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Abstract � The propagation of light along an 
infinite 2D chain of silver nanorods is analyzed 
and the dispersion for this waveguide is computed 
using field computation for a finite chain of 
nanorods. In this work, generalized multipole 
technique is used for the analysis. This method 
calculates the imaginary and real parts of the 
propagation constant by exciting the chain in one 
end and observing propagation of modes along the 
chain far enough from the excitation. It is shown 
that a short chain of finite length is sufficient for 
the calculation of the phase constant while the 
attenuation constant requires a longer chain. Field 
distribution is depicted for even and odd modes 
and it is shown that in the simulated frequency 
range only two modes can be excited and can 
propagate along the waveguide. 
  
Index Terms  � Generalized multipole technique, 
Modal analysis, surface plasmon polariton, and 
waveguide. 
 

I. INTRODUCTION 
The ability of confining electromagnetic fields 

below the diffraction limit has made plasmonic 
waveguides a promising candidate for integrated 
optics. After Takahara et al. [1] demonstrated the 
possibility of guiding electromagnetic energy 
below the diffraction limit, various structures have 
been proposed as plasmonic waveguides. Quinten 
et al. [2] were the first to introduce a chain of 
metallic nanoparticles as a waveguide. Since then, 
this waveguide has been studied in many 
researches [3-15]. 

Several computational methods have been 
used for the analysis of nanoparticle-chain 

waveguides. Dipole approximation (DA), finite-
element method (FEM), and finite-difference time-
domain (FDTD) are commonly used methods. 
Dipole approximation is easy to implement and 
accurate for structures in which spacing of 
nanoparticles is significantly larger than particle 
dimensions. This method cannot be used for 
structures in which L / r < 3, where L is the 
separation between particles and r is the radius of 
the particle [16, 17]. Moreover, for particles of an 
arbitrary shape, calculation of polarizability 
demands additional numerical efforts. 
Improvements to DA like considering retardation 
effect [18], quadrupole, and higher-order 
multipoles effect [16, 19] and adding the effect of 
layered background [20-22] have been proposed, 
yet it is not commonly used for a waveguide 
comprising arbitrary shaped nanoparticles with 
small inter-particle distance. FDTD and FEM are 
also common tools for analyzing plasmonic 
waveguides [4, 23]. However, in plasmonic 
structures, at frequencies near the plasma resonant 
frequency, electromagnetic (EM) fields are mainly 
confined around particles. Therefore, for domain 
discretization methods, such as FDTD and FEM, a 
very fine mesh is needed to achieve acceptable 
accuracy. A comparison between domain 
discretization and boundary discretization methods 
can be found in [24]. According to [24], boundary 
discretization methods show higher precision and 
are less time consuming for 2D plasmonic 
structures. 

Generalized multipole technique (GMT) is a 
boundary discretization method, which has already 
been used for the modal analysis of nanoparticle-
chain waveguides [8, 11]. This method is 
applicable to structures with / 3L r < . Also, GMT 
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is capable of analysis of a waveguide comprising 
arbitrary shaped nanoparticles. Nevertheless, GMT 
works with smaller matrices, which leads to less 
physical memory consumption compared with the 
domain discretization methods. Dispersion 
diagram for a 2D and 3D waveguide of 
nanoparticles is calculated in [8, 11] using GMT. 
In these researches, the propagation constant is 
calculated by finding the extrema of a cost 
function, like error or field intensity. Finding 
extrema of this function requires calculation of the 
cost function at different frequencies, which can 
be time consuming. However, the extrema of the 
function can be affected by changes in the field 
distribution of the modes or coupling among 
modes for different frequencies. Moreover, finding 
the attenuation constant needs extra calculation. 

An improved modal analysis is presented in 
this work. The EM field distribution in a finite 
chain of nanorods is analyzed and the complex 
wavenumber using the complex value of the EM 
field at certain sampling points is calculated. The 
propagation of the EM field in a finite chain of 
nanorods is computed using GMT formulation. 

 
II. GENERALIZED MULTIPOLE 

TECHNIQUE FORMULATION FOR 2D 
NANOSTRUCTURES  

Generalized multipole technique is a 
frequency-domain method for solving Maxwell’s 
equations after subdividing the solution domain 
into homogeneous subdomains [25]. The EM field 
in each subdomain is expanded in terms of the EM 
field generated by a number of multipoles placed 
outside the subdomain. The unknown amplitude of 

the multipoles are calculated satisfying boundary 
conditions with minimum error. 

