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Abstract – This paper proposes a modification of the
hybrid Taguchi-genetic algorithm (HTGA) for solving
global numerical optimization problems with continuous
variables. The HTGA is a method that combines a
conventional genetic algorithm (CGA), which has a
powerful global exploration capability, with the Taguchi
method, which can exploit the optimum offspring. The
Taguchi method is utilized in the HTGA to help in
selecting the best genes in the crossover operations. The
new implementation proposed in this paper (nHTGA)
involves producing, at each generation, a single offspring
by Taguchi method, one of its parents being the best
individual found so far, instead of repeatedly applying
Taguchi to generate several individuals with both parents
selected at random as HTGA does. Moreover, the
efficiency of the algorithm is enhanced by only crossing
via Taguchi individuals with a high enough number of
different genes. The performance of the proposed HTGA
is assessed by solving several benchmark problems of
global optimization with large number of dimensions and
very large numbers of local minima. The computational
experiments show that the new algorithm causes a
reduction, sometimes drastic, in the number of function
calls, i.e. in computational time, for all the benchmark
problems proposed. As an example of application of this
novel algorithm to a real-world problem, the optimization
of an ultra-broadband zigzag log-periodic antenna is
carried out and discussed.

Keywords: Genetic algorithm, numerical optimization,
Taguchi method, log-periodic antenas, zig-zag antenas.

I. INTRODUCTION

Genetic algorithms (GAs) [1] have come a long
way toward solving optimization problems [2] where
conventional optimization methods fail, such as system
identification [3], design [4–7], scheduling [8], routing
[9], control [10, 11], and others [12]. The GAs have been
demonstrated to be robust stochastic search and optimiza-
tion techniques. These algorithms are a type of evolution-
ary algorithms based on Darwin’s theory of evolution.

In GA, a population of Npop individuals (trial solutions)
evolve in parallel by means of selection of the fittest
individuals, crossover and mutation of genes. Because
of its implicit parallelism [2], and a reasonable tradeoff
between global and local search abilities, the GAs are
considered to be robust global optimization algorithms.
However, one obstacle when applying GAs to optimize
complex problems where the evaluation of functions is
computationally intensive is the high computational cost
due to their slow convergence rate.

Many efforts have been dedicated to accelerate the
convergence of GAs, such as studying optimal crossover
and mutation rates or selecting appropriate genetic op-
erators [13]. More recently, new algorithms combining
GAs with local searchers have been proposed to improve
the performance of GAs on global optimization problems
[14–17]. In particular, Tsai et. al. presented a hybrid al-
gorithm, called HTGA, which combines the conventional
GA (CGA) [2] with the Taguchi method by inserting a
Taguchi-method-based crossover between crossover and
mutation operators [17]. The Taguchi method selects two
random individuals from offspring already resulting from
crossover and recombines them, creating a single individ-
ual via an orthogonal array experiment. The systematic
reasoning ability of the Taguchi method helps to select
the best genes to achieve the crossover, and consequently
enhance the genetic algorithm. The process is repeated
until the expected population size is met. The hybrid
method was demonstrated to be more robust, statistically
sound, and quickly convergent than the ones proposed
previously in [14–16].

In this paper, a new implementation of the HTGA
is proposed. The new hybrid method, named nHTGA, is
based on the hypothesis that two low-quality parents have
little chance of beating, by crossover and mutation, the
best individual found so far. Therefore, the offspring of
two of the worst individuals in the population resulting
from an orthogonal array experiment will be, in most
cases, a low-quality individual, resulting in a waste of
function calls, i.e. a waste of computational time. To
avoid this, we propose some modifications of the HTGA
code. The main one is that, at each generation of the
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GA process, only one of the new offspring is produced
via Taguchi method, the best individual found so far
being one of its parents. With this, we expect to save
computational resources as we avoid useless matrix ex-
periments between individuals whose offspring don’t have
much chance of improving the performance of the best
individual in the population. Moreover, the number of
experiments needed to find the optimal solution in the
whole nHTGA process is further reduced by requiring a
certain degree of diversity of the two chromosomes to be
mated via Taguchi method.

