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Abstract ─ There is a growing need for reliable 
and efficient numerical methods for 
electromagnetic applications. This is important for 
addressing the complex designs with fine features 
on electrically large platforms. As designs become 
more complex, a good prediction of overall system 
performance becomes essential for cost reduction 
especially in the conceptualization stage. 
Researchers have attempted to address this issue 
by developing hybrid methods based on 
asymptotic techniques that can avoid the 
numerical inefficiency while maintaining high 
degrees of accuracy. Another approach is to 
implement fast computational methods that utilize 
parallel computing platforms. This paper focuses 
on the latter; i.e. by investigating the use of field 
programmable gate arrays (FPGA) and general 
purpose graphics processing units (GPGPU) as 
coprocessors to parallelize numerically 
challenging problems. The weaknesses and 
strengths of both platforms will be investigated in 
the context of their ease of use, efficiency, and 
potential for accelerated computations.  
  
Index Terms ─ FPGA, GPU, hardware 
accelerated computing, high performance 
computing, imaging, interferometry, numerical 
methods, random media.  
 

I. INTRODUCTION 
In the field of electromagnetic modeling, the 

complex designs for engineered materials coupled 
with performance analysis of radio frequency 
components integrated within their natural 
environment drive the need for highly efficient 
numerical techniques. This cannot be achieved by 
conventional computer systems, but rather through 
using the so-called high performance computing 
(HPC) systems. HPC systems often utilize an 

integrated package of multiprocessors, multicore 
processors, and specialized hardware enabling 
rapid computations by exploiting the parallelism 
of these hardware platforms. Various 
configurations and platforms exist including 
clusters that utilize multiple CPUs (e.g., Cray), 
PCs supported by GPGPU (e.g., NVIDIA, AMD) 
and FPGA (e.g., Xilinx, Altera) based systems. In 
the current state of the art, both GPGPU and 
FPGA systems use these hardware as 
coprocessors. Such configuration and usage is 
typically referred to as hardware acceleration. 

GPGPUs have been increasingly utilized for 
accelerated computing in numerous fields as they 
are readily integrated in PCs. Their main 
advantages are the high memory bandwidth as 
well as the availability of multiple vendors 
developing commercial tools that enable high 
level language support. FPGAs, on the other hand, 
are highly customizable and reconfigurable chips 
which can be optimally configured for a specific 
application.  

This paper investigates these hardware 
acceleration platforms for computational 
electromagnetics applications, and is an extension 
of the work reported earlier in [1]. The application 
used for this investigation is the interferometric 
imaging of objects behind random media. A 
detailed discussion on the different architectures 
and programming environments for FPGA and 
GPGPU based systems is presented in Section II. 
Interferometric imaging of targets behind random 
media is chosen as the application. The details of 
the interferometric imaging are introduced in 
Section III. The implementation approaches on 
both platforms are given in Section IV. 
Performance analysis and metrics for evaluation 
are presented in Section V. The experimental 
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results are provided in Section VI, followed by the 
conclusions in Section VII.  
 

II. HARDWARE ACCELERATION 
Hardware acceleration is the use of 

hardware to enable parallel processing for higher 
computation speed than is possible in software 
running on the general purpose CPU. 
Examples of hardware acceleration are 
systems that include field programmable gate 
arrays (FPGA) and/or general purpose graphics 
processing units (GPGPU). 

 
A. FPGA-based systems 

The evolution of hardware acceleration based 
on reconfigurable computers (RC), such as 
FPGAs, has been progressing along two 
orthogonal technology-characterizing paths, 
namely performance and flexibility. RCs evolved 
from originally being discrete components used 
mainly as glue-logic devices in larger systems to 
accelerator boards and recently to parallel 
reconfigurable supercomputers often referred to as 
high-performance reconfigurable computers 
(HPRCs). Examples of such supercomputers are 
the SRC-7 and SRC-6 [2], the SGI Altix/RASC 
[3] and the Cray XT 5h and Cray XD1 [4]. 
 
