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Abstract─The electric field inverse problem of 
high voltage transmission lines is investigated in 
this paper. Firstly the equations for the electric 
field forward problem of transmission lines were 
formulated, then equations for the inverse problem 
were formulated according to the forward problem 
and the least square theory. A method to solve the 
inverse problem is presented in the paper, in which 
the global regularization was used to process the 
ill-posed characteristic of the inverse problem. The 
Damped Gauss-Newton iterative method was used 
to search the optimum solution. 

A 500kV double-circuit transmission line was 
taken as an example for the calculations of the 
inverse problem. The inverse problems for 
different situations were calculated, including the 
situation when the transmission lines were in 
normal operation, and the situation when the 
transmission lines were in faulty state. The 
solutions to the inverse problem with and without 
regularization were compared in the paper, and the 
results indicated that the global regularization can 
effectively eliminate the ill-pose of the inverse 
problem. The electric field inverse problem can be 
used to confirm the electrification state of the ultra 
high voltage transmission lines, and also can be 
used in the environmental assessment tests to 
reduce the measurement workload.  
 
Index Terms─Transmission line, electric field, 
inverse problem, global regularization, Damped 
Gauss Newton. 

I. INTRODUCTION 
The electromagnetic field in the vicinity of 

high-voltage (HV) transmission lines (TLs) were 
investigated comprehensively in the past two 
decades, including the measurements on the 
electric field, magnetic field, audible noise, and 
the calculations of the electric field and magnetic 
field produced by TLs [1-3]. For the calculations 
of the electric field and magnetic field produced 
by the HV TLs, besides the sizes of the TLs, the 
electrical parameters of TLs, such as potential, 
phase angle, should be given, then the electric 
field at the measuring points can be computed.  

 
A. Forward Problem and Inverse Problem of 
TL Electric Field 

The process in which the electric field is 
calculated by the given parameters of the source, 
is usually called the “forward problem”. And 
according to the definition of the “forward 
problem”, the electric field “inverse problem” of 
TLs is the process to compute the parameters of 
the source according to the electric field at the 
measuring points. Using the forward problem of 
the TLs, we can assess the environmental 
influence caused by the TLs, and through the 
calculation of the inverse problem, the parameters 
of the source can be confirmed. 

 
B. Application of the Electric Field Inverse 
Problem of TLs 

Recently the application of the electric field 
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 inverse problem has arisen more frequently in 
engineering, such as with the detection of the 
electrification state of the ultra-high-voltage (UHV) 
TLs, and the environmental assessment of TLs. 

With the increase of installed capacity in China, 
it’s necessary to develop UHV power transmission, 
ranging from a 750kV voltage rating to 1200kV. 
According to the safety operation rules, it must be 
confirmed whether the transmission lines are 
charged during equipment maintenances, which 
needs electroscopes for different voltage rating [9, 
10]. With the increase of voltage rating, distance 
between transmission lines and ground grows. For 
instance, when the height of transmission lines of 
750kV voltage rating may exceed 30m, it’s not 
convenient to adopt the traditional insulating stick 
or insulating rope to detect electrification state any 
more. Using the electric field inverse problem in 
this paper, the potential and phase angle of the 
transmission lines can be calculated according to 
the measured electric field strength at the 
measuring points, then the electrification state of 
the TL can be confirmed. 

In addition, assessments on the electromagnetic 
environment around the HV TLs have been carried 
out around the world. In the environmental 
assessment on the TLs, the electric and magnetic 
strength of a large number of points should be 
measured, which means a huge workload. In order 
to reduce the workload in the environmental 
assessment tests, the electric field inverse problem 
of the TLs can be used. That is, according to the 
measured electric field strength at some measuring 
points near the ground, the parameters of the field 
source can be calculated by solving the inverse 
problem, then with the obtained parameters of the 
TLs, the real electric field distribution around the 
transmission lines can be calculated. Hence some 
measurement workload can be avoided by using 
the inverse problem. 

Therefore the solution to the electric field 
inverse problem of TLs is significant for the 
application of the electric field inverse problem.  