For a two-dimensional z-invariant problem, 
the z-components of the electric and magnetic 
field at a given point r

�
 generated by lN

 
clusters 

of multipoles can be expanded as,  
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in which the l-th cluster containing N multipoles is 
located at lr

� . The coefficients lnC  and lnD   are 
the amplitudes of TEz and TMz multipoles, 
respectively, k is the wave-number of the 

subdomain in question and lϕ is the angle at 

which location r
�

 is seen by the multipoles placed 
at lr

� . There are a total of 2 (2 1)lN N +

 
multipoles. 

In a finite chain composed of m nanorods, as 
shown in Fig. 1, there are m+1 subdomains. For 
each subdomain, the z-components of the EM field 
can be expanded using equations (1a) and (1b) 
with clusters placed outside of the subdomain. 
Fields of the subdomain D1 are expanded by all the 
clusters represented by (+) and fields inside each 
nanorod are expanded by a set of clusters placed 
around it. Excitations can be placed at arbitrary 
positions and are represented by (*). 

Matching of the tangential field components 
on the boundaries is ensured by means of 
generalized point matching (GPM). Matching 
tangential magnetic and electric fields at matching 
points leads to the following system of equations, 

 

` 
 
Fig. 1. Schematic of a finite chain containing m nanoparticles. 
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where 
i

C
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 are the unknown amplitudes of the 

multipoles expanding the EM field in the i-th 
subdomain, [ ]B

exc
 is the tangential excitation 

fields at the matching points with the excitation 
placed in the first subdomain at (*) locations in 
Fig. 1 and the matrices [ ]i

A  relate the unknown 

coefficients to the tangential fields at the matching 
points of the i-th subdomain.  

Equation 2 presents an over-specified system. 

It can be reshaped to yield [ ] [ ]
C

A B
D

� �
=� �
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 , which 

may not have an exact solution. This equation is 
solved after computation of the pseudo-inverse of 
the [ ]A  matrix, which minimizes the error defined 

by,  
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III. MODAL ANALYSIS  

In general, a metallic nanorod waveguide has 
various modes with different propagation 
constants. By its arbitrary excitation, a group of 
waveguide modes are excited and will propagate 
along the nanorods. If there is a dominant mode at 
each given frequency, other modes are attenuated 
according to a larger attenuation constant. Hence, 
by moving away from the excitation point, the 
amplitudes of the non-dominant modes decay 
faster than the amplitude of the dominant mode.  

In a periodic structure for which only one 
mode propagates along the x-direction, the mode 
fields satisfy the Bloch condition, 

 ( ) ( ), , , jkLf x L y f x y e−
+ =

� �
 (4) 

where f
�

 denotes the electric or magnetic field, x 
represents the propagation direction, L is the 
period of the structure, and ( )k jβ α= −  is the 
propagation constant. In principle, by sampling the 

function f
�

 at various x, values one can determine 
the propagation constant, k. 

For a finite but long waveguide and far from 
the excitation end, one may assume single-mode 
propagation of the dominant mode. Taking both 
the forward and backward propagating dominant 

mode into account, we may express ( ), f x y
�

 as, 

( ) ( ), ( ) , ,jkx jkxf x y Ae Be u x y−
= +

� �
       (5) 

where u
�

 is a periodic function in x, A, and B 
represent the amplitudes of the forward and 
backward propagating dominant mode, 
respectively. To determine A, B, and k, the total 
field must be sampled at least at three different 
locations. As a result of which, a system of three 
complex equations is obtained. Note that the three 
sampling points have a spacing of L in the x-
direction and have identical y-values, so the 
function ( ), u x y

�
 has no influence on 

determination of the unknowns A, B, and k. Note 
that depending on the polarization of the excitation 
field, TEz or TMz modes are excited. Therefore, 

the function f
�

 is given either by equation (1a) or 
(1b). 

For a symmetric waveguide with respect to the 
propagation direction, i.e., the x-direction, modes 
can be classified as even or odd in terms of the 
electric or magnetic field component. If the 
waveguide is excited with even (odd) excitation, 
only even (odd) modes will be present along the 
finite chain. Thus, using an appropriate excitation, 
even (odd) dominant mode can be characterized. 

