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Abstract— We report on experiments with a
novel family of Krylov subspace methods for
solving dense, complex, non-Hermitian systems
of linear equations arising from the Galerkin
discretization of surface integral equation models
in Electromagnetics. By some experiments
on realistic radar-cross-section calculation, we
illustrate the numerical efficiency of the proposed
class of algorithms also against other popular
iterative techniques in use today.

Index Terms— Krylov subspace methods,
Lanczos biconjugate A-orthonormalization
methods, multilevel fast multipole method,
scattering problems, sparse approximate inverse
preconditioning.

I . INTRODUCTION
Mathematical models based on surface

integral equations are becoming very popular
in computational electromagnetics. They require
a simple description of the surface of the target
by means of triangular facets, thus simplifying
considerably the mesh generation especially in
the case of moving objects. Upon discretization
they typically yield smaller systems to solve in
comparison with finite difference or finite element
techniques applied to the same problem [1]. The
potential drawback of using integral methods is
that they require to solve large dense complex

systems of linear equations. Therefore, robust
matrix solvers are urgently needed for this problem
class [2].

The Maxwell’s equations can be reformulated as
a set of integral equations defined in the frequency
domain as the following variational problem:

Find the surface currentj such that for all
tangential test functionsjt, we have

∫∫

Γ
G(x, y)

(
j(x) · jt(y)

)
dxdy

−
1

k2

∫∫

Γ
G(x, y)

(
divΓj(x) · divΓjt(y)

)
dxdy

=
i

kZ0

∫

Γ
Einc(x)·jt(x)dx.

(1)

We denote by G(x, y) =
eik|y−x|

4π|y − x|
the

Green’s function of Helmholtz equation,Γ the
boundary of the object,k the wave number
and Z0 =

√
µ0/ε0 the characteristic impedance

of vacuum (ε0 is the electric permittivity and
µ0 the magnetic permeability), anddivj(x)
is the divergence operator of a continuously
differentiable vector field j(x) defined on a
3D Euclidean space. Equation (1) expresses the
electric currents in terms of the electric field and
is known as electric field integral equation (EFIE).
It is applied to model arbitrary geometries like
objects with cavities, disconnected parts, breaks
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on the surface [3,4]. For its generality, the EFIE
model is very popular in industrial environment.
However, it is tough to solve by iterative methods,
compared to other surface integral formulations of
electromagnetic scattering problems.

On discretizing Equation (1) in space by the
MoM over a mesh containingn edges, the surface
currentj is expanded into a set of basis functions
{ϕi}1≤i≤n with compact support (the Rao-Wilton-
Glisson basis [5] is a popular choice), then the
integral equation is applied to a set of tangential
test functionsjt. Selectingjt = ϕj , we are led
to compute the set of coefficients{λi}1≤i≤n such
that

n∑

i=1

λi

∫∫

Γ

G(x, y) (ϕi(x) · ϕj(y))dxdy

−
1

k2

n∑

i=1

λi

∫∫

Γ

G(x, y) (divΓϕi(x) · divΓϕj(y))dxdy

=
i

kZ0

∫

Γ

Einc(x) · ϕj(x)dx,

(2)

for each1 ≤ i ≤ n. The set of equations (2) can
be recast in matrix form as

Aλ = b, (3)

whereA = [Aij ] andb = [bi] have elements

Aij =

∫∫

Γ
G(x, y) (ϕi(x) · ϕj(y))dxdy

−
1

k2

∫∫

Γ
G(x, y) (divΓϕi(x) · divΓϕj(y))dxdy,

(4)

bj =
i

kZ0

∫

Γ
Einc(x) · ϕj(x)dx. (5)

In Equation (3), the set of unknowns are
associated with the vectorial flux across an edge
in the mesh. The coefficient matrixA generated by
MoM is dense complex non-Hermitian; hence the
pertinent linear system cannot be solved using the
conjugate gradient (CG) algorithm. The restarted
generalized minimal residual (GMRES) method, its
flexible variant FGMRES, and some of the short-
recurrence methods such as BiCG, BiCGStab, and
TFQMR are popular options, see e.g. [6,7].

