
Exploiting FPGAs and GPUs for Electromagnetics Applications:
Interferometric Imaging in Random Media Case Study

E. El-Araby, O. Kilic, and V. Dang

Department of Electrical Engineering and Computer Sciences
The Catholic University of America, Washington, DC 20064, U.S.A.

aly@cua.edu, kilic@cua.edu, and 13dang@cardinalmail.cua.edu

Abstract ─ There is a growing need for reliable
and efficient numerical methods for
electromagnetic applications. This is important for
addressing the complex designs with fine features
on electrically large platforms. As designs become
more complex, a good prediction of overall system
performance becomes essential for cost reduction
especially in the conceptualization stage.
Researchers have attempted to address this issue
by developing hybrid methods based on
asymptotic techniques that can avoid the
numerical inefficiency while maintaining high
degrees of accuracy. Another approach is to
implement fast computational methods that utilize
parallel computing platforms. This paper focuses
on the latter; i.e. by investigating the use of field
programmable gate arrays (FPGA) and general
purpose graphics processing units (GPGPU) as
coprocessors to parallelize numerically
challenging problems. The weaknesses and
strengths of both platforms will be investigated in
the context of their ease of use, efficiency, and
potential for accelerated computations.

Index Terms ─ FPGA, GPU, hardware
accelerated computing, high performance
computing, imaging, interferometry, numerical
methods, random media.

I. INTRODUCTION
In the field of electromagnetic modeling, the

complex designs for engineered materials coupled
with performance analysis of radio frequency
components integrated within their natural
environment drive the need for highly efficient
numerical techniques. This cannot be achieved by
conventional computer systems, but rather through
using the so-called high performance computing
(HPC) systems. HPC systems often utilize an

integrated package of multiprocessors, multicore
processors, and specialized hardware enabling
rapid computations by exploiting the parallelism
of these hardware platforms. Various
configurations and platforms exist including
clusters that utilize multiple CPUs (e.g., Cray),
PCs supported by GPGPU (e.g., NVIDIA, AMD)
and FPGA (e.g., Xilinx, Altera) based systems. In
the current state of the art, both GPGPU and
FPGA systems use these hardware as
coprocessors. Such configuration and usage is
typically referred to as hardware acceleration.

GPGPUs have been increasingly utilized for
accelerated computing in numerous fields as they
are readily integrated in PCs. Their main
advantages are the high memory bandwidth as
well as the availability of multiple vendors
developing commercial tools that enable high
level language support. FPGAs, on the other hand,
are highly customizable and reconfigurable chips
which can be optimally configured for a specific
application.

This paper investigates these hardware
acceleration platforms for computational
electromagnetics applications, and is an extension
of the work reported earlier in [1]. The application
used for this investigation is the interferometric
imaging of objects behind random media. A
detailed discussion on the different architectures
and programming environments for FPGA and
GPGPU based systems is presented in Section II.
Interferometric imaging of targets behind random
media is chosen as the application. The details of
the interferometric imaging are introduced in
Section III. The implementation approaches on
both platforms are given in Section IV.
Performance analysis and metrics for evaluation
are presented in Section V. The experimental

152ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

1054-4887 ' 2012 ACES

Submitted On: Oct. 12, 2011
Accepted On: Jan. 21, 2012

results are provided in Section VI, followed by the
conclusions in Section VII.

II. HARDWARE ACCELERATION
Hardware acceleration is the use of

hardware to enable parallel processing for higher
computation speed than is possible in software
running on the general purpose CPU.
Examples of hardware acceleration are
systems that include field programmable gate
arrays (FPGA) and/or general purpose graphics
processing units (GPGPU).

A. FPGA-based systems

The evolution of hardware acceleration based
on reconfigurable computers (RC), such as
FPGAs, has been progressing along two
orthogonal technology-characterizing paths,
namely performance and flexibility. RCs evolved
from originally being discrete components used
mainly as glue-logic devices in larger systems to
accelerator boards and recently to parallel
reconfigurable supercomputers often referred to as
high-performance reconfigurable computers
(HPRCs). Examples of such supercomputers are
the SRC-7 and SRC-6 [2], the SGI Altix/RASC
[3] and the Cray XT 5h and Cray XD1 [4].