Reconfigurable computing (RC) architectures 

A reconfigurable computer system typically 
consists of microprocessor and reconfigurable 
processor sub-systems closely coupled with each 
other through a common interface. The 
microprocessor sub-system includes all major 
components of a traditional computer system such 
as general purpose microprocessors, 
microprocessor memories, and I/O interfaces. On 
the other hand, a reconfigurable processor sub-
system consists of one or more FPGAs, FPGA 
memories, and an I/O interface. A generalized 
architecture of a reconfigurable computer is shown 
in Fig. 1. The functionality of each component 
within the system is influenced by its 
interconnection topology. Within a reconfigurable 
processor sub-system, every FPGA can be 
connected to every other FPGA, or FPGAs can be 
grouped into clusters. FPGA memories can be 
shared by a group of FPGAs or each can be 
dedicated to a single FPGA. Additional hardware, 
such as a cross-bar switch, might be necessary to 
make connections as flexible as possible. 

 
 

Fig. 1. General architecture of RC systems. 
 
RC programming models 

Application development on RC systems 
typically requires software and hardware 
programming expertise for which design 
paradigms and tools have been traditionally 
separate [1]. These products aim to abstract 
underlying hardware design details and streamline 
the disparate design flows [5]. They often tradeoff 
performance for programmability [6]. Dataflow 
design tools, based on the graphical user interface, 
e.g., DSPLogic, seem to offer an interesting 
compromise between high-level languages (HLLs) 
and hardware description languages (HDLs), e.g. 
VHDL and/or Verilog. They allow a tradeoff 
between a shorter development time and a 
performance overhead imposed by HLLs [7]. 
Streamlining hardware description using HLLs 
typically used in software programming, or at least 
using dataflow languages, is a major and 
distinctive feature of high performance RCs that 
potentially allows domain scientists to develop 
entire applications without relying on hardware 
designers. However, an HLL compiler for RCs 
must combine the capabilities of tools for 
traditional microprocessor compilation and tools 
for computer-aided design with FPGAs. It must 
also extend these two separate set of tools with 
capabilities for mutual synchronization and data 
transfer between microprocessors and 
reconfigurable processor sub-systems [8]. 
 
B. GPGPU-based systems 

Due to their powerful floating-point 
computational capabilities and massively parallel 
processor architecture, GPUs are increasingly 
being used as application accelerators in the high-
performance computing arena. Thus, a wide range 
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of HPC systems now incorporate GPUs as 
hardware accelerators including systems ranging 
from clusters of compute nodes to parallel 
supercomputer systems. Several examples of 
GPU-based computer clusters may be found in 
academia, such as [9]. Latest offerings from 
supercomputer vendors have begun to include 
GPUs in the compute blades of their parallel 
machines; examples include the SGI Altix UV and 
the recently announced plans from Cray to include 
NVIDIA GPUs into the Cray XE6 supercomputer.  

 
GPGPU architecture  

Similar to an RC system, a GPGPU computer 
system typically consists of a traditional 
microprocessor sub-system and a GPU sub-system 
closely coupled with each other through a common 
interface. A GPU sub-system consists of a multitude 
(texture/cluster) of processors often referred to as 
streaming multiprocessor (SM) and GPU local 
memory. Each SM contains a number of processor 
cores usually called streaming processors (SP). A 
generalized architecture of a GPGPU computer is 
shown in Fig. 2. For example, the Fermi 
architecture, which is one of the most recent GPU 
products by NVIDIA, is composed of 16 streaming 
multiprocessors (SMs) each of which consists of 32 
streaming processor (SP) cores. 
 

 
 

Fig. 2. General architecture of GPGPU-based 
systems. 
 
GPGPU programming models 

Among the different parallel programming 
approaches for GPGPU platforms, the most com-
monly followed programming style is the single 
program multiple data (SPMD) model [10]. Under 
the SPMD scenario, multiple processes execute 
the same program on different CPU cores, 

simultaneously operating on different data sets in 
parallel. By allowing autonomous execution of 
processes at independent points of the same 
program, SPMD serves as a convenient yet 
powerful approach for efficiently making use of 
the available hardware parallelism.  