This paper is organized as follows. Section II briefly
describes the Taguchi method, the fundamentals of the
nHTGA and compares the performance of the new algo-
rithm with that of HTGA and that of other algorithms
frequently used in engineering applications. As an ex-
ample of application, in Section III the nHTGA is used
to optimize the performance of a log-periodic thin-wire
antenna.

II. THE NHTGA

A. The Taguchi Method
The Taguchi method is a robust design approach

based on improving the quality of a product by mini-
mizing the effect of the causes of variation without elim-
inating the causes [18]. Two major tools are used in the
Taguchi method, orthogonal arrays (OAs) and the signal-
to-noise ratio (SNR). In laboratory experimentation, OAs
are used for determining which combinations of factor
levels to use for each experimental run and for analyzing
the data. OAs are matrixes of numbers arranged in rows
and columns where a row represents the level of all factors
in a given experiment, and a column represents the values
assigned to a specific factor in the various experiments.
The array is called orthogonal because columns can be
evaluated independently of one another.

In this paper, we will work with two-level OA whose
general nomenclature is Ln(2n−1) where n is the number
of experimental runs, n-1 the number of columns in the
array (or number of factors involved in the experiments),
and 2 the number of possible different values (or lev-
els) that a factor can take. A simple algorithm for the
construction of OAs can be found in [16]. An example
of an OA is given in table 1, where the OA indicates 8
possible experiments determined by specific combinations
of two levels (values 1 or 2) of 7 different variables (A-G).
According to OA’s theory, the 8 experiments are selected
so that they provide a balanced comparison of the two
possible levels of any factor.

The other parameter concerning the Taguchi method
is the SNR, which has been traditionally used in engi-
neering to measure the quality of a product corresponding
to a specific choice of the values taken by the variables
involved in a design. The SNR, for a set of quality
characteristics of a given product, is related to the mean

Table 1. Orthogonal array L8(27).

Factors
A B C D E F G

experiment column number
number 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

squared deviation from the target value of those quality
characteristics. Several definitions of the SNR can be
found depending on the type of characteristic and on the
type of problem. Taguchi has generalized the concept of
SNR and applied it to the assessment of the influence
of the possible values of the different factors involved
in a set of experiments. SNR is usually defined so that
it is large for favorable situations. For example, in the
GA application described in this paper, the SNR of a
given experiment (chromosome or individual) will be
defined in terms of the fitness function corresponding to
that experiment in such a way so that better individuals
correspond to greater values of SNR.

The SNR helps on converting several repetitions
of the value taken by a variable into a single number
that accounts for the quality of the final product if that
repeated value of the given variable is used. To this end,
given a set of N experiments described by a specific OA,
the effect of each variable involved is defined as,

Ei,j =
n∑
k

δ(level(i, k)− j)SNR(k)

i = 1, ..., Nv; j = 1, 2

(1)

where Nv is the number of variables; i represents the
ith-variable; k is the number of experiment; level(i, k)
is the level (1 or 2) taken by the ith-variable in the
kth-experiment and j is either 1 or 2 (two effects are
defined for each variable). The sum includes only the
SNR of experiments where the level of factor i is equal
to j as indicated by the delta of Kronecker symbol δ.
For example, in the two-level OA of table 1, Ei,1 and
Ei,2 can be defined for a given column i (i=1,..,7); Ei,1
corresponds to the sum of the SNR of all experiments
where the value of factor i is equal to 1, and Ei,2
corresponds to experiments where the value of the ith-
factor is equal to 2. An example of application is given
in the next subsection, and, for further details, the reader
is refereed to [18].
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B. Generation of optimal offsprings by Taguchi method
The Taguchi method can be used to generate an