And in the remaining parts of the paper the 
method to solve the inverse problem will be 
presented, which are organized as follows: Section 
II presents the way to set up the model of the 
inverse problem for the 500kV double-circuit TLs. 
The method to solve the inverse problem is 
described in Section III. Due to the ill-posed 
characteristic and the ill-conditioning 

characteristic of the solution to the inverse 
problem, the global regularization is used to deal 
with the ill-posed characteristic caused by the 
interference and errors. Damped Gauss-Newton 
(DGN) method is used to search the optimum 
solution to the inverse problem. Section IV shows 
some computational examples, and results indicate 
that the global regularization can effectively 
eliminate the ill-posed characteristic. Applications 
of the inverse problem for the electric field of TL 
in the practical engineering are presented in 
Section IV. Finally concluding remarks will be 
given in Section V. 
 
II. MODEL AND EQUATION FOR THE 

ELECTRIC FIELD INVERSE PROBLEM 
OF TRANSMISSION LINE 

A.  Model Setup 
A 500kV double-circuit three-phase TL was 

taken as an example. The cross section and the 
distribution of the measuring points are shown in 
Fig. 1. The parameters in the model are as follows: 
D1=4.5m, D2=5.5m, D3=11.5m, H1=11m, H2=18m. 
H3 is the distance between the measuring points 
and the ground, and H3=1.8m. The equivalent 
radius (R') of the four-bundle conductor is 0.323m, 
the radius (r) of the sub-conductor is 0.0148m, and 
the radius of lightning conductor (R'L) is 0.0054m. 
In the computation, the influence from the 
conductor sag was ignored. 

 
B. Equation for the Electric Field Forward 
Problem 

The forward problem is the process to compute 
the electric field at the measuring points according 
to the potential and phase angle of the TL. The 
charge simulation method (CSM) is the most 
frequently used method according to the 
characteristics of the electric field around the TL 
[1-3].  

According to the principle of CSM, line 
simulation charges were used to simulate the free 
charge in the TLs and lightning lines. And the 
simulation charge was located at the center of the 
conductor and lightning conductor, and each 
conductor was simulated with one line simulation 
charge. Set the count of the simulation charges as 
M, for the model shown in Fig. 1 M = 8. Set the 
count of matching points in the model as N, hence 
M=N. According to the Maxwell equations, the  

130 ACES JOURNAL, VOL. 25, NO. 2, FEBRUARY 2010



H2 H1

Phase C1

D3

D1

D2

Phase B1

Phase A1

Phase B2

Phase A2 Phase C2 

Lightning 
condutor

Lightning 
condutor

y

x
O

H3

Measuring point  
Fig. 1. Schematic diagram of cross section of the 
500KV double-circuit three-phase transmission 
line. 
 
size of the simulation charges could be obtained 
according to (1), then the electric field at any 
measuring point could be computed according to 
(2). 
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where [p] is the potential coefficient between the 
simulation charges and matching points. [Q] is the 
size of the simulation charges, and [φ] is the 
potential at the matching points. [fx], [fy], [fz] are 
the electric field strength coefficient between the 
simulation charges and measuring points along x, y, 
z axis respectively. [Ex], [Ey], [Ez] are the 
corresponding electric field strength, and [E] is the 
total electric field strength at the measuring points. 

 
C. Equation for the Electric Field Inverse 
Problem 

The inverse problem is the process to calculate 
the potential and phase angle of the TLs according 
to the electric field at the measuring points.  

Similar to the calculation of the electric field 
forward problem of the TLs, the CSM was used 
and the size of the simulation charges was 
computed first. However, different from the 
calculation of the forward problem, the size of the 
simulation charges was computed according to (2) 
in the inverse problem, instead of (1) used in the 
forward problem.  