Two widely used GPU programming models, 
i.e., CUDA (by NVIDIA) and OpenCL (by Khronos 
Working Group) are similar and follow SPMD flow 
by executing data-parallel kernel functions within 
the GPU. Both models also provide abstractions of 
thread (basic unit for parallel execution) group 
hierarchy and shared memory hierarchy. In terms of 
thread group hierarchy, both provide three hierarchy 
levels: grid, block, and thread. GPU kernels are 
launched per grid and a grid is composed of a 
number of blocks, which have the access to the 
global device memory. Each block consists of a 
group of threads, which are executed concurrently 
and share the accesses to the on-chip shared 
memory. Each thread is a very lightweight 
execution of the kernel function. From 
programming perspective, the programmer needs to 
write the kernel program for one thread and decides 
the total number of threads to be executed on the 
GPU device while dividing the threads into blocks 
based on the data-sharing pattern, memory sharing, 
and architectural considerations.  

 
III. INTERFEROMETRIC IMAGING IN 

RANDOM MEDIA 
The earliest applications of interferometric 

measurements have been reported in the field of 
radio astronomy [11,12]. The main advantage of 
interferometry is the higher resolution achieved by 
the use of multiple antennas instead of using an 
equivalent larger antenna.  

An interferometric image is created using the 
complex correlations of intensities obtained from 
all possible pair combinations in a detector array 
[13,14]. This is expressed as follows: 

( 1)/2

1

( , ) cos( ( )),
N N

E i i i i
i

A kσ ζ η φ µ ζ ν η
−

=

= ∆ + +∑  (1) 

where σE denotes the time average intensity of the 
source, ζ and η correspond to the coordinates of 
each pixel in the image, µi = xn - xm and νi  = yn - 
ym are the x and y baselines provided by detector 
pairs (xm,ym)  and (xn,yn) ,  k is the wave number, 
and N is the number of detectors in the array. The 
summation is evaluated over all possible 
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combinations of detector pairs. Ai and ∆φi 
correspond to the amplitude and phase terms of the 
correlated fields for the mnth pair such that, Ai = 
|Em En*| and ∆φi = φm - φn.  
 
A. Target behind random media 

Interferometric imaging has recently been 
applied to targets behind random media [15], and 
implemented on GPGPU platform [16]. A 
summary of these research outcomes are presented 
in this section. Furthermore, the same algorithm is 
implemented on an FPGA platform to gain insight 
into the differences in implementation on GPGPU 
versus FPGA platforms. We report on how the 
different computer architectures are utilized in the 
implementation, and their performance levels in 
terms of speed and efficiency. 

Our model for interferometric imaging of 
targets behind random media consists of three 
major building blocks: (i) field calculation at the 
detector array (includes scattered field from the 
target and random medium), (ii) image 
construction, and (iii) image plotting. The field 
calculations include a direct scattering term from 
the target, a direct scattering term from the media 
as well as an indirect term scattered from the 
target to the medium before arriving at the detector 
array, see Fig. 3. The scattering field calculations 
from the random media uses the distorted Born 
approximation following the work reported earlier, 
[17]. Attenuation effects are accounted for as the 
fields travel through the random medium. 
 

 
 

Fig. 3. Computational steps of the model. 
 
B. Parallelization 

The most time consuming computation in the 
model is the image construction, which consists of 
the summation of correlated fields for each pair of 
detectors as given in (1). Since the intensity for 

each pixel can be calculated independently, this 
part of the algorithm can benefit from parallel 
implementation. Therefore, the image construction 
was selected as the candidate for hardware 
implementation, while the rest of the algorithm is 
carried out on the CPU. 
 