Reconfigurable computing (RC) architectures

A reconfigurable computer system typically
consists of microprocessor and reconfigurable
processor sub-systems closely coupled with each
other through a common interface. The
microprocessor sub-system includes all major
components of a traditional computer system such
as general purpose microprocessors,
microprocessor memories, and I/O interfaces. On
the other hand, a reconfigurable processor sub-
system consists of one or more FPGAs, FPGA
memories, and an I/O interface. A generalized
architecture of a reconfigurable computer is shown
in Fig. 1. The functionality of each component
within the system is influenced by its
interconnection topology. Within a reconfigurable
processor sub-system, every FPGA can be
connected to every other FPGA, or FPGAs can be
grouped into clusters. FPGA memories can be
shared by a group of FPGAs or each can be
dedicated to a single FPGA. Additional hardware,
such as a cross-bar switch, might be necessary to
make connections as flexible as possible.

Fig. 1. General architecture of RC systems.

RC programming models

Application development on RC systems
typically requires software and hardware
programming expertise for which design
paradigms and tools have been traditionally
separate [1]. These products aim to abstract
underlying hardware design details and streamline
the disparate design flows [5]. They often tradeoff
performance for programmability [6]. Dataflow
design tools, based on the graphical user interface,
e.g., DSPLogic, seem to offer an interesting
compromise between high-level languages (HLLs)
and hardware description languages (HDLs), e.g.
VHDL and/or Verilog. They allow a tradeoff
between a shorter development time and a
performance overhead imposed by HLLs [7].
Streamlining hardware description using HLLs
typically used in software programming, or at least
using dataflow languages, is a major and
distinctive feature of high performance RCs that
potentially allows domain scientists to develop
entire applications without relying on hardware
designers. However, an HLL compiler for RCs
must combine the capabilities of tools for
traditional microprocessor compilation and tools
for computer-aided design with FPGAs. It must
also extend these two separate set of tools with
capabilities for mutual synchronization and data
transfer between microprocessors and
reconfigurable processor sub-systems [8].

B. GPGPU-based systems

Due to their powerful floating-point
computational capabilities and massively parallel
processor architecture, GPUs are increasingly
being used as application accelerators in the high-
performance computing arena. Thus, a wide range

153 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

of HPC systems now incorporate GPUs as
hardware accelerators including systems ranging
from clusters of compute nodes to parallel
supercomputer systems. Several examples of
GPU-based computer clusters may be found in
academia, such as [9]. Latest offerings from
supercomputer vendors have begun to include
GPUs in the compute blades of their parallel
machines; examples include the SGI Altix UV and
the recently announced plans from Cray to include
NVIDIA GPUs into the Cray XE6 supercomputer.

GPGPU architecture

Similar to an RC system, a GPGPU computer
system typically consists of a traditional
microprocessor sub-system and a GPU sub-system
closely coupled with each other through a common
interface. A GPU sub-system consists of a multitude
(texture/cluster) of processors often referred to as
streaming multiprocessor (SM) and GPU local
memory. Each SM contains a number of processor
cores usually called streaming processors (SP). A
generalized architecture of a GPGPU computer is
shown in Fig. 2. For example, the Fermi
architecture, which is one of the most recent GPU
products by NVIDIA, is composed of 16 streaming
multiprocessors (SMs) each of which consists of 32
streaming processor (SP) cores.

Fig. 2. General architecture of GPGPU-based
systems.

GPGPU programming models

Among the different parallel programming
approaches for GPGPU platforms, the most com-
monly followed programming style is the single
program multiple data (SPMD) model [10]. Under
the SPMD scenario, multiple processes execute
the same program on different CPU cores,

simultaneously operating on different data sets in
parallel. By allowing autonomous execution of
processes at independent points of the same
program, SPMD serves as a convenient yet
powerful approach for efficiently making use of
the available hardware parallelism.