Furthermore, taking symmetry along the x and 
y-axis into consideration, we decrease the number 
of unknown coefficients and thus the boundary 
points.  

Figure 2 shows a finite chain excited 
symmetrically. MN represents the symmetry plane 
of the structure. Because of this symmetry, it will 
be adequate to solve Maxwell’s equations only in 
one half of the structure. Other advantage of a 
symmetric excitation is that the amplitudes of 
forward and backward modes have to be equal in 

RAHBARIHAGH, KALHOR, RASHED-MOHASSEL, SHAHABADI: MODAL ANALYSIS FOR A WAVEGUIDE OF NANORODS 142



the middle of the structure. This eliminates one 
equation and one unknown coefficient. 

 
 
Fig. 2. A finite chain excited symmetrically. 
 

There are two ways to verify the single-mode 
approximation discussed above. First, one can 
compare the field of the calculated mode and the 
total field at other points. Second, one can 
consider two existing modes in the waveguide. If 
the amplitude of the second mode is negligible 
compared to the first one, then the single-mode 
approximation leads to appropriate results. The 
following system of equations must be solved if 
two modes are propagating along the waveguide,  
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where A and B are the amplitude of the first and 
second modes in the middle of the chain, 
respectively, whereas k1 and k2 are the propagation 
constants of these modes. The points P1, P2, P3, 
and P4 are shown in Fig. 2. 

 
IV. CONVERGENCE 

Before we present the numerical results, we 
must investigate the convergence of our method. 
Convergence of wavenumber can be checked with 
respect to the defined error (equation (3)) and the 
number of nanorods of the chain. Existence of a 
propagating mode, in a given frequency, is an 
essential prerequisite for convergence of the 
wavenumber. The next section shows (Fig. 6) in 
the simulated waveguide modes propagated in the 
0.1 / 0.13L λ< <  frequency range. Hence, we 
investigate the convergence in this frequency 
range. 

Figure 3 shows convergence of the computed 
wavenumber with respect to error. As shown in 
Fig. 3 (a), increasing the number of unknown 
coefficients decreases error. As error decreases, 
the propagation constant converges to its actual 
value (Fig. 3 (b)). Increasing the number of 
unknown coefficients increases computational cost 
and time exponentially. Hence, a compromise 
should be made between accuracy and 
computational time. 

 
 
Fig. 3. Convergence of the wavenumber with 
respect to the number of unknown coefficients. 
 

The second factor affecting convergence of 
the wavenumber is the number of nanorods in the 
chain. Increasing the chain length reduces the 
unwanted effects of the source and the non-
dominant modes. Figure 4 shows effects of the 
chain length on β and α. It shows that β  
converges for a shorter chain whereas this is not 
the case for α. It should be noted that the 
convergence at higher frequencies is faster. 
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Fig. 4. Convergence of the wavenumber with 
respect to the number of nanorods. The 
geometrical and electrical parameters used for 
obtaining these diagrams are given in section V. 
 

V. RESULTS 
Using the method explained above, 

propagation of the EM field is calculated for a 

waveguide of nanorods. The waveguide comprises 
100 silver nanorods with r = 25 nm and d = 55 nm 
(Fig. 1). Experimental data of [26] are used for the 
electrical permittivity of silver. The EM fields of 
both inside and outside of nanorods are expanded 
using six clusters of multipoles (Nl = 6) with N = 2 
for even modes and nine clusters of multipoles (Nl 
= 9) with N = 6 for odd modes. The clusters of 
multipoles, which expand the EM field outside and 
inside of the rods are placed at R1 = r/4 and R2 = 
2r, respectively. This set of order and location of 
the multipoles leads to an error of less than 0.7 % 
in the entire frequency range. 
 A typical EM field calculation showing 
propagation of the EM field along the chain is 
illustrated in Fig. 5. The inset of the Fig. 5 shows 
the amplitude of the magnetic field generated by 
the sources in free space. Note that an array with a 
null in the x-direction is used for the excitation of 
TE modes. Figure 5 shows the propagation of the 
EM field along the chain for the same excitation.  
This figure clearly shows that the EM field is 
guided along the chain.  