optimal offspring from the mating of two parents with
Nv genes. The process starts by selecting an appropriate
orthogonal array Ln(2n−1) with with n − 1 ≥ Nv and
by defining a fitness function that measures the quality
of a given chromosome. The fitness function F (k), k =
1, ..., n is evaluated for each of the n experiments in
the OA and a signal-to-noise ratio, SNR(k), is defined
in terms of F (k). Subsequently the effect, Ei,j , of the
various factors in the SNR is calculated for each factor
(gene or column in the array) (i = 1, .., Nv) and each
level (j = 1, 2) of that factor using equation (1).

To clarify the process, let us consider the problem
of finding a chromosome, kbest, formed by the 7 genes,
C(i, kbest), i = 1, ..., 7, that maximize the test function,

f(k) =
7∑
i=1

sin (C(i, k)) (2)

where k refers to an specific chromosome whose genes
take the values C(i, k), i = 1, ..., 7, respectively. The
values permitted for each C(i, k) are discrete fractions
of π, ranging from 0 to π. In this context, we would
perform the mating of the two 7-gene chromosomes (7
factors) given in Table 2 via Taguchi with the aid of the
L8(27) OA given in Table 1. Table 3 shows the eight
different chromosomes corresponding to the eight differ-
ent experiments. The process starts with the definition
of the fitness function that evaluates the goodness of a
chromosome as F (k) = f(k)

7 and the calculation of the
SNR(k), defined in this case as SNR(k) = F (k)2, for
each experiment, k = 1, ..., 8, in the OA. The values of
F (k) and SNR(k) are shown in the 9th and 10th columns
in Table 3. Then the effects, Ei,1 and Ei,2, of the various
genes are calculated for i = 1, .., 7 using equation (1),
resulting in the values given in Table 3. As the optimal
level for each factor is decided by the larger value of either
Ei,1 or Ei,2, the process resulted in the optimal levels ”2,
1, 1, 2, 2, 2, 1” for each of the seven factors respectively
and therefore in the optimal chromosome given in Table
3.

Table 2. The two 7-gene chromosomes.

Chromosome 1: π/9 π/2 π/2 π/3 π/9 4π/5 π/2

Chromosome 2: π/2 π/3 π/5 π/2 π/2 π/2 2π/3

C. The HTGA method
The HTGA is based on the insertion of the Taguchi

method between the crossover and mutation operations in
a CGA. The stages in the HTGA algorithm are [19]:

1) Appropriate parameters needed for the implemen-
tation of the algorithm are decided such as the

probability of crossover, pcross, and probability of
mutation, pmut.

2) A suitable two-level OA for matrix experiments is
selected.

3) A population of Npop individuals is randomly cre-
ated.

4) The Npop individuals performance is evaluated ac-
cording to the specific objective or fitness function
at hand.

5) A roulette wheel selection is applied.
6) On average, pcross chromosomes undergo one-point

crossover as in the CGA.
7) Two chromosomes from the current population are

randomly selected and mated via the Taguchi exper-
iments, producing an optimal offspring as explained
in the previous subsection. This step is repeated
1
2 × pcross ×Npop times.

8) Mutation with a probability of pmut is applied.
9) The Npop better chromosomes are selected to be the

parents of the next generation.
10) Steps 5 to 9 are repeated until the stopping criterion

is met.
This hybrid algorithm, which combines the powerful

global exploration capabilities of GA with that of the
Taguchi method for producing optimum offspring, was
proven in [19] to be fast converging, robust, and sta-
tistically sound when applied to optimize several high-
dimension benchmark problems.

