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Abstract— We report on experiments with a systems of linear equations. Therefore, robust
novel family of Krylov subspace methods for matrix solvers are urgently needed for this problem
solving dense, complex, non-Hermitian systemslass [2].

of linear equations arising from the Galerkin The Maxwell's equations can be reformulated as
discretization of surface integral equation modelsa set of integral equations defined in the frequency
in  Electromagnetics. By some experimentsdomain as the following variational problem:

on realistic radar-cross-section calculation, we Find the surface currenf such that for all
illustrate the numerical efficiency of the proposedtangential test functiong’, we have

class of algorithms also against other popular

iterative techniques in use today. / G(z,y ' (y))dady

Index Terms— Krylov subspace methods,

Lanczos  biconjugate A-orthonormalization kz/ G(z,y) d“’”( ) - divrj'(y))dady (1)
methods, multilevel fast multipole method,

scattering problems, sparse approximate inverse k:Zo Emc( )-j' (z)dz.

preconditioning.
eikly—z|

I. INTRODUCTION We denote byG(z,y) =
Mathematical models based on surfaceGreens function of Helmholtz equatlonf the
integral equations are becoming very populaboundary of the objectk the wave number
in computational electromagnetics. They requireand Z, = +/uo/eo the characteristic impedance
a simple description of the surface of the targebf vacuum (g is the electric permittivity and
by means of triangular facets, thus simplifyingu, the magnetic permeability), andlivj(z)
considerably the mesh generation especially ifis the divergence operator of a continuously
the case of moving objects. Upon discretizationdifferentiable vector fieldj(z) defined on a
they typically yield smaller systems to solve in3D Euclidean space. Equation! (1) expresses the
comparison with finite difference or finite elementelectric currents in terms of the electric field and
techniques applied to the same problem [1]. Thes known as electric field integral equation (EFIE).
potential drawback of using integral methods islt is applied to model arbitrary geometries like
that they require to solve large dense complexbjects with cavities, disconnected parts, breaks
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on the surface [3,4]. For its generality, the EFIE In this study, we illustrate experiments with
model is very popular in industrial environment. two recently developed algorithms: the conjugate
However, it is tough to solve by iterative methods,A-orthogonal residual squared (CORS) and the
compared to other surface integral formulations obiconjugate  A-orthogonal residual stabilized
electromagnetic scattering problems. (BICORSTAB) methods for non-Hermitian
On discretizing Equation_(1) in space by thelinear systems, sketched in Algorithms| 1-2.
MoM over a mesh containing edges, the surface They compute the approximate solutiaf), that
current; is expanded into a set of basis functionsbelongs to the Krylov subspacg + K,,(A;v1)
{902}1<z<n with compact support (the Rao-Wilton- by projecting the residual orthogonally to the
Glisson basis [5] is a popular choice), then theconstraints subspace?,, = AYK,,(A7;w,).
integral equation is applied to a set of tangentialThroughout this paper, we denote by the
test functions;’. Selecting;j’ = ¢;, we are led superscriptd the Hermitian (conjugate transpose)
to compute the set of coefficien{s\;},.,,, such of a vector or a matrix and the standard inner

that product of two complex vectorg, v € C" by
n H _
U,V) =Uu"v = U; V4.
Z&/FG(w,y) (¢i() - @;(y))dzdy ) ;
i=1

For the sake of conciseness, we point the reader
*pz)\i //F G(z,y) (divrpi(x) - divrg;(y))dedy — to [8,9] for a thorough mathematical derivation of
=t . the BICORSTAB and CORS methods.
=— | FEipelx) pi(x)dr,
kZy Jr (@) ¢5(z) 1. NUMERICAL EXPERIMENTS

2) For the numerical experiments, we consider
for eachl < i <n. The set of equations (2) can some selected scattering problems described in
be recast in matrix form as Table | 1. We report the number of iterations