Two widely used GPU programming models,
i.e., CUDA (by NVIDIA) and OpenCL (by Khronos
Working Group) are similar and follow SPMD flow
by executing data-parallel kernel functions within
the GPU. Both models also provide abstractions of
thread (basic unit for parallel execution) group
hierarchy and shared memory hierarchy. In terms of
thread group hierarchy, both provide three hierarchy
levels: grid, block, and thread. GPU kernels are
launched per grid and a grid is composed of a
number of blocks, which have the access to the
global device memory. Each block consists of a
group of threads, which are executed concurrently
and share the accesses to the on-chip shared
memory. Each thread is a very lightweight
execution of the kernel function. From
programming perspective, the programmer needs to
write the kernel program for one thread and decides
the total number of threads to be executed on the
GPU device while dividing the threads into blocks
based on the data-sharing pattern, memory sharing,
and architectural considerations.

III. INTERFEROMETRIC IMAGING IN

RANDOM MEDIA
The earliest applications of interferometric

measurements have been reported in the field of
radio astronomy [11,12]. The main advantage of
interferometry is the higher resolution achieved by
the use of multiple antennas instead of using an
equivalent larger antenna.

An interferometric image is created using the
complex correlations of intensities obtained from
all possible pair combinations in a detector array
[13,14]. This is expressed as follows:

(1)/2

1

(,) cos(()),
N N

E i i i i
i

A kσ ζ η φ µ ζ ν η
−

=

= ∆ + +∑ (1)

where σE denotes the time average intensity of the
source, ζ and η correspond to the coordinates of
each pixel in the image, µi = xn - xm and νi = yn -
ym are the x and y baselines provided by detector
pairs (xm,ym) and (xn,yn) , k is the wave number,
and N is the number of detectors in the array. The
summation is evaluated over all possible

154EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA

combinations of detector pairs. Ai and ∆φi
correspond to the amplitude and phase terms of the
correlated fields for the mnth pair such that, Ai =
|Em En*| and ∆φi = φm - φn.

A. Target behind random media

Interferometric imaging has recently been
applied to targets behind random media [15], and
implemented on GPGPU platform [16]. A
summary of these research outcomes are presented
in this section. Furthermore, the same algorithm is
implemented on an FPGA platform to gain insight
into the differences in implementation on GPGPU
versus FPGA platforms. We report on how the
different computer architectures are utilized in the
implementation, and their performance levels in
terms of speed and efficiency.

Our model for interferometric imaging of
targets behind random media consists of three
major building blocks: (i) field calculation at the
detector array (includes scattered field from the
target and random medium), (ii) image
construction, and (iii) image plotting. The field
calculations include a direct scattering term from
the target, a direct scattering term from the media
as well as an indirect term scattered from the
target to the medium before arriving at the detector
array, see Fig. 3. The scattering field calculations
from the random media uses the distorted Born
approximation following the work reported earlier,
[17]. Attenuation effects are accounted for as the
fields travel through the random medium.

Fig. 3. Computational steps of the model.

B. Parallelization

The most time consuming computation in the
model is the image construction, which consists of
the summation of correlated fields for each pair of
detectors as given in (1). Since the intensity for

each pixel can be calculated independently, this
part of the algorithm can benefit from parallel
implementation. Therefore, the image construction
was selected as the candidate for hardware
implementation, while the rest of the algorithm is
carried out on the CPU.

IV. HARDWARE IMPLEMENTATION
For comparison purposes, we start with a

highly productive programming environment for
both GPGPU and FPGA implementations to
benefit from a fast learning curve. For the FPGA
implementation, we employed the SRC-6 system
and its proprietary Carte programming
environment. For the GPGPU implementation, we
utilized Jacket version 1.5.0 by AccelerEyes on an
NVIDIA C1060 based system. All field
calculations and image plotting are performed on
the CPU. The image construction stage, which is
implemented on hardware, is divided into four
stages: (i) setup of the hardware, (ii) transfer of
input parameters to the hardware, (iii) parallelized
calculations, and (iv) transfer of results back to the
CPU. The specifics of the implementation on these
two systems are discussed in the following sub-
sections.

A. Implementation on FPGA

The FPGA platform employed for the
implementation is the SRC-6 scalable system
which is a cluster-based system. The SRC-6
system includes two MAP (multi-adaptive
processor) reconfigurable boards and each consists
of two FPGAs, which can all be programmed
simultaneously in one application. Each MAP has
24 MB of memory and the processing speed of
FPGAs is 100 MHz. SRC's proprietary Carte-C
programming environment is used in the code
development [2].