D. The nHTGA method
In this paper we propose a new hybridization of the

Taguchi and GA methods (i.e. the nHTGA) which is
sketched in Figs. 1 and 2. The objective is to improve the
efficiency of the Taguchi method by decreasing the total
number of fitness-function evaluations (function calls)
needed to find the optimal solution of the problem at
hand. To this aim, as we commented in the Introduction,
instead of applying Taguchi method 1

2 × pcross × Npop
times to mate two randomly selected individuals each
time (step 7 in the previous subsection), we just produce
an ’optimal’ offspring per generation using the Taguchi-
based crossover operator. That offspring is the descendant
of the best chromosome found so far and one chromo-
some randomly selected with the only condition of being
different enough from its mate according to a criterion
explained below. This means that the number of function
calls per generation is reduced from 1

2×pcross×Npop×n
in the HTGA to n in the nHTGA, being n the num-
ber of experiments in the appropriate Taguchi OA. The
idea behind the modifications is that two bad-quality
individuals will not likely be candidates to produce a
chromosome with a better performance than that of the
best chromosome in the current population.

Aiming to reduce even more the number of function
calls, we set a rule to select the second individual to be
mated via Taguchi in such a way that we avoid redundant
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Table 3. Generating a better chromosome from two chromosomes by using the Taguchi method.

Factors

A B C D E F G

Experiment Column number

Number(k) 1 2 3 4 5 6 7 F(k) SNR(k)

1
π

9

π

2

π

2

π

3

π

9
4
π

5

π

2
0.7340 0.5387

2
π

9

π

2

π

2

π

2

π

2

π

2
2
π

3
0.8869 0.7865

3
π

9

π

3

π

5

π

3

π

9

π

2
2
π

3
0.6957 0.4840

4
π

9

π

3

π

5

π

2

π

2
4
π

5

π

2
0.7691 0.5915

5
π

2

π

2

π

5

π

3

π

2
4
π

5
2
π

3
0.8439 0.7122

6
π

2

π

2

π

5

π

2

π

9

π

2

π

2
0.8471 0.7176

7
π

2

π

3

π

2

π

3

π

2

π

2

π

2
0.9617 0.9249

8
π

2

π

3

π

2

π

2

π

9
4
π

5
2
π

3
0.8088 0.6542

Ei1 2.4007 2.7551 2.9044 2.6599 2.3945 2.4967 2.7727

Ei2 3.0090 2.6546 2.5053 2.7498 3.0152 2.9130 2.6370

Optimal level 2 1 1 2 2 2 1

Optimal chromosome
π

2

π

2

π

2

π

2

π

2

π

2

π

2
1 1

experiments. Note that if, for example, we perform a
matrix experiment using the OA in Table 1 with two
individuals in which factors D to G are the same for
both, experiments 1 and 2 will be the same, as also
will be experiments 3 and 4, 5 and 6, and 7 and 8.
Thus in this application of the Taguchi method, we waste
four function evaluations since several experiments are
repeated. In Appendix A, we describe an empirical study
aimed at deciding how many experiments are redundant
as a function of the number of genes with repeated values
of the two mating individuals. We give an example for the
case of an OA L32(231) and Nv = 30. We conclude that
no matrix experiments should be made if the difference
between individuals is less than 15%, since nearly half
of the experiments will have been already performed,
resulting in a waste of computational resources. As a rule
of thumb, in the present work we increase this threshold
up to 25%.

E. Benchmark testing

Next we assess the performance of the nHTGA al-
gorithm by solving several global numerical optimization
problems, which fulfill the conditions to form a suitable
touchstone to check the performance of evolutionary algo-
rithms [19]. In particular, we consider the minimization of

the 30-dimensional functions (N = 30) described in table
4 by applying the nHTGA and subsequently compare our
results with the ones reported in [19].