A\ — b 3) required by several Krylov methods (listed in

’ Table 2) to reduce the initial residual by five orders

where A = [A;;] andb = [b;] have elements of magnitude, starting from the zero vector. The
sequential tests are compiled with the Portland

Ajj = // G(z,y) (pi(z) - v;(y))dzdy Group Fortran 90 compiler (version 9) and run on

1 a cluster of nodes equipped with quad core Intel

_kQ/ G(gj,y) (dZ'UFSOz(JJ) . du}rgpj(y))dxdy, CPU (28 GHZ) and 16 GB of phyS|CaI RAM.

r (@) In our sequential experiments, the CORS method

was the most effective non-Hermitian solver with

, respect to CPU time, as it is shown in Table 3.

b; — kZZ Eine(x) - pj(z)d. (5) Unrestarted GMRES may outperform all other
0 Krylov methods and should be used when memory

In Equation [(3), the set of unknowns areis not a concern. We selected a value of 50 for
associated with the vectorial flux across an edgéhe restart parameter in the GMRES method in
in the mesh. The coefficient matrik generated by our runs on small problems, reported in Table 3,
MoM is dense complex non-Hermitian; hence theand a value of 100 in the runs on large problems,
pertinent linear system cannot be solved using theeported in Tables [4:5. In Figure 1, we illustrate
conjugate gradient (CG) algorithm. The restartedhe convergence history of CORS and GMRES(50)
generalized minimal residual (GMRES) method, itson Examples 3 to show the different numerical
flexible variant FGMRES, and some of the short-behaviors of the two families of solvers. The
recurrence methods such as BIiCG, BiCGStab, angesidual reduction is much smoother for GMRES
TFQMR are popular options, see e.g. [6,7]. along the iterations. The BICORSTAB method also
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Table 1. Characteristics of the model problems Table 3:  Number of iterations and CPU time

Example | Description Size | Frequency (MHz) (in seconds) required by Krylov methods to reduce
; gpﬁn cylinder 1622(?830 ggé the initial residual toO(10~°). For each example,
phere s wm o1
3 Satellite 1699 57 agtoelz\rlesrk indicates the fastest run
4 Cavity 727120 300 /Example 1 2 3
5 Paraboloid 857862 300 CORS 601 (253) | 294 (45T) | 371 (1T)

BICORSTAB | 941 (614) | 423 (1099) | 775 (37)
GMRES(50) | 2191 (469)| 1803 (1397)| 871 (17)

Table 2: List of solvers used and relative cost| QYR 878 (548) | 430 (1045) | 452 (24)
: ) : : TFQMR 482 (398) | 281 (863) | 373 (27)

We denoteby n the problem size, bythe iteration | gicosTaR 1065 (444)| 680 (1031) | 566 (18)
number and byn the restart value in GMRES

Solver Products byA/A" Memory ;

CORS 2/0 matrix+14n the error matrix

BiCORSTAB 2/0 matrix+13n min 17 — M;l\‘

GMRES 1/0 matrix+(m + 3)n MesS F’

QMR 211 matrix+11n

TFQMR 4/0 matrix+10n whereS is the set of matrices with a given sparsity

BiICGSTAB 2/0 matrix+7n pattern. We chosel to be sparse and equal to

the multipole matrix, and we selected the sparsity
shows fast convergence and may be an appropriagattern of M equal to the nonzero structure df
choice. BothCORS and BICORSTAB are based Details of the SAI preconditioner and of the highly
on short-term recurrences and therefore, they arefficient parallel implementation of MLFMA that
very cheap in memory (see Table 2). we used in this study are found in [15] and in [16],

Finally, = methods based on Lanczosrespectively.

biconjugation are also considered in many The first model is a cavity of size 10X
scattering analysis, due to their simplicity (theyl0A x 50\, discretized with 727,120 nodes and
are parameter-free) and low memory requirementslluminated at an incident angl@, ¢) = (45°,0°).
see e.g. [10-12]. In our experiments, as showdhe second model is a paraboloid of radiusnd
in Table[3, BICGSTAB and QMR-like methods focal depth12), discretized with 857,862 nodes

are less efficient than CORS. and illuminated at an incident angl¢,¢) =
(45°,0°). Besides the GMRES method, in these
A. MLEMA and SAI experiments we compare CORS and BiCORSTAB