In the FPGA implementation, the image is
divided into two regions and run in parallel on a
single FPGA. The computations and the
summation given in (1) are pipelined such that the
accumulation pipeline can start before all terms
are computed. SRC's Carte development
environment provides a relatively easy interface to
implement code on the FPGA, while allowing the
programmer some control over the data streaming
and parallelization.

B. Implementation on GPGPU

155 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

The GPGPU platform used in the
implementation is a single workstation which
consists of a 16-core 2.67 GHz Intel Xeon CPU
with four NVIDIA Tesla C1060 graphics
processors with a total 16 GB of memory and runs
at 1.3 GHz. The workstation operates on Microsoft
Windows 7 Professional, and MATLAB version
7.7.0.471 (R2008b) is utilized along with Jacket
version 1.5.0 by AccelerEyes. This version of
Jacket uses NVIDIA's CUDA version 3.1. The
architecture of the system is similar to the general
architecture shown earlier in Fig. 2.

Jacket programming environment from
Accelereyes is used in the implementation. This
package can be easily integrated with MATLAB
and provides a MATLAB-like environment to
enable a fairly easy learning curve. However, this
comes at the expense of limited control over how
the data streaming and parallelization are
implemented, resulting in reduced efficiency as
compared to that of FPGAs.

V. PERFORMANCE ANALYSIS AND
METRICS FOR EVALUATION

In our analysis, we assumed the fixed-time
model (Gustafson’s Law) [18] and used larger
computational workloads (larger data/image size)
while maintaining the same performance on larger
configurations. Larger configurations utilize more
processing units (FPGAs or GPUs) which results
in increasing the overall system utilization.

The image construction is composed of 5
stages as depicted in Fig. 4. The algorithm first
sets up the parallel environment, then transfers
data from CPU memory space to accelerator
memory space, processes data using accelerator(s),
transfers the image data back to the CPU and
finally releases the allocated hardware resources.
The associated execution times for each of these
stages are defined as shown in Fig. 4.

Fig. 4. Execution model and performance metrics.

Execution scenarios
Two scenarios were considered for hardware

implementation, namely no-streaming and
streaming scenarios. In the no-streaming scenario,
operations are performed in a non-overlapped
execution while in the streaming scenario
operations are allowed to overlap, as shown in
Figs. 5 and 6, respectively. These scenarios affect
the total execution time as given in (2) and (3).

no streamin g
total setup in process out releaseT T T T T T ,− = + + + + (2)

max()streamin g
total setup in process out releaseT T T T ,T T .= + + + (3)

Fig. 5. No-streaming (non-overlapped execution).

Fig. 6. Streaming (overlapped execution).

Metrics

Three metrics were investigated for
performance comparison between the two
platforms: (i) speedup, (ii) efficiency, and (iii)
scalability.

The speedup is defined as the performance
gain by using multiple hardware processing units
(i.e. GPU, FPGA) in reference to a single CPU.
This can be expressed as follows:

() ()
()

0

0

1CPU
total PU

PU PU
total PU PU

T ,N D
S N

T N ,N D
= , (4)

where D0 is the image size for a single processing
unit, and NPU is the number of processing

units. ()01CPU
total PUT ,N D is the total execution time

of a single CPU with image size of NPUD0, and

()0
PU

total PU PUT N ,N D is the total execution time of

multiple processing units with image size of
NPUD0.

The hardware efficiency compares the
execution time measured through experiments to

156EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA

the expected/theoretical performance. This is
expressed as:

 0
0

0

(1)
(,)

(,)

th
total

PU PU meas
total PU PU

T ,D
E N N D (%)

T N N D
= , (5)

where 0(1)th
totalT ,D is the theoretical total execution

time of a single processing unit with image size

D0, and 0()meas
total PU PUT N ,N D is the measured total

execution time of multiple processing units with
image size of NPUD0. The theoretical execution

time, 0(1)th
totalT ,D is calculated using (2) or (3)

depending on the implemented execution scenario.
Each term in (2) and (3) is calculated as discussed
below.

The setup and release times represent the
system overhead associated with setting up and
releasing multiple processing units and therefore
they are both equal to zero for a single GPU.
However, the setup time for a single FPGA is non-
zero, i.e. 65 ms, due to configuring the FPGA.