We apply the nHTGA using a smaller population
(Npop = 20) than the one reported in [19], where HTGA
was employed to solve the same problems with Npop =
200. Therefore, in order to make a fair comparison, we
increase the crossover and mutation rates to pcross = 1
and pmut = 0.2 so that we have the same number
of fitness-function evaluations per generation due to the
action of the genetic operators than in HTGA. On the
other hand, as it was previously commented, we use a
Taguchi-based crossover operator was used only once in
each evolutionary cycle, on individuals with at least one
quarter of the genes being different. Both the nHTGA and
the HTGA use real encoding where each chromosome is
represented by a vector of N floating-point numbers, i.e,
x1, ..., xN . The criterion for stopping the execution of the
nHTGA algorithm is that the value of the fitness function
of the best individual in the population should be less than
or equal to the mean function value reported in [20] using
HTGA. Aiming for statistically robust results, each test
function minimization problem is performed 50 times.

The mean number of fitness-function evaluations, the
mean function value of the optimized solution calculated
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Table 4. Benchmark of test functions.

Test Function Feasible
Solution Space

f1 =
N∑
i=1

(
−xi sin

(√
|xi|
))

[−500, 500]N

f2 =
N∑
i=1

(
x2
i − 10 cos (2πxi) + 10

)
[−5.12, 5.12]N

f3 = −20 exp

(
−0.2

√
1

N

N∑
i=1

x2
i

)
− exp

(
1

N

N∑
i=1

cos (2πxi)

)
+20 + exp (1)

[−32, 32]N

f4 =
1

4000

N∑
i=1

x2
i −

N∏
i=1

cos

(
xi√
i

)
+ 1 [−600, 600]N

f5 =
1

10

{
sin2 (3πx1) +

N∑
i=1

−1(xi − 1)2
[
1 + sin(3πxi+1)

]
+(xN − 1)2

[
1 + sin(3πxN )

]}
+

N∑
i=1

u(xi, 5, 100, 4)

[−50, 50]N

f6 =
N∑
i=1

x2
i [−100, 100]N

f7 =
N∑
i=1

|xi|+
N∏
i=1

|xi| [−10, 10]N

over the 50 runs, and the standard deviation of the func-
tion values were all calculated for each test function and
are presented in Table 5. Note as the table reflects, the new
nHTGA gives closer to optimal solutions than the HTGA
and moreover uses a lower mean number of fitness-
function evaluations, greatly improving the efficiency of
the algorithm. In this table we also show these data when
a CGA is used (numerical results extracted from [16]).

III. LOG PERIODIC ANTENNA DESIGN

The Taguchi method has been applied to some elec-
tromagnetic optimization problems [21, 22] with success.
In this work we employ the nHTGA hybrid GA and
Taguchi method algorithm to optimize the design of a
thin-wire antenna that must fulfill the following require-
ments throughout the operating band, which ranges from
450MHz to 1.35GHz:

1) Standing voltage wave ratio (SVWR) less than 2
(referenced to 75Ω)

2) Gain range (GR) less than 3dB.
3) Gain (G) greater than 5dB.
4) Front-to-back ratio (FTB) greater than 15dB.
5) Beamwidth (BW) in azimuth greater than 120◦.
6) Vertical polarization.

Moreover, as the antenna is going to be mounted on a
pole, its environmental impact needs to be reduced and
therefore, its greatest dimension is required to be less than
or equal to half of thewavelength at the lowest frequency,
i.e. λlow/2 = 0.33m.

To satisfy the above requirement we have consid-
ered symmetrical log-periodic antennas (LP) as suitable
starting points in our designs, because LP antennas are
vertically polarized, endfire radiators, and possess good
FTB ratios [23].