Hence anew problem rises up. For equation (2), 
we can not find its solution directly, so the 

equation described by (2) must be converted. The 
least squares theory has been proved to be an 
effective way to solve question similar with (2) [4, 
5], then the solution to the inverse problem can be 
converted into an extreme value problem. Suppose 
the nonlinear operator of the forward problem is 
F(q), here q is the size of the simulation charges, 
and then the nonlinear inverse problem described 
by (2) can be rewritten as follows: 

                           ( )E F q= .            (3) 
The corresponding least square equation is as 

follows: 
                      2min ( )

q
E F q−            (4) 

where E is the measured electric field strength at 
the measuring points. For the model shown in Fig. 
1, the count of the simulation charges is 8 (M=8), 
and the count of the measuring points is usually 
confirmed according to the engineering 
requirements. 

To compute the real potential and phase angle 
of the TL using the electric field inverse problem, 
the more measuring points are set, the more real 
information of the TL can be obtained. Therefore 
the count of measuring points N is often larger 
than M for the model shown in Fig. 1. So (1) is a 
nonlinear over-determined equation. 

 
III. SOLUTION TO THE ELECTRIC 

FIELD INVERSE PROBLEM 
A. Least Square Solution to the Nonlinear 
Inverse Problem 

For the nonlinear least squares problem shown 
in (3), the piece-wise linearization iterative 
algorithm can be used [6, 7]. In order to realize the 
approximation of the nonlinear operator F, it is 
necessary to consider the Taylor expansion of 
F(q+δq) at q: 

2
2

2

1( ) ( ) ( )(
2

                    ( , )

F F )F q q F q q q
q q

R q q

δ δ

δ

∂ ∂
+ = + +

∂ ∂
+

δ
 ,  (5) 

where R(q, δq) is a remainder term. When ║δq║ is 
small enough, as to the right side of equation (5), 
the high-order terms can be ignored and the right 
side can be approximated with the first 
approximation, then 

               ( ) ( ) FF q q F q
q

qδ δ∂
+ ≈ +

∂
.           (6) 
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Therefore, the linear relationship between δE= 
F(q+δq)-F(q) and δq can be obtained as follows: 

                       FE q
q

δ δ∂
≈
∂

 .              (7) 

Suppose q*=q+δq is the exact solution to 
equation (3). That is, F(q*)=E, here E is the 
electric field strength at the measuring points. 
Then, at point q close to q*, according to equation 
(6), the linear operator equation about δq can be 
obtained as follows: 

                  ( ) FE F q q
q
δ∂

− ≈
∂

.           (8) 

The linear operator equation (6) constitutes the 
basis of the Newton-type iterative solution method 
of the nonlinear equations. 

For the least squares problem shown as 
equation (4), if q is the optimum solution, the 
necessary condition is that the gradient of q (g(q)) 
at q is zero. Suppose the objective function for (1) 
is Φ, that is, Φ=║E-F(q)║2. Then, the following 
can be reformulated: 

          
( )( ) [ ( ) ]  

        ( )[ ( ) ] 0T

F qg q F q E
q

J q F q E

φ ∂
= ∇ = −

∂

= − =

  ,        (9) 

where J is the Jacobean matrix corresponding to 
[F(q)-E]. 

Equation (9) is the normal equation of the 
nonlinear least square problem. Therefore, the 
solution to the nonlinear least square problem can 
be transferred into the solution to the normal 
equation. But the normal equation is still a 
nonlinear equation. In order to resolve this 
problem, the Hessian matrix can be also 
introduced here [7]. 

 
B. Global Regularization and Damped Gauss-
Newton Method 

The electric field inverse problem of TLs is the 
process to compute the potential and phase angle 
according to the electric field at the measuring 
points. Because the electric field at the measuring 
points is the measured value, interference maybe 
comes up, which will result in a wrong solution to 
the inverse problem; this is the so-called ill-posed 
characteristic of the solution to the inverse 
problem. To reduce the ill-posed of the inverse 
problem, regularization is frequently used in the 
solution to the inverse problem. 

The linear equations (9) obtained from the 
linearization of the nonlinear equation will inherit 
the ill-conditioning characteristic of the original 
equation, so it is necessary to introduce the 
regularization. Regularizing the linear equation 

( )
( )( )k
k

FE F q q
q

δ∂
− ≈

∂
 corresponding to equation 

(8), then the following optimization problem can 
be obtained. 