The input transfer time is the ratio of the total
amount of input transfer data, Din, to the
bandwidth, Bin, for the input data transfer from the
CPU’s memory to accelerator’s memory. The
input data size, Din, is calculated as:

det ector
in det pairs param bytesD N .N .D−= , (6)

where Ndet-pairs is the number of detector pairs,
Dbytes is the number of precision bytes, and

det etor
paramN is the number of detector parameters. The

input bandwidth values are as shown in Table 1.

Table 1: Bandwidth parameters

(MB/s) B
in
 B

process
 B

out

GPU 2,169 61,360 1,151
FPGA 1,415 4,800 1,260

The processing time is the ratio of the total

amount of data for processing, Dprocess to the
processing throughput, Bprocess. Bprocess is given in
Table 1 and Dprocess is calculated by equation (7):

()detector pixel
process pixels det pairs param param bytesD N .N . N N .D .−= + (7)

The output transfer time is the ratio of the total
amount of output transfer data, Dout to the
bandwidth for the output data transfer, Bout, from
the accelerator’s memory to the CPU’s memory.
The output transfer data size is calculated by

out pixels bytesD N .D= , (8)

where Npixels is the number of pixels in the image,
Dbytes is the number of precision bytes as before,
and the bandwidth, Bout is given in Table 1.

Finally, the scalability factor, Ω, is defined as
the normalized speedup. In other words, it is the
performance achieved by multiple processing units
as compared to the performance achieved by a
single processing unit as given by equation (9).

() ()
()1

PU
PU

S N
N .

S
Ω = (9)

VI. EXPERIMENTAL RESULTS

The image size for a single processing unit
(i.e. GPU or FPGA) is chosen as D0 = 250,000
pixels for comparison purposes. The
implementation for both GPU and FPGA were
parallelized using up to four processing units in
each system. Therefore, as the number of
processors was increased, proportionally more
pixels were created in the image (following
Gustafson’s model). A comparison is provided in
Fig. 7 in terms of the end-to-end computation time
for each system, as well as the hardware-only
time. Figure 7 also shows the speedup of total
execution time of GPUs/FPGAs over the total
execution time of a single CPU which are put in
parentheses next to their corresponding execution
times. It is observed for the unit data size
implemented on a single processing unit, GPU
outperforms the FPGA (speedup of 71 versus 12).
As the image size increases, increasing the number
of FPGAs compensates for added computational
workload, and the total time remains constant.
However, the GPU system shows signs of
decreased efficiency with increased workload
(image size). This can be better observed if one
considers the ratio of the time it took to construct
the image on the FPGA system versus the GPU
system. It is observed that for the single
accelerator case, the GPU system is approximately
six times faster than the FPGA. As the number of
accelerators is increased (proportionally with the
pixels generated), the ratio drops to roughly two.
This is due to the higher efficiency achieved by
the FPGA implementation as well as the faster
decreasing efficiency of the GPU implementation.
The decreasing efficiency of the GPU is due to the
overhead associated with the setup and merging of
the results before transferring the output back to
the CPU . The GPU requires more resources to be

157 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

Fig. 7. Total execution time.

allocated and becomes less efficient.
The system efficiency was calculated by

taking the ratio of the measured time to the
theoretically expected time for each system to
complete the calculations. The theoretical time
calculations are based on the system parameters
such as the bandwidth, processing speed, etc. The
efficiencies for both implementations are depicted
in Fig. 8, demonstrating that despite being slower
than the GPUs, FPGA implementations show
higher efficiency.

Fig. 8. Efficiency of FPGA vs. GPU.

Fig. 9. Scalability of algorithm on FPGA vs. GPU.

In order to investigate the scalability, we
compare the speedup scale with increasing image
size as depicted in Fig. 9. It is observed that the
FPGA computations when compared to GPU
computations scaled more closely to the
theoretical linear expectations.