A. LP antenna geometry
Log periodic antennas are radiators for which the

geometry is chosen so that the electrical properties are
repeated periodically with the logarithm of frequency.
The first successful design of this type of antenna was
proposed by DuHammel and Isbell in [24], setting a
new starting point for a variety of sheet and wire LP
designs [25], [26]. Among this family of antennas, the
symmetrical log-periodic antennas [27] focus our interest
since they provide a promising model to be optimized
with the nHTGA tool in an effort to fulfil all the design
specifications described above. In particular, log-periodic
bent zigzag antennas (LPBZA) as the one studied in [28]
were considered the starting point of our design because
they do not need any phase-reversal transformers to
achieve broadband performance and they are less sensitive
than the bent-monopole antenna [23]. An example of a
basic thin-wire LPBZA antenna is schematized in Fig. 3,
where only one arm of the antenna is represented, as the
antenna is symmetric with respect to the XY plane. The
geometrical factor τ is the ratio of two adjacent similar
dimensions of the antenna (τ = Rn+2/Rn < 1); αE and
αS are the angles between tip to tip on the vertical and
horizontal planes of the zigzag antenna, respectively; ξ
is the distance between the two antenna arms and Nt
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Table 5. Comparison between HTGA and nHTGA under the same evolutionary environment.

Test
Mean number of

function evaluations
Mean function value
(standard deviation)

Globally
minimal

function nHTGA HGTA CGA nHTGA HGTA CGA
function

value

f1 14677 163468 458653
-12569.4655

(0.0077)
-12569.46

(0)
-8444.7583
(65.7326)

-12569.5

f2 5596 16267 335993
0

(0)
0

(0)
22.967

(0.7800)
0

f3 7989 16632 336481
0

(0)
0

(0)
2.697

(5.668× 10−3)
0

f4 19282 20999 346971
0

(0)
0

(0)
1.258

(1.657× 10−2)
0

f5 14405 59003 348356
0.9× 10−4

(1× 10−5)
1× 10−4

(0)
2.978

(7.210× 10−2)
0

f6 8917 20844 181445
0

(0)
0

(0)
4.9655

(11.3614)
0

f7 6747 14285 170955
0

(0)
0

(0)
7.9315× 10−1

(5.5943× 10−1)
0

the number of tips in one arm (in the particular case
shown in Fig. 3 Nt = 7). The antenna is excited with a
voltage source at its center (see Fig. 3). In our designs, the
radius of the wire, r, is constant, despite breaking the log-
periodicity, in order to facilitate the future construction of
the antenna.

Next, we modify the geometry of the LPBZA an-
tennas in order to reduce their size so that the design
specifications regarding the compact size of the antenna
are fulfilled. With this aim, we have considered two alter-
native ways of keeping the antennas maximum dimension
smaller that λlow/2: 1) either we reduce to λlow/4 (since
the antenna is symmetrical over the XY plane) the height
of the tooth that exceed the limit imposed (as in Fig.
4(b)); or, 2) following the ideas already presented in [29],
we bend the antenna tooth in a quasi-fractal way until
the antenna shrinks to the appropriate dimensions (see
Fig. 4(c)). With the first option the number of peaks is
kept invariant, while the second option maintains the total
length of the wire.

Furthermore, to increase the electrical size of the an-
tennas without increasing their physical size, we propose
to use resistive loads located along the antenna geome-
tries. The use of resistive loading is crucial to operate
within the required frequency range and to broaden the
bandwidth. This is due to the fact that, in LP antennas,
most of the radiation takes place in the region where the
dipole length ranges from λ/2 to 3λ/2 [23]. Then, since
the maximum height of our antenna must be less than
λlow/2, energy with a wavelength greater than approxi-
mately λlow/3 will not be fully radiated if the antenna
is made of perfect electric conducting wires. One way to
solve this is to lengthen the wires electrically by means

of loading the antenna segments with a resistive profile.

B. Antenna optimization

In this subsection, we describe how the nHTGA ap-
proach has been applied in conjunction with the method-
of-moments-based NEC code to optimize the performance
of an LPBZA. The design parameters are αE , αS , τ , ξ
and the value of the resistance per unit length loading the
antenna structure, which, to keep the problem tractable,
is chosen to be constant for each tooth of the LPBZA
and ranges from 0 Ω/m to 100 Ω/m. LPBZA, both
with reduced tooth size and with bent teeth, are being
considered. The radius of the wire is r=2mm, the number
of tips Nt = 25 and, for practical reasons, designs
with segments shorter than 2cm are not permitted. The
variation range of the geometrical design parameters is
shown in Table 6.