      

2
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δ α δ
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where W is a linear operator. If W=I, the 
regularization will be imposed on δq. This is the 
"crawling method", and it has the following 
disadvantages: 1) it can not control the 
characteristics of all the solutions. Because the 
regularization is imposed on δq, rather than q. 2) 
The solution q* depends on the initial solution q(0) 
and the minimum path δq(k), k=1, 2, …, N, where 
N is the iterative times. 3) If different methods are 
used to calculate the value of δq(k), different q* 
will be obtained. 

In order to overcome the disadvantages of the 
"crawling method", in this paper, the following 
global regularization was adopted. 

2
2( ) ( )

( )min ( ) ( )k k
k

FE F q q W q q
q

δ α δ
⎧ ⎫∂⎪ ⎪− − + +⎨ ⎬

∂⎪ ⎪⎩ ⎭
.   (11) 

In the so-called global regularization, the 
regularization is imposed on q, so the obtained 
step size may not be small. It is actually the 
linearization of the following optimization 
problem. 

          { }2min ( ) ( )E F q W qα− + 2 .           (12) 

 
Equation (12) is the regularization of the 

original nonlinear inverse problem. 
 

C.  Damped Gauss-Newton Iterative Method 
To ensure the objective function value for (12) 

diminish in the next iteration, the Damped Gauss-
Newton iterative method was used in this paper. In 
the DGN, the δq is replaced with ωδq (0.1<ω<0.5) 
to make the δq small enough, which make the 
objective function value for (12) diminish in the 
next iteration. 

To ensure the objective function value for (12) 
diminish in the next iteration, the Damped Gauss-
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Newton (DGN) iterative method was used in this 
paper. In the DGN, the δq is replaced with ωδq 
(0.1<ω<0.5) to make the δq small enough, which 
make the objective function value for (12) 
diminish in the next iteration. 
 

IV. CALCULATION EXAMPLES 
To verify the validation of the method 

presented in the method, model shown in Fig. 1 
was taken as an example. To get more real 
information of the TL, 11 points are laid out along 
a horizontal line with a height of 1.8m from the 
ground as shown in Fig.1. The distance between 
two adjacent measuring points is 5m. 

 For the solution to the electric field inverse 
problem of the TL, the measured electric field 
strength at the 11 measuring points, which may 
contain interference, should be given first. To 
verify the validation of the method proposed in 
this paper, a set of simulated measured electric 
field strength at the measuring points was offered 
in the following way. Firstly according to the 
computation method of the forward problem, the 
electric field strength at all the measuring points 
was calculated with the parameters when the TLs 
were in normal condition, which could be taken as 
the standard value of the electric field strength at 
the measuring points. Add a random error data 
with ±10% (Note: the errors of the symmetric 
points are equal) to the standard values of the 
electric field strength at all the measuring points, 
and the sum could be taken as the simulated 
measured values of the electric field strength. 
Calculations on the electric field inverse problem 
of the TL at different situation were carried out in 
the paper, such as the TLs were in normal 
operation, or in faulty state respectively. 
 
Table 1. Solution without regularization. 

 
Table 2. Solution with regularization. 

 
(a)  

 

 
(b)  

 
Fig. 2. Electric field distribution in the vicinity of 
500kV double-circuit TLs for normal operation 
situation, (a) Without regularization, (b) With 
regularization. 
 
 
A.  Calculation for Normal Operation 

When the TL shown in Fig. 1 was in normal 
operation, the parameters of the TL were as 
follows: phase potential was 303kV, and the phase 
angle from A1 to C1 was 0º, 120º, 240º. Hence the 
simulated electric field strengths at the 11 
measuring points were as follows: 2.680 kV/m, 
4.718 kV/m, 7.214 kV/m, 7.250 kV/m, 8.954 
kV/m, 10.706 kV/m, 8.954 kV/m, 7.250 kV/m, 
7.214 kV/m，4.718 kV/m, 2.680 kV/m. As to the 
lightning conductor, both the boundary potential 
and phase were zero. 