VII. CONCLUSIONS
While the comparison of performance in terms

of execution time shows that the GPU based
implementation performs better than the FPGA, it
should be noted that the FPGA system has
significantly more limited resources in terms of
clock speed (100 MHz vs. 1.3 GHz) and on board
memory (48 MB total vs. 16 GB total). From that
perspective, the FPGA implementation proves to
be significantly more efficient than the GPU
implementation. This is shown in the comparison
of the system efficiencies, where the FPGA
implementation achieved about 90% efficiency as
opposed to the 40% observed for the GPU
implementation. It is worthwhile noting that the
SRC Carte programming environment allows the
user flexibility in controlling the data utilization in
terms of pipelining and parallelization, whereas
with Jacket environment the user is oblivious to
how the GPU is controlled. This comes at the
expense of ease of use, as Jacket is very much like
MATLAB and very easy to use, while the learning
curve in Carte is steeper. The tradeoff between
productivity versus efficiency is one of the key
features for hardware accelerated computing on
these platforms. While FPGAs can be
programmed to perform a specific task in a highly
efficient way, they currently lack the wide
commercial support enjoyed by GPGPUs.
Consequently, they require a good knowledge of
hardware and ability to program in hardware
languages such as VHDL and/or Verilog to
program them most efficiently.

ACKNOWLEDGMENT

The authors would like to thank Prof. Tarek
El-Ghazawi, the founding director of the George
Washington University (GWU) High Performance
Computing Laboratory (HPCL), for making
available to us the SRC-6 system to conduct the
experimental work of this research. We would also
like to thank the HPCL team, in particular Olivier
Serres, for their help and technical support.

158EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA

REFERENCES
[1] O. Kilic, E. El-Araby, and V. Dang, “Hardware

Accelerated Computing for Electromagnetics
Applications,” International Workshop on
Computational Electromagnetics (CEM’11),
Izmir, Turkey, August 2011.

[2] SRC Computers, Inc., “SRC CarteTM C
Programming Environment v2.2,” (SRC-007-18),
Aug. 2006.

[3] Silicon Graphics Inc., “Reconfigurable
Application-Specific Computing User's Guide,”
(007-4718-005), Jan. 2007.

[4] Cray Inc., “Cray XD1TM FPGA Development,"
(S-6400-14), 2006.

[5] E. El-Araby, M. Taher, M. Abouellail, T. El-
Ghazawi, and G. B. Newby, “Comparative
Analysis of High Level Programming for
Reconfigurable Computers: Methodology and
Empirical Study,” III Southern Conference on
Programmable Logic (SPL2007), Mar del Plata,
Argentina, February, 2007.

[6] O. Kilic, “FPGA Accelerated Phased Array
Design using the Ant Colony Optimization,”
Applied Comp. Electromag. Soc. Journal, Vol. 20,
No. 1, pp. 23-30, February 2010.

[7] E. El-Araby, P. Nosum, and T. El-Ghazawi,
“Productivity of High-Level Languages on
Reconfigurable Computers: An HPC
Perspective,” IEEE International Conference on
Field-Programmable Technology (FPT 2007),
Japan, December, 2007.

[8] El-Araby, S. G. Merchant, and T. El-Ghazawi, “A
Framework for Evaluating High-Level Design
Methodologies for High-Performance Re-
configurable Computers,” IEEE Trans. Parallel
Distrib. Syst., vol. 22, pp. 33-45, Jan. 2011.

[9] V. V. Kindratenko, J. J. Enos, G. Shi, M. T.
Showerman, G. W. Arnold, J. E. Stone, J. C.
Phillips, and W. Hwu, “GPU Clusters for High-
Performance Computing,” Proc. Workshop on
Parallel Programming on Accelerator Clusters ,
2009.

[10] F. Darema, “The SPMD Model: Past, Present and
Future,” Proc. 8th European PVM/MPI Users'
Group Meeting on Recent Advances in Parallel
Virtual Machine and Message Passing interface,
Lecture Notes In Computer Science, vol.
2131/2001, pp. 1, Sept. 2001.

[11] M. Ryle, “A New Radio Interferometer and Its
Applications to the Observation of Weak Radio
Stars,” Proc. Roy. Soc. London Ser. A, vol. 211,
pp. 351-375, 1952.

[12] R. N. Bracewell, “Radio Interferometry of
Discrete Sources,” Proc. IRE, vol. 46, pp. 97-105,
1958.