Table 6. Parameter design range.

Parameter Min. Value Max. Value
αE 25 (deg) 65 (deg)
αS 25 (deg) 65 (deg)
τ 0.8 0.95
ξ 6 (mm) 20 (mm)
Ω 0 (Ω/m) 100 (Ω/m)

The nHTGA starts by generating an initial population
of Npop = 20 LPBZA antennas which are encoded using
real values. Then, to measure the goodness of a given
individual, we define a fitness function as a weighted
aggregation of the different objectives described at the
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Select a suitable
Ln(2n−1) for

matrix experiments

Generate Random
Population

Roulette wheel
selection

Single-Point
Crossover

A

B

Mutation

Select P best
individuals

Termination
criteria
met?

Display function
calls and save
best individual

END

no

yes

Fig. 1. Flowchart of the nHTGA for global numerical
optimization problem.

A

Choose the best
individual and a

random suitable one

Calculate the fitness
value and the SNR

of the n experiments

Calculate the effects
of the various factors

One optimal
individual

is generated

B

Fig. 2. New implementation of the Taguchi method over
a GA.

Fig. 3. Geometry of a single arm of the LPBZA.

beginning of this section as,

F =
1
Nν

Nν∑
i=1

$(νi)×[
1
4

Θ
(

2
SVWR(νi)

)
+

1
8

Θ
(

3
GR(νi)

)
+

1
8

Θ
(
G(νi)

5

)
+

1
4

Θ
(
FTB(νi)

15

)
+

1
4

Θ
(
BW (νi)

120

)]
(3)

where

Θ(x) =

{
1 if x ≥ 1

x otherwise
(4)
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(a) Original

(b) Option 1

(c) Option 2

Fig. 4. Miniaturization techniques applied to an over-
sized tooth (a), by decreasing the tooth height (b), and by
bending the tooth on a quasi-fractal way (c).

and $(ν) = C(1/ν3 + ν8) is a normalized weighting
function that gives more importance to the accomplish-
ment of the objective functions at the edges of the fre-
quency band. Nν is the number of frequency samples and
ν the frequency in GHz. F is defined so that its maximum
value, 1, is achieved by any antenna that fulfils all the
design requirements. Thus, the application of the nHTGA
operators makes the population evolve towards better
antenna designs, i.e. towards individuals with higher F
values.

C. Numerical results
The nHTGA code has been applied three times to

ensure that the code has not been trapped in a local
maximum. The best antenna found had a value of the
fitness function F equal to 0.9856. Its geometry, shown
in Figure 5(a), corresponds to τ = 0.815, αE = 44.691◦,
αH = 41.000◦, ξ = 6.746 mm. The 25 teeth in each
arm have been miniaturized in a quasi-fractal way and
the resistive profile for each teeth is shown in Fig. 5(b)
(the tooth are numbered from larger to smaller sizes).

The performance of the resulting antenna has been
analyzed using NEC and the results are given in Figs. 6
and 7. The input impedance, normalized to Z0 = 75Ω, is
plotted on a Smith chart in Fig. 6(a). The impedance plot
lies at the center of the Smith chart, with all the points
inside the 2:1 circle, meaning the fulfilment of objective
1 (SVWR ≤ 2). Moreover, the impedance is balanced
and can be matched to a 75Ω commercial coaxial cable
without using an impedance transformer. From Fig. 6(b),
which represents the gain versus frequency, it can be seen

(a)

(b)

Fig. 5. Optimized LPBZA. (a) Geometry of the opti-
mized antenna. (b) Resistive loading profile for each tooth
in the optimized antenna.

that the gain ranges from 5dB to 8dB within the band,
satisfying requirements 2 (GR ≤ 3dB) and 3 (G ≥ 5dB).