Table 1 and Fig. 2 (a) are the computational 
results when the global regularization was not 
adopted. Table 2 and Fig. 2 (b) are the 
computational results when the global 
regularization was adopted. It can be seen from 
Table 1 and 2 that, when the regularization was 
not used, the deviations of the computational 
results are relatively large, which indicate that the  

Conductor A1 B1 C1 A2 B2 C2 
Potential 
(105V/m) 2.516 2.449 1.593 1.121 2.494 3.024

Phase angle 116.3 186.1 242.1 31.9 83.0 237.6

Conductor A1 B1 C1 A2 B2 C2 
Potential 
(105V/m) 3.016 3.037 3.031 2.997 3.042 3.023

Phase angle 0.7 121.0 240.0 0 120.2 239.7
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(a) 
 

 
(b)  

 

 
(c) 

 
Fig. 3. Comparison between the results obtained 
by (a) the IES-Electro, (b) the inverse problem, 
and (c) the relative error.  

 
(a) 

 
(b) 

 
(c)  

Fig. 4. Electric field at measuring points obtained 
by (a) IES-Electro, (b) the inverse problem, and 
(c) the relative error.  
 
global regularization can effectively eliminate the 
influence caused by the interference in the 
measurement. 

In order to verify the accuracy of the method 
used to solve the inverse problem, further 
calculations were carried out. In the model shown 
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in Fig. 1, along the horizontal line with a height of 
1.8m from the ground, 21 points from left to right 
are selected for computation. The distance 
between two adjacent measuring points is 1.2m. 
The electric field strength at the 21 measuring 
points was computed respectively with the IES-
Electro software and the inverse problem method 
proposed in this paper, the IES-Electro software is 
a BEM based software [8]. Fig. 3 shows the 
comparison between the results obtained by 
method in this paper and IES-Electro. It can be 
seen from the computation results that the 
maximum relative error is 3.97%, which is within 
the allowed error range. Hence the accuracy of the 
method to solve the electric field inverse problem 
of the TL was verified.  
 
B. Calculation for Faulty State 

Suppose that line of phase C1 was in phase 
anomaly state, of which the phase angle was 120º, 
and the line of phase B1 was short-circuit. Hence 
the simulated measured electric field strength at 
the 11 measuring points was computed, and the 
following was its value: 3.724 kV/m, 6.004 kV/m, 
8.726 kV/m, 9.182 kV/m,10.475 kV/m, 11.556 
kV/m, 9.313 kV/m, 7.263 kV/m, 7.186 kV/m, 
4.684 kV/m, and 2.62 kV/m.  
In order to better verify the accuracy of the 
solution to the inverse problem, the electric field 
strength at the 21 measuring points were computed 
with the IES-Electro and method in this paper 
respectively, and the computation results are 
shown in Fig. 4, including the actual electric field 
strength and the relative error. It can be seen from 
the computational results that the maximum 
relative error is 3.61%, which is within the 
allowed error range. Hence when the TLs were not 
in normal operation state, the method in the paper 
is still can solve the inverse problem correctly. 
 

V. CONCLUSIONS 
The electric field inverse problem of 

transmission lines was investigated in this paper. 
First the equations for the electric field forward 
problem were formulated, and equations for the 
inverse problem were formulated according to the 
forward problem and the least square theory. A 
method to solve the inverse problem was 
presented in the paper, in which the global 
regularization was used to process the ill-posed 
characteristic of solution to the inverse problem. 

And the DGN iterative method was used to search 
the optimum solution. 

A 500kV double-circuit transmission line was 
taken as an example for the calculation of the 
inverse problem. The inverse problems for 
different situations were calculated, including the 
situation when the transmission lines were in 
normal operation, and the situation when the 
transmission lines were in faulty state. Solutions to 
the inverse problem with regularization and 
without regularization were compared, and results 
indicate that the global regularization can 
effectively eliminate the ill-pose of the inverse 
problem. 

Application of the electric field inverse problem 
was discussed in the paper. It could be used to 
confirm the electrification state of the UHV TLs, 
and also could be used in the environmental 
assessment tests to reduce the measurement 
workload. 
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