In this study, we illustrate experiments with
two recently developed algorithms: the conjugate
A-orthogonal residual squared (CORS) and the
biconjugate A-orthogonal residual stabilized
(BiCORSTAB) methods for non-Hermitian
linear systems, sketched in Algorithms 1-2.
They compute the approximate solutionxm that
belongs to the Krylov subspacex0 + Km(A; v1)
by projecting the residual orthogonally to the
constraints subspaceLm ≡ AHKm(AH ; w1).
Throughout this paper, we denote by the
superscriptH the Hermitian (conjugate transpose)
of a vector or a matrix and the standard inner
product of two complex vectorsu, v ∈ C

n by

〈u, v〉 = uHv =

n∑

i=1

ūivi.

For the sake of conciseness, we point the reader
to [8,9] for a thorough mathematical derivation of
the BiCORSTAB and CORS methods.

II . NUMERICAL EXPERIMENTS
For the numerical experiments, we consider

some selected scattering problems described in
Table 1. We report the number of iterations
required by several Krylov methods (listed in
Table 2) to reduce the initial residual by five orders
of magnitude, starting from the zero vector. The
sequential tests are compiled with the Portland
Group Fortran 90 compiler (version 9) and run on
a cluster of nodes equipped with quad core Intel
CPU (2.8 GHz) and 16 GB of physical RAM.

In our sequential experiments, the CORS method
was the most effective non-Hermitian solver with
respect to CPU time, as it is shown in Table 3.
Unrestarted GMRES may outperform all other
Krylov methods and should be used when memory
is not a concern. We selected a value of 50 for
the restart parameter in the GMRES method in
our runs on small problems, reported in Table 3,
and a value of 100 in the runs on large problems,
reported in Tables 4-5. In Figure 1, we illustrate
the convergence history of CORS and GMRES(50)
on Examples 3 to show the different numerical
behaviors of the two families of solvers. The
residual reduction is much smoother for GMRES
along the iterations. The BiCORSTAB method also
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Table 1: Characteristics of the model problems
Example Description Size Frequency (MHz)

1 Open cylinder 6268 362
2 Sphere 12000 535
3 Satellite 1699 57
4 Cavity 727120 300
5 Paraboloid 857862 300

Table 2: List of solvers used and relative cost.
We denoteby n the problem size, byi the iteration
number and bym the restart value in GMRES

Solver Products byA/AH Memory
CORS 2/0 matrix+14n

BiCORSTAB 2/0 matrix+13n

GMRES 1/0 matrix+(m + 3)n
QMR 2/1 matrix+11n

TFQMR 4/0 matrix+10n

BiCGSTAB 2/0 matrix+7n

shows fast convergence and may be an appropriate
choice. BothCORS and BiCORSTAB are based
on short-term recurrences and therefore, they are
very cheap in memory (see Table 2).

Finally, methods based on Lanczos
biconjugation are also considered in many
scattering analysis, due to their simplicity (they
are parameter-free) and low memory requirements,
see e.g. [10–12]. In our experiments, as shown
in Table 3, BiCGSTAB and QMR-like methods
are less efficient than CORS.

A. MLFMA and SAI

A straightforward implementation of Krylov
methods requiresO(n2) memory storage, where
n is the number of unknowns, to compute a
solution for one excitation. The solution cost
may be reduced toO(n log n) algorithmic and
memory complexity using the multilevel fast
multipole algorithm (MLFMA) for the M-V
operation. Recent progress in the developments
of parallel multipole codes, provably scalable to
several million discretization points, are urging
the quest of robust iterative algorithms for this
problem class [13,14]. In this study, we solved
the two largest problemsi.e. Examples 4 and 5,
using MLFMA and a sparse approximate inverse
(SAI) preconditioner. The SAI preconditioner was
computed by minimizing the Frobenius-norm of

Table 3: Number of iterations and CPU time
(in seconds) required by Krylov methods to reduce
the initial residual toO(10−5). For each example,
asterisk ”∗” indicates the fastest run

Solver/Example 1 2 3
CORS 601 (253∗) 294 (451∗) 371 (11∗)
BiCORSTAB 941 (614) 423 (1099) 775 (37)
GMRES(50) 2191 (469) 1803 (1397) 871 (17)
QMR 878 (548) 430 (1045) 452 (24)
TFQMR 482 (398) 281 (863) 373 (27)
BiCGSTAB 1065 (444) 680 (1031) 566 (18)

the error matrix

min
M∈S

∥∥∥I −MÂ
∥∥∥

F
,

whereS is the set of matrices with a given sparsity
pattern. We chosêA to be sparse and equal to
the multipole matrix, and we selected the sparsity
pattern ofM equal to the nonzero structure of̂A.
Details of the SAI preconditioner and of the highly
efficient parallel implementation of MLFMA that
we used in this study are found in [15] and in [16],
respectively.