In order to calculate the dispersion diagram, 
the waveguide is stimulated by two sets of 
excitations; even excitation, which only generates 
longitudinal modes and odd excitation for 
generating transverse modes. Figure 6 shows the 
normalized amplitudes,

 
, e oA A , of the dominant 

 
 
Fig. 5. Propagation of the EM field along the chain. This figure shows the normalized amplitude of the 
magnetic field for an even excitation. The inset shows the magnetic field of the sources in free space. 
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mode for even (longitudinal) and odd (transverse) 
modes, respectively. As is shown in Fig. 6 (a), the 
even mode propagates along the chain in 
normalized frequencies below 0.145. In this 
figure, solid and dash lines show the amplitudes of 
the first ( A ) and the second ( B ) modes of 

equation (6), respectively. As the amplitude of the 
second mode is negligible in comparison with the 
first one, the single-mode approximation is 
acceptable in the normalized frequency range 
0.06 / 0.145L λ< < ; thus, the non-propagating or 
the higher-order modes do not highly affect the 
results.  

 
 
Fig. 6. Amplitudes of the first and second modes; 
(a) even modes and (b) odd modes. 

 
Such as the even mode, the odd mode shows 

similar behavior in this frequency range. The 
higher normalized cutoff frequency is about 0.145. 
At this frequency the attenuation increases 
considerably. The lower normalized cutoff 

frequency for the odd mode is about 0.12, as will 
be discussed further in what follows.  

 
 
Fig. 7. Propagation (a) and attenuation (b) 
constants for the even and odd modes. 
 

The propagation constant for the even and odd 
modes is calculated and depicted in Fig. 7 (a). The 
results are in agreement with the results reported 
by Talebi and Shahabadi [8] for the first even and 
odd modes. Also, the accuaracy of the GMT 
results is compared and validated with other 
techniques in [11, 24]. There is no higher-order 
modes or their extinction length is smaller than the 
length of the simulated chain. Note that α and β 
are calculated simultaneously as a complex wave-
number. Figure 7 (b) shows the attenuation 
constant α for even and odd modes. According to 
Fig. 4 (b), at lower frequencies, a longer chain is 
needed for the attenuation constant to converge. 
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For a chain of 100 nanorods results for the 
normalized frequncies below 0.12 are not accurate, 
but follow the well-known behavior of the 
attenuation constant. The field distributions for 
these modes at a normalized frequency of 

/ 0.14L λ =  are depicted in Fig. 8. 

 
 
Fig. 8. Distribution of the normalized amplitude of 
the magnetic field at L/�=0.14 (a) even mode and 
(b) odd mode. 
 

The confinement of the EM wave is an 
important characteristic of nanorod-chain 
waveguides. Let us define /R r  as the normalized 
spacing from the waveguide axis at which the 
longitudinal component of the poynting vector 
drops to half of its maximum value. Figure 9 
shows this normalized spacing /R r  as a function 
of the normalized frequency. The inset of this 
figure shows the normalized poynting vector 
( max/P P ) in the propagation direction for 
different distances from the chain axis at the 
normalized frequency, / 0.132L λ = . This figure 

reveals that the even mode is more confined in 
comparison to the odd mode. Also, it shows that as 
the frequency increases, the EM field becomes 
more confined by the chain. 

 
 
Fig. 9. Confinement of the EM fields for the even 
and odd modes. 

 
VI. CONCLUSION 

In this paper, we calculated the dispersion 
diagram of a nanorod-chain waveguide using 
GMT and demonstrated that the propagation and 
attenuation constants can be obtained directly by 
observing propagation of modes along a finite 
chain. Using GMT, it is observed that a short 
chain of finite length is sufficient for the 
calculation of the phase constant. However, the 
attenuation constant, α, requires a longer chain. 
These parameters are calculated for two 
propagating modes in the normalized frequency 
range of 0.06 / 0.18L λ< < . This method is more 
effective for calculation of the propagation and 
attenuation constants for modes with higher 
attenuation in comparison with previous report [8].  

Although, we have demonstrated this method 
for the modal analysis of a 2D waveguide of 
nanorods, it can be used for the analysis of 3D 
waveguide structures containing nanoparticles of 
an arbitrary shape. 
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