IV. HARDWARE IMPLEMENTATION 
For comparison purposes, we start with a 

highly productive programming environment for 
both GPGPU and FPGA implementations to 
benefit from a fast learning curve. For the FPGA 
implementation, we employed the SRC-6 system 
and its proprietary Carte programming 
environment. For the GPGPU implementation, we 
utilized Jacket version 1.5.0 by AccelerEyes on an 
NVIDIA C1060 based system. All field 
calculations and image plotting are performed on 
the CPU. The image construction stage, which is 
implemented on hardware, is divided into four 
stages: (i) setup of the hardware, (ii) transfer of 
input parameters to the hardware, (iii) parallelized 
calculations, and (iv) transfer of results back to the 
CPU. The specifics of the implementation on these 
two systems are discussed in the following sub-
sections. 
 
A. Implementation on FPGA 

The FPGA platform employed for the 
implementation is the SRC-6 scalable system 
which is a cluster-based system. The SRC-6 
system includes two MAP (multi-adaptive 
processor) reconfigurable boards and each consists 
of two FPGAs, which can all be programmed 
simultaneously in one application. Each MAP has 
24 MB of memory and the processing speed of 
FPGAs is 100 MHz. SRC's proprietary Carte-C 
programming environment is used in the code 
development [2]. 

In the FPGA implementation, the image is 
divided into two regions and run in parallel on a 
single FPGA. The computations and the 
summation given in (1) are pipelined such that the 
accumulation pipeline can start before all terms 
are computed. SRC's Carte development 
environment provides a relatively easy interface to 
implement code on the FPGA, while allowing the 
programmer some control over the data streaming 
and parallelization. 
 
B. Implementation on GPGPU 
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The GPGPU platform used in the 
implementation is a single workstation which 
consists of a 16-core 2.67 GHz Intel Xeon CPU 
with four NVIDIA Tesla C1060 graphics 
processors with a total 16 GB of memory and runs 
at 1.3 GHz. The workstation operates on Microsoft 
Windows 7 Professional, and MATLAB version 
7.7.0.471 (R2008b) is utilized along with Jacket 
version 1.5.0 by AccelerEyes. This version of 
Jacket uses NVIDIA's CUDA version 3.1. The 
architecture of the system is similar to the general 
architecture shown earlier in Fig. 2. 

Jacket programming environment from 
Accelereyes is used in the implementation. This 
package can be easily integrated with MATLAB 
and provides a MATLAB-like environment to 
enable a fairly easy learning curve. However, this 
comes at the expense of limited control over how 
the data streaming and parallelization are 
implemented, resulting in reduced efficiency as 
compared to that of FPGAs. 
 

V. PERFORMANCE ANALYSIS AND 
METRICS FOR EVALUATION 

In our analysis, we assumed the fixed-time 
model (Gustafson’s Law) [18] and used larger 
computational workloads (larger data/image size) 
while maintaining the same performance on larger 
configurations. Larger configurations utilize more 
processing units (FPGAs or GPUs) which results 
in increasing the overall system utilization. 

The image construction is composed of 5 
stages as depicted in Fig. 4. The algorithm first 
sets up the parallel environment, then transfers 
data from CPU memory space to accelerator 
memory space, processes data using accelerator(s), 
transfers the image data back to the CPU and 
finally releases the allocated hardware resources. 
The associated execution times for each of these 
stages are defined as shown in Fig. 4. 
 

 
 

Fig. 4. Execution model and performance metrics. 

Execution scenarios 
Two scenarios were considered for hardware 

implementation, namely no-streaming and 
streaming scenarios. In the no-streaming scenario, 
operations are performed in a non-overlapped 
execution while in the streaming scenario 
operations are allowed to overlap, as shown in 
Figs. 5 and 6, respectively. These scenarios affect 
the total execution time as given in (2) and (3). 

no streamin g
total setup in process out releaseT T T T T T ,− = + + + +  (2) 

max( )streamin g
total setup in process out releaseT T T T ,T T .= + + +  (3) 

 

 
 

Fig. 5. No-streaming (non-overlapped execution). 
 

 
 

Fig. 6. Streaming (overlapped execution).  
 
Metrics 

Three metrics were investigated for 
performance comparison between the two 
platforms: (i) speedup, (ii) efficiency, and (iii) 
scalability. 