Figure 6(c) plots the antenna 3dB horizontal
beamwidth vs. frequency, which is found to be greater
than 120◦ throughout the frequency range except for
three frequency samples that, in any case, correspond
to beamwidth values quite close to 120◦. On the other
hand, the front-to-back ratio, which is represented in
Fig. 6(d) vs. frequency, is greater than 15dB, except
for a couple of frequencies near the low-frequency part
of the band, where values are around 12dB. Therefore,
objectives 4 (FTB ≥ 15dB) and 5 (BW ≥ 120◦) have
been approximately accomplished.

Finally, Fig. 7 displays, for five different frequencies
within the operating antenna bandwidth, the gain as a
function of the horizontal angle φ. The behavior of the
gain with frequency is similar in the five cases, therefore
corroborating the broadband antenna performance, and
the figure also confirms that the design objectives in terms
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(a)

(b)

(c)

(d)

Fig. 6. Performance of the optimized LPBZA. (a) Input
impedance on the Smith chart referenced to Z0 = 75Ω
.(b) Gain in the endfire direction. (c) Beamwidth on the
horizontal plane. (d) Front-to-back ratio.

of gain, beamwidth, and front-to-back ratio, have been
accomplished for the five selected frequencies.

Fig. 7. Gain in the horizontal plane (θ = 90◦) versus φ
for the optimized LPBZA. νlow = 450MHz is the lowest
frequency of the considered band.

IV. CONCLUSION

A new implementation of the HTGA is proposed
in this paper. Hybrid techniques combining the Taguchi
method with traditional GAs incorporate Taguchi orthog-
onal arrays between the crossover and mutation operators
to produce chromosomes with the best combination of
design variables or genes. After the conventional GA
gene-mating process, the new HTGA proposed here pro-
duces only one individual in each generation via the
Taguchi-based crossover operator. The new individual is
the Taguchi children of the best individual found so far
and one selected at random. This process differs from
previous versions of HTGA, where a percentage of the
whole population at each generation is generated via
Taguchi method. The computational solution of several
test cases demonstrates that the proposed hybrid algorithm
outperforms the HTGA and traditional GAs in terms of
evolutionary efficiency. Finally an example of application
of the nHTGA is given carrying out the optimization of
a log-periodic thin-wire miniature antenna.

APPENDIX A
EFFICIENCY OF MATRIX EXPERIMENTS

L32(231)

In this appendix, we explain how to perform a
numerical experiment conceived to determine how many
function evaluations are redundant in a matrix experiment
when two individuals with several genes in common are
crossed via Taguchi method. We propose to implement
the following steps:

1) Two Nv-genes chromosomes are randomly gener-
ated.
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2) Nequal genes of the two previous chromosomes are
forced to be identical. The specific equal genes are
selected at random.

3) The matrix of experiments that results from crossing
the two chromosomes via Taguchi is built.

4) The number of different experiments is counted.
The numerical experiment is conducted one hundred
times, each time varying Nequal = 1 . . . Nv (instead of
considering all the Nv!

(Nv−Nequal)!Nequal! possibilities for
Nequal). The number of different experiments found in
average are plotted versus Nequal

Nv
× 100 and, from that

graph, conclusions can be reached on how to select Nequal
in order to avoid a certain percentage of redundant matrix
experiments. As an example, Fig. 8 shows the results for
the case of N=31 genes and the OA L32(231). It plots
the number of different matrix experiments (in average)
versus the percentage of different genes in the pairs of
31-genes mating chromosomes considered. It can be seen
that if at least 25% of the genes of the individuals going
to be mated through Taguchi are different, just around the
2% of the matrix experiments are repeated. Therefore it
seems reasonable to require the differences in genes to
be greater than at least 25%. Numerical experiments with
other OA lead to similar conclusions.

Fig. 8. Number of different experiments versus the
percentage of different genes for the case of the OA
L32(231).
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