_ _ _ also against the FGMRES method preconditioned
A straightforward implementation of Krylov by an inner GMRES solver. This combination

methods require$)(n”) memory storage, where of ryioy methods is reported to be amazingly
n is the number of unknowns, to COMpUte Agftective on this problem class [6,7]. In Tables 4-
solution for one excitation. The solution costE we report the number of iterations and CPU
may be reduced ta(nlogn) algorithmic and g4 ytion time necessary to achieve convergence on
memory complexity using the mulilevel fast 16 nrocessors. The solution process was declared
multipole algorithm (MLFMA) for the M-V 4 gover failure when the initial residual was not
operation. Recent progress in the developments,y,ced by at least four orders of magnitude after
of parallel multipole codes, provably scalable t05600 M-y products (or 50 outer iterations for
several million discretization points, are urgingFGMRES). This level of accuracy on the final
the quest of robust iterative algorithms for this egiqual enabled us to calculate a correct radar-
problem class [13,14]. In this study, we SOIVedcross-section, which is shown in Figure 3 for

the two largest problemse. Examples 4 and 5, gicORSTAB and CORS. We notice again the

using MLFMA and a sparse approximate inversgemarkaple robustness and efficiency of the two
(SAI) preconditioner. The SAI preconditioner Was g|gorithms.

computed by minimizing the Frobenius-norm of
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Fig. 1. Example 3: a satellite. (a) The discretized.
mesh. (b) The convergence history of the CORS

vs. the restarted GMRES methods.

1. ENHANCING THE ROBUSTNESS
OF CORS BY DEFLATION

It is known that the convergence of an iterative

method is mostly dictated by the distribution of
the eigenvalues of the coefficient matiX A. For
GMRES, the residual reduction aftériterations
writes

Ipk(Ai)l,  (6)

Irilla /llroll, < (V) min max
where (V) is the condition number of the
eigenvector matrix. If«(V)) » 1, the problem

of describing the convergence of GMRES reduce
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Fig. 2. Geometries of the largest model problems:
(left) Example 4: a cavity, and (right) Example 5:
a paraboloid.

Table 4: Iterations count for the experiments with

MLFMA and SAI
Example 4: Cavity 10Xx 10\ x 50\
Size: 727,120, Setup time SAl: 57s, Nr. procs: 16

GMRES(100) | CORS | BICORSTAB | FGMRES
No prec. >2000 239 280 21
SAl 798 64 56 10

Example 5: Paraboloid of radiub\ and focal depth ofl2\
Size: 857,862, Setup time SAl: 148s, Nr. procs: 16

GMRES(100) | CORS | BiCORSTAB | FGMRES
No prec. 1065) 367 410 11
SAI 112 42 36 5

to a problem in approximation theory: how well
canone approximate zero on the set of complex
eigenvalues using &th-degree polynomial with
value 1 at the origin. From Eg.(6), we see that the
presence of small eigenvalues close to the origin
n the spectrum of the coefficient matrix of the
preconditioned linear system may lead to highly
oscillatory polynomials with high degrek, and
therefore may increase the number of iterations

Table 5: CPU time for the experiments with
MLFMA and SAl. For each example, asterisk’”

indicates the fastest run

Example 4: Cavity 10Xx 10\ x 50\
Size: 727,120, Setup time SAIl: 57s, Nr. procs: 16

GMRES(100) | CORS | BiCORSTAB | FGMRES
No prec. >651s 144s 168s 2076s
SAl 325s 54s 51s° 898s

Example 5: Paraboloid of radiib\ and focal depth ofl2A
Size: 857,862, Setup time SAl: 148s, Nr. procs: 16

GMRES(100) | CORS | BICORSTAB | FGMRES
No prec. 693s 449s° 495s 1071s
SAl 89s 72s 60s* 160s
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original space.
Then, the following result holds.

