found
on the right side of the barrier, even though the barrier is
greater than the kinetic energy of the particle.

A useful metric for characterizing a system such as
this is the transmission coefficient T , which is defined as
the probability that an incident particle will tunnel through
the barrier. This is calculated by integrating ρ along all
points to the right of the boundary and then dividing by
the total probability of the system,

T =

∫∞
a
ρ(x)dx∫∞

−∞ ρ(x)dx
. (49)

Note that if the wave packet is properly normalized,
the denominator is identically 1. The result of this com-
putation is a value of T = 0.1701, which is only 1.5%

Fig. 3. Snapshots of a wave packet ρ as it collides with
a potential barrier. The particle has a kinetic energy of
500 eV and the potential barrier is 600 eV. The thickness
of the barrier is only 0.25 Å (50 grid points), so some
of the probability penetrates to the other side.

of error from its theoretical value of 0.1676 (see equation
(6.14) in [8]).

VII. PROBABILITY CURRENT SOURCES

A useful area of research that has yet to be explored
is the idea of probability sources. To date, simulations
involving FDTD-Q have always required an initial-valued
wave function to be pre-inserted into the domain at t = 0.
If one is willing to forgo conservation and normalization
of probability, then it is possible to inject probability into
a simulation domain via probability ”currents.” Physically,
the situation is analogous to the way electric currents
radiate new electric fields. The benefit of such currents
would be the potential to generate a true plane wave of
probability, and would greatly facilitate the measurement
of scattering parameters with complex potentials.

Mathematically, the injection of probability into a
simulation domain can be achieved by simply introducing
a source term into the Schrödinger equation. This is
analogous to the use of ”soft” current sources in the clas-
sical Maxwellian FDTD. Thus, if we define the complex-
valued injection current J(r, t) = JR(r, t) + jJI(r, t) to
represent a source of new probability, then equation (1)
can be modified as,

jh̄
∂ψ(r, t)
∂t

= − h̄2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + J(r, t) .

(50)
After following the derivation through to the update

equations, the only difference will be the addition of
source terms onto the ends of equations (18) and (19),
or more specifically,

ψn+1
R (i, j, k) = ... + cvJ

n+1/2
I (i, j, k) (51)

ψ
n+1/2
I (i, j, k) = ... − cvJ

n
R(i, j, k) . (52)
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Figure 4 demonstrates the injection principle by sim-
ulating a real-valued, sinusoidal current at the center of an
empty domain. As can be seen, what begins as an empty
region of space quickly fills with probability as the wave
function propagates away from the source. Because of the
high-frequency content that is inherent to any transient
function, ρ exhibits some natural amount of ringing after
the current is suddenly introduced, and significant ripples
tend to remain even long after the transients have settled
down. To lessen this effect, the current source was padded
with an exponential rise time, which also reduces the
amount reflection at the band-limited ABCs.

Fig. 4. Snapshots of ρ as it propagates away from the
current source located in the center.

A very useful application of probability currents can
be seen in Fig. 5, which demonstrates the same 600 eV
barrier as that in Fig. 3. This time, instead of pre-
inserting a Gaussian wave packet, a current source of
the same wavenumber was inserted next to the barrier.
The result is a genuine plane-wave of probability that
impinges on the boundary and tunnels through. Also note
the fringe pattern between the current source and the
barrier. This is simply the result of interference between
the forward wave and the reflected wave, and is analogous
to the standing wave that develops on a transmission line
with a mismatched load. The reflected wave then passes
harmlessly through the current source and gets absorbed
by the left boundary. The transmitted wave is likewise
absorbed by the right boundary, and the steady-state result
is a relatively smooth, constant amplitude to the right of
the barrier.

The transmission coefficient of this system is found
by first computing the average probability amplitude to
the right of the boundary, and then dividing by the average
amplitude that occurs in the absence of the barrier,

T =

∫∞
a
ρ(x)dx |barrier∫∞

a
ρ(x)dx |space

. (53)

Using this method, the computed value is T = 0.160,

Fig. 5. A plane wave radiates away from the probability
source at the left of the barrier. The wave collides with the
potential barrier and partially transmits through. The rest
of the wave reflects back towards the source and interferes
with the forward-traveling wave, causing the fringes.

which is still only 4.8% error. The main benefit to this
method, however, is that the full Gaussian packet does
not need to be initialized into the grid, thereby reducing
the necessary size of the simulation domain. Even when
calculated on a domain of one-fifth the size (600 points),
the result does not change by more than 0.1 %. Figure
6 shows the relative performance of this method against
the analytical values for a varying barrier width. For a
domain size of only 600 points, the mean error over the
entire test range is only 3.43 %.

Fig. 6. Comparison of transmission coefficients for a
potential barrier of varying size. Using the probability
current source method, the mean error is 3.43 %.

VIII. CONCLUSIONS

This paper contains a review of FDTD-Q as applied
to the time-dependent Schrödinger equation. The basic
update equations have been derived in their standard form
as presented in [5]. The stability criterion was rederived
from a novel perspective and found to give larger stable
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time steps than that given by [10]. A simple absorbing
boundary condition was also formulated and shown to
be effective with narrowband wave functions. Finally, the
idea of probability currents was introduced for the first
time and shown how it can be used to inject probability
into a simulation domain.

Most of the topic of FDTD-Q is still relatively
unexplored, and many interesting avenues have yet to be
researched. For example, broadband absorbing boundaries
have certainly been rigorously applied to various quantum
simulations [2, 3, 12, 14], but none have yet to be tailored
specifically to FDTD-Q in its above formulation. The idea
of probability currents is also an entirely new concept, and
there is still a great deal of exploration left to be done.
In particular, probability currents can be used to create
genuine plane waves of probability, thereby removing the
need for pre-initialized wave packets in the simulation.
One can also imagine other uses for current sources, such
as quantum beamforming or bistatic scattering, but these
topics have yet to be researched.
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