The first model is a cavity of size 10λ×
10λ × 50λ, discretized with 727,120 nodes and
illuminated at an incident angle(θ, φ) = (45◦, 0◦).
The second model is a paraboloid of radiusλ and
focal depth12λ, discretized with 857,862 nodes
and illuminated at an incident angle(θ, φ) =
(45◦, 0◦). Besides the GMRES method, in these
experiments we compare CORS and BiCORSTAB
also against the FGMRES method preconditioned
by an inner GMRES solver. This combination
of Krylov methods is reported to be amazingly
effective on this problem class [6,7]. In Tables 4-
5, we report the number of iterations and CPU
solution time necessary to achieve convergence on
16 processors. The solution process was declared
a solver failure when the initial residual was not
reduced by at least four orders of magnitude after
2000 M-V products (or 50 outer iterations for
FGMRES). This level of accuracy on the final
residual enabled us to calculate a correct radar-
cross-section, which is shown in Figure 3 for
BiCORSTAB and CORS. We notice again the
remarkable robustness and efficiency of the two
algorithms.
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Fig. 1. Example 3: a satellite. (a) The discretized
mesh. (b) The convergence history of the CORS
vs. the restarted GMRES methods.

III . ENHANCING THE ROBUSTNESS
OF CORS BY DEFLATION

It is known that the convergence of an iterative
method is mostly dictated by the distribution of
the eigenvalues of the coefficient matrixMA. For
GMRES, the residual reduction afterk iterations
writes

‖rk‖2 /‖r0‖2 6 κ(V )min
pk

max
i=1,...,n

|pk(λi)| , (6)

where κ(V ) is the condition number of the
eigenvector matrix. Ifκ(V ) 6≫ 1, the problem
of describing the convergence of GMRES reduces

Fig. 2. Geometries of the largest model problems:
(left) Example 4: a cavity, and (right) Example 5:
a paraboloid.

Table 4: Iterations count for the experiments with
MLFMA and SAI

Example 4: Cavity 10λ× 10λ × 50λ
Size: 727,120, Setup time SAI: 57s, Nr. procs: 16

GMRES(100) CORS BiCORSTAB FGMRES
No prec. >2000 239 280 21

SAI 798 64 56 10

Example 5: Paraboloid of radius25λ and focal depth of12λ
Size: 857,862, Setup time SAI: 148s, Nr. procs: 16

GMRES(100) CORS BiCORSTAB FGMRES
No prec. 1065) 367 410 11

SAI 112 42 36 5

to a problem in approximation theory: how well
can one approximate zero on the set of complex
eigenvalues using akth-degree polynomial with
value 1 at the origin. From Eq. (6), we see that the
presence of small eigenvalues close to the origin
in the spectrum of the coefficient matrix of the
preconditioned linear system may lead to highly
oscillatory polynomials with high degreek, and
therefore may increase the number of iterations

Table 5: CPU time for the experiments with
MLFMA and SAI. For each example, asterisk ”∗”
indicates the fastest run

Example 4: Cavity 10λ× 10λ × 50λ
Size: 727,120, Setup time SAI: 57s, Nr. procs: 16

GMRES(100) CORS BiCORSTAB FGMRES
No prec. >651s 144s∗ 168s 2076s

SAI 325s 54s 51s∗ 898s

Example 5: Paraboloid of radius25λ and focal depth of12λ
Size: 857,862, Setup time SAI: 148s, Nr. procs: 16

GMRES(100) CORS BiCORSTAB FGMRES
No prec. 693s 449s∗ 495s 1071s

SAI 89s 72s 60s∗ 160s
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(a)

(b)

Fig. 3. Comparative curves of the radar-
cross-section (RCS) calculation for (a) the cavity
problem, and (b) the paraboloid problem.

of GMRES to obtain convergence. In this section,
we show how to enhance the robustness of the
CORS method by dumping the slowly converging
components of the residuals associated to the
smallest eigenvalues. This may finally result in
considerably faster convergence.