Theorem 1: Let

BiCORSTAB
CORS ‘
FGMRES i

A. = VH AV, has full rank,

RCS (dBsm)

M.=V.AJ'VH,

and

M =M + M,.

L
160 180

ThenM A is similar to a matrix whose eigenvalues
77@':)\1' if |/\1|> g,

are
A. represents the projection of the matrix

MA on the coarse space defined by the

approximate eigenvectors associated with its

smallest eigenvalues.

Proof

We first remark thatA. = diag(\ufv;) with

|A:]< € and soA. is nonsingularA,. represents the

projection of the matrix\/ A on the space spanned

by the approximate eigenvectors associated with its

smallest eigenvalues.

Let V= (V. Vz), whereVz is the set of(n —

k) right eigenvectors associated with eigenvalues

’/\i|> E.

RCS (dBsm)

——BiCORSTAB ‘H, ‘
[ |~ CORS

FGMRES

L L L L L
80 100 120 140 160

(b)

Fig. 3. Comparative curves of the radar- . .
cross-section (RCS) calculation for (a) the cawtyLet De diag(X) with [A;|< e and De

. dz’ag()\j) with ’Aj|> €. _
problem, and (b) the paraboloid problem. The foliowing relations hold7 AV, = V.(D. +

of GMRES to obtain convergence. In this section,Ikzlapghj‘\/{Atﬁn We‘ﬁgfeJr V€ with ©
€

we show how to enhance the robustness of the ¢
CORS method by dumping the slowly converging
For right preconditioning, that isAMy = b,
similar results hold. Observe that the effect of

components of the residuals associated to the
smallest eigenvalues. This may finally result in
considerably faster convergence.

Let MA = VAV ! be an eigendecomposition applying the low-rank correction is to completely
of the preconditioned matrixAZA4, with A = removed the effect of thé smallest eigenvalues
diag(\i), |IM|< ... < |An| are the eigenvalues of from the spectrum ofA/A. Therefore, we may
MA andV is the matrix collecting the associated €xpect that an iterative method may converge faster
right eigenvectors of\/A. We denote byl the ©0n the transformed linear system.
matrix of the right eigenvectors dff A associated  The spectral corrections may be implemented in
to the eigenvalues\; such that|\;|< . We also the CORS algorithm as follows.
denote byA, = VH(MA)V. the projection of 1) Compute an approximation of the invariant
MA in the eigenspace spanned by, and by subspace V. associated to the smallest
M. = V.AZ'VI its prolongation back to the eigenvalues of\/ A.

1 L
20 40 60 180

D, + I,
0

C

MAV:V< D
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2) Construct the projected matrixd. =  Table 6: Experiments with deflated CORS
VH(MA)V. and the prolongation matrix
M, = VaAgIVEH. The matrix A, is an On the satellite: SAl = 60 - AV = 3
k x k matrix, wherek is the number of small CORS | DCORS(10)
eigenvalues that we want to remove, while| Avg Its on 180 RHS 62.8 38.2
M. is n x n. Total solution time (sec) 275.8 198.9
3) Update the preconditioned vector quantities On the cylinder - SAI = 60
pin CORS ap «p+ Mep CORS | DCORS(10)
The same idea and computational scheme mayayq its on 180 RHS 193.4 123.7
be extended to the BICORSTAB algorithm. Total solution time (sec) 365.5 249 4