[13] J. F. Frederici, D. Gray, B. Schulkin, F. Huang, H.
Altan, R. Barat, and D. Zimdars, “Terahertz
Imaging Using an Interferometric Array,” Appl.
Phys. Lett., vol. 83, p. 2477, 2004.

[14] K. P. Walsh, B. Schulkin, D. Gary, J. F. Federici,
R. Barat, and D. Zimdars, “Terahertz Near-Field
Interferometric and Synthetic Aperture Imaging,”
Proc. SPIE, vol. 5411, p. 9, 2003.

[15] O. Kilic and A. Smith, “Imaging Through
Random Media,” European Conference on
Antennas and Propagation (EuCAP), Rome, Italy,
April 2011.

[16] O. Kilic, A. Smith, E. El-Araby, and V. Dang,
“Interferometric Imaging Through Random Media
using GPU,” The Applied Computational
Electromagnetics Society (ACES), Williamsburg,
VA, USA, April 2011.

[17] O. Kilic and R. H. Lang, “Scattering of a Pulsed
Beam by a Random Medium Over Ground,” J. of
Electromagnetic Waves and Appl., vol. 15, no. 4,
pp. 481-516, 2001.

[18] K. Hwang, and Z. Xu, “Scalable Parallel
Computing: Technology, Architecture,
Programming,” McGraw-Hill, 1998.

Dr. Esam El-Araby received
his B.Sc. degree in Electronics
and Telecommunications
Engineering and his M.Sc.
degree in Automatic Control
and Computer Engineering from
Assiut University, Egypt, in
1991 and 1997, respectively. He

received his M.Sc. and Ph.D. degrees in Computer
Engineering from the George Washington
University (GWU), USA, in 2005 and 2010,
respectively. Dr. El-Araby joined the Catholic
University of America (CUA) as an Assistant
Professor in the Department of Electrical
Engineering and Computer Science in 2010. He is
the founder and director of the Heterogeneous and
Biologically-inspired Architectures (HEBA)
laboratory at CUA. Prior to that, he worked at the
High Performance Computing Laboratory (HPCL)
at GWU as well as the NSF Center for High-
Performance Reconfigurable Computing (NSF-
CHREC). His research interests include computer
architecture, hybrid/heterogeneous architectures,
hardware acceleration, reconfigurable computing,
embedded systems, evolvable hardware,
performance evaluation, and digital signal/image
processing and remote sensing.

159 ACES JOURNAL, VOL. 27, NO. 2, FEBRUARY 2012

Dr. Ozlem Kilic joined the
Catholic University of America
as an Assistant Professor in the
Department of Electrical
Engineering and Computer
Science in 2005. Prior to that,
she was an Electronics Engineer

at the U.S. Army Research Laboratory, Adelphi
MD where she managed Small Business
Innovative Research (SBIR) Programs for the
development of hybrid numerical electromagnetic
tools to analyze and design electrically large
structures, such as the Rotman lens. She has also
designed, fabricated and tested various prototypes.
Dr. Kilic has over five years of industry
experience at COMSAT Laboratories as a Senior
Engineer and Program Manager with
specialization in satellite communications, link
modeling and analysis, and modeling, design and
test of phased arrays and reflector antennas for
satellite communications system. Her research
interests include numerical electromagnetics,
antennas, wave propagation, satellite

communications systems, and microwave remote
sensing.

Vinh Dang received his B.Sc.
degree in Electronics and

Telecommunications
Engineering from the Posts and
Telecommunications Institute
of Technology, Vietnam, in
2003. He received his M.Eng.
degree in Electrical

Engineering from the University of Technology,
Vietnam, in 2006. He is currently a Ph.D.
candidate at the Department of Electrical
Engineering and Computer Science, the Catholic
University of America (CUA), USA. During the
period from 2008 to 2010, he was a Lecturer at the
School of Electrical Engineering, International
University, Vietnam. Since 2010, he has been a
Research Assistant in the Department of Electrical
Engineering and Computer Science at CUA. His
current research interests include high
performance computing, embedded systems,
biomedical image processing, and remote sensing.

160EL-ARABY, KILIC, DANG: EXPLOITING FPGAS AND GPUS FOR EM APPLICATIONS: INTERFEROMETRIC IMAGING IN RANDOM MEDIA