Let MA = V ΛV −1 be an eigendecomposition
of the preconditioned matrixMA, with Λ =
diag(λi), |λ1|≤ . . . ≤ |λn| are the eigenvalues of
MA andV is the matrix collecting the associated
right eigenvectors ofMA. We denote byVε the
matrix of the right eigenvectors ofMA associated
to the eigenvaluesλi such that|λi|≤ ε. We also
denote byAc = V H

ε (MA)Vε the projection of
MA in the eigenspace spanned byVε, and by
Mc = VεA

−1
c V H

ε its prolongation back to the

original space.
Then, the following result holds.

Theorem 1: Let

Ãc = V HAVε has full rank,

M̃c = VεÃ
−1
c V H ,

and
M̃ = M + M̃c.

ThenM̃A is similar to a matrix whose eigenvalues
are {

ηi = λi if |λi|> ε,
ηi = 1 + λi if |λi|≤ ε.

Ac represents the projection of the matrix
MA on the coarse space defined by the
approximate eigenvectors associated with its
smallest eigenvalues.
Proof
We first remark thatAc = diag(λiu

H
i vi) with

|λi|≤ ε and soAc is nonsingular.Ac represents the
projection of the matrixMA on the space spanned
by the approximate eigenvectors associated with its
smallest eigenvalues.
Let V = (Vε, Vε̄), where Vε̄ is the set of(n −
k) right eigenvectors associated with eigenvalues
|λi|> ε.
Let Dε = diag(λi) with |λi|≤ ε and Dε̄ =
diag(λj) with |λj |> ε.
The following relations hold:M̃AVε = Vε(Dε +
Ik) and, M̃AVε̄ = Vε̄Dε̄ + VεC with C =
A−1

c WHAVε̄; then we have

M̃AV = V

(
Dε + Ik C

0 Dε̄

)
.

For right preconditioning, that isAMy = b,
similar results hold. Observe that the effect of
applying the low-rank correction is to completely
removed the effect of thek smallest eigenvalues
from the spectrum ofMA. Therefore, we may
expect that an iterative method may converge faster
on the transformed linear system.

The spectral corrections may be implemented in
the CORS algorithm as follows.

1) Compute an approximation of the invariant
subspace Vε associated to the smallest
eigenvalues ofMA.
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2) Construct the projected matrixAc =
V H

ε (MA)Vε and the prolongation matrix
Mc = VεA

−1
c V H

ε . The matrix Ac is an
k×k matrix, wherek is the number of small
eigenvalues that we want to remove, while
Mc is n× n.

3) Update the preconditioned vector quantities
p in CORS asp← p + Mcp

The same idea and computational scheme may
be extended to the BiCORSTAB algorithm.

We applied deflated CORS (or, shortly DCORS)
to a complete RCS calculation, which requires to
solve linear systems with multiple right-hand sides.
Take as incident field a plane wave of general form
in spherical coordinates

~Einc (x, ϕ, pθ, pϕ) = pθûθe
ikx·ûrϕ + pϕûϕeikx·ûrϕ,

where pθ, pϕ are two complex numbers and
ûr, ûθ, ûϕ are the unitary vectors:

ûr =




cos ϕ cos θ
sinϕ cos θ

sin θ



 , ûθ =




− cos ϕ sin θ
− sinϕ sin θ

cos θ



 ,

ûϕ =




− sinϕ cos θ
− cos ϕ cos θ

sin θ



 .

Chooseθ = 0 and increaseϕ of one degree each
time from 0 to π. Then, we obtain a sequence
of 180 linear systems, each of them having the
same coefficient matrix and a different right-hand
side, associated to the following expression for the
incident field

~Einc(x) = ẑeikx·ûr(ϕ) = ẑeik(x1 cos ϕ+x2 sin ϕ).

In the experiments reported in Table 6, the
preconditionerM is the SAI method computed
using sixty nonzeros per column, and we deflate
an approximate invariance eigenspaceVε of
dimension 10. The invariant subspaceVε is
computed using the ARPACK library [17]. In our
runs, the extra cost to setup DCORS is quickly
amortized using only three right-hand sides for the
satellite problem and four for the cylinder problem.