We applied deflated CORS (or, shortly DCORS)
to a complete RCS calculation, which requires to
solve linear systems with multiple right-hand sidesthe Lanczos biconjugate A-orthonormalization
Take as incident field a plane wave of general forrmethodfor solving dense complex non-Hermitian
in spherical coordinates linear systems in radar-cross-section calculation.
- T T This family of solvers shows good convergence
Eine (2,0, 9o, pp) = Poiige™™ 5% 4 p i e 7, properties, is cheap in memory as it is derived from
where py,p, are two complex numbers and short-term vector recurrences, is parameter-free
Uy, g, Uy, are the unitary vectors: and does not suffer from the restriction to require
a symmetric preconditioner. Additionally, it does

s 6 —cos psinf ) : o
. Cos P Co8 . cosp eI not necessitate of matrix multiplication byl
U = | sinpcos® |,u9=| —sinpsinfd |, . . . . .
. that might be tricky to implement in some integral
sin 6 cos 0 . . ) .
. application codes combined with MLFMA. Finally,
—sin p cos @ . .
L we have illustrated how to possibly enhance the
Gy, = | —cospcost . o
sin 0 efficiency of the methods for solving linear systems

with multiple right-hand sides, a typical scenario
Choosetl = 0 and increasep of one degree each arising in realistic RCS calculation in industry.
time from 0 to . Then, we obtain a sequence The numerical results indicate that the proposed
of 180 linear systems, each of them having thesolvers may be an efficient alternative to other

same coefficient matrix and a different right'handpopu|ar methods especia”y when robustness and
side, associated to the following expression for thgnemory are concerns.

incident field
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Algorithm 1 Left preconditioned BiCORSTAB

method.
1: Computery = b — Az, for someinitial guess  Algorithm 2 Left preconditioned CORS method.
zo- 1: Computery = b — Az, for someinitial guess

2: Chooser| = P(A)ro such that(rg, Arg) # 0,

3

whereP(t) is a polynomial in¢. (For example,
"o

: fo

N2 @A

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:

= Aryg).
rj=1,2,...do
solve MZj_l =Tj_1
z= AZj_l
pj—1=(rg, 2)
if pj—1 =0, method fails
if j =1 then
Po=To
solve M zpg = po
qgo =2
else
Bj—2 = (pj-1/pj—2) X (aj-2/wj-2)
pj—1 =7j-1+ Bj—2 (pj—2 — wj—2qj—2)
ZPj—1 = Zj—1 +
Bj—2 (2pj—2 — wj_22q;_2)
g1 =2+ Bj-2 (¢j—2 —wj—27q; )
end if
solve quj;l =(qj—1
ZAQj—l = Azqj—
aj1 = pj-1/{r5, Z4;-1)
S=Tj—-1— Qj-1¢j-1
if HS”Q is small, SetL’j =Xj_1+Q;-12pj-1
and stop
z5 = Zj,1 — Oéjflij',l
t=2—aj12q;4
Wj—1 = (ta 5> /<ta t)
Tj=xj-1+Qj_12pj—1 +w;—12$
Tj =S — qu_lt

N

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

ZQ-
Chooserg = P(A)rg such that(rg, Arg) # 0,
whereP(t) is a polynomial in¢. (For example,
rgy = Arg).
for j=1,2,...do

solve MZj,1 =Tj-1

T = AZj_l

pj—1 = (g, 7)

ifp j—1 = 0, method fails

if 7 =1 then
ey =Tp
solve M zey = eg
dy =7
qo =17
else

Bj—2 = pj-1/pj-2

ej—1 =rj-1+ Bj—2hj—2

zej_1 = zj—1 + Bj—2zhj_2

dj—1 =7+ Bj—2fj—2

gj—1 = dj—1 + Bj—2 (fj—2 + Bj—2qj—2)
end if
solve Mq = gj—1
q=Aq
aj—1 = pj-1/(rg,4)
hj—1=ej_1—aj_1qj-1
Zhjfl = zej,1 — ajflq
fi-1=dj—1—aj_14q
Tj=Tj—1+ ;-1 (2Z€j_1 — aj_lq)
rj = Tje1 = -1 (2dj-1 — @ja1q)
check convergence; continue if necessary

check convergence; continue if necessary2g: end for

and Wi—1 £ 0

29: end for
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