IV . CONCLUSIONS
We have analyzed the performance of two

novel Krylov projection methods computed from

Table 6: Experiments with deflated CORS

On the satellite: SAI = 60 - AV = 3
CORS DCORS(10)

Avg Its on 180 RHS 62.8 38.2
Total solution time (sec) 275.8 198.9

On the cylinder - SAI = 60
CORS DCORS(10)

Avg Its on 180 RHS 193.4 123.7
Total solution time (sec) 365.5 249.4

the Lanczos biconjugate A-orthonormalization
methodfor solving dense complex non-Hermitian
linear systems in radar-cross-section calculation.
This family of solvers shows good convergence
properties, is cheap in memory as it is derived from
short-term vector recurrences, is parameter-free
and does not suffer from the restriction to require
a symmetric preconditioner. Additionally, it does
not necessitate of matrix multiplication byAH

that might be tricky to implement in some integral
application codes combined with MLFMA. Finally,
we have illustrated how to possibly enhance the
efficiency of the methods for solving linear systems
with multiple right-hand sides, a typical scenario
arising in realistic RCS calculation in industry.

The numerical results indicate that the proposed
solvers may be an efficient alternative to other
popular methods especially when robustness and
memory are concerns.
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Algorithm 1 Left preconditioned BiCORSTAB
method.

1: Computer0 = b−Ax0 for someinitial guess
x0.

2: Chooser∗0 = P (A)r0 such that〈r∗0, Ar0〉 6= 0,
whereP (t) is a polynomial int. (For example,
r∗0 = Ar0).

3: for j = 1, 2, . . . do
4: solveMzj−1 = rj−1

5: ẑ = Azj−1

6: ρj−1 = 〈r∗0, ẑ〉
7: if ρj−1 = 0, method fails
8: if j = 1 then
9: p0 = r0

10: solveMzp0 = p0

11: q0 = ẑ
12: else
13: βj−2 = (ρj−1/ρj−2)× (αj−2/ωj−2)
14: pj−1 = rj−1 + βj−2 (pj−2 − ωj−2qj−2)
15: zpj−1 = zj−1 +

βj−2 (zpj−2 − ωj−2zqj−2)
16: qj−1 = ẑ + βj−2

(
qj−2 − ωj−2ẑqj−2

)

17: end if
18: solveMzqj−1 = qj−1

19: ẑqj−1 = Azqj−1

20: αj−1 = ρj−1/
〈
r∗0, ẑqj−1

〉

21: s = rj−1 − αj−1qj−1

22: if ‖s‖2 is small, setxj = xj−1 +αj−1zpj−1

and stop
23: zs = zj−1 − αj−1zqj−1

24: t = ẑ − αj−1ẑqj−1

25: ωj−1 = 〈t, s〉 /〈t, t〉
26: xj = xj−1 + αj−1zpj−1 + ωj−1zs
27: rj = s− ωj−1t
28: check convergence; continue if necessary

andωj−1 6= 0
29: end for

Algorithm 2 Left preconditioned CORS method.
1: Computer0 = b−Ax0 for someinitial guess

x0.
2: Chooser∗0 = P (A)r0 such that〈r∗0, Ar0〉 6= 0,

whereP (t) is a polynomial int. (For example,
r∗0 = Ar0).

3: for j = 1, 2, . . . do
4: solveMzj−1 = rj−1

5: r̂ = Azj−1

6: ρj−1 = 〈r∗0, r̂〉
7: ifρ j−1 = 0, method fails
8: if j = 1 then
9: e0 = r0

10: solveMze0 = e0

11: d0 = r̂
12: q0 = r̂
13: else
14: βj−2 = ρj−1/ρj−2

15: ej−1 = rj−1 + βj−2hj−2

16: zej−1 = zj−1 + βj−2zhj−2

17: dj−1 = r̂ + βj−2fj−2

18: qj−1 = dj−1 + βj−2 (fj−2 + βj−2qj−2)
19: end if
20: solveMq = qj−1

21: q̂ = Aq
22: αj−1 = ρj−1/〈r

∗
0, q̂〉

23: hj−1 = ej−1 − αj−1qj−1

24: zhj−1 = zej−1 − αj−1q
25: fj−1 = dj−1 − αj−1q̂
26: xj = xj−1 + αj−1 (2zej−1 − αj−1q)
27: rj = rj−1 − αj−1 (2dj−1 − αj−1q̂)
28: check convergence; continue if necessary
29: end for
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