The speedup is defined as the performance 
gain by using multiple hardware processing units 
(i.e. GPU, FPGA) in reference to a single CPU. 
This can be expressed as follows: 

( ) ( )
( )

0

0

1CPU
total PU

PU PU
total PU PU

T ,N D
S N

T N ,N D
= , (4) 

where D0 is the image size for a single processing 
unit, and NPU is the number of processing 

units. ( )01CPU
total PUT ,N D  is the total execution time 

of a single CPU with image size of NPUD0, and 

( )0
PU

total PU PUT N ,N D is the total execution time of 

multiple processing units with image size of 
NPUD0. 

The hardware efficiency compares the 
execution time measured through experiments to 
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the expected/theoretical performance. This is 
expressed as: 

     0
0

0

(1 )
( , )

( , )

th
total

PU PU meas
total PU PU

T ,D
E N N D (%)

T N N D
= , (5) 

where 0(1 )th
totalT ,D  is the theoretical total execution 

time of a single processing unit with image size 

D0, and 0( )meas
total PU PUT N ,N D  is the measured total 

execution time of multiple processing units with 
image size of NPUD0. The theoretical execution 

time, 0(1 )th
totalT ,D  is calculated using (2) or (3) 

depending on the implemented execution scenario. 
Each term in (2) and (3) is calculated as discussed 
below. 

The setup and release times represent the 
system overhead associated with setting up and 
releasing multiple processing units and therefore 
they are both equal to zero for a single GPU. 
However, the setup time for a single FPGA is non-
zero, i.e. 65 ms, due to configuring the FPGA.  

The input transfer time is the ratio of the total 
amount of input transfer data, Din, to the 
bandwidth, Bin, for the input data transfer from the 
CPU’s memory to accelerator’s memory. The 
input data size, Din, is calculated as:  

det ector
in det pairs param bytesD N .N .D−= , (6) 

where Ndet-pairs is the number of detector pairs, 
Dbytes is the number of precision bytes, and 

det etor
paramN  is the number of detector parameters. The 

input bandwidth values are as shown in Table 1.  
 
Table 1: Bandwidth parameters 

(MB/s) B
in
 B

process
 B

out
 

GPU 2,169 61,360 1,151 
FPGA 1,415 4,800 1,260 

 
The processing time is the ratio of the total 

amount of data for processing, Dprocess to the 
processing throughput, Bprocess. Bprocess is given in 
Table 1 and Dprocess is calculated by equation (7): 

( )detector pixel
process pixels det pairs param param bytesD N .N . N N .D .−= +  (7) 

The output transfer time is the ratio of the total 
amount of output transfer data, Dout to the 
bandwidth for the output data transfer, Bout, from 
the accelerator’s memory to the CPU’s memory. 
The output transfer data size is calculated by 

out pixels bytesD N .D= , (8) 

where Npixels is the number of pixels in the image, 
Dbytes is the number of precision bytes as before, 
and the bandwidth, Bout  is given in Table 1. 

Finally, the scalability factor, Ω, is defined as 
the normalized speedup. In other words, it is the 
performance achieved by multiple processing units 
as compared to the performance achieved by a 
single processing unit as given by equation (9). 

( ) ( )
( )1

PU
PU

S N
N .

S
Ω =  (9) 

 
VI. EXPERIMENTAL RESULTS 

The image size for a single processing unit 
(i.e. GPU or FPGA) is chosen as D0 = 250,000 
pixels for comparison purposes. The 
implementation for both GPU and FPGA were 
parallelized using up to four processing units in 
each system. Therefore, as the number of 
processors was increased, proportionally more 
pixels were created in the image (following 
Gustafson’s model). A comparison is provided in 
Fig. 7 in terms of the end-to-end computation time 
for each system, as well as the hardware-only 
time. Figure 7 also shows the speedup of total 
execution time of GPUs/FPGAs over the total 
execution time of a single CPU which are put in 
parentheses next to their corresponding execution 
times. It is observed for the unit data size 
implemented on a single processing unit, GPU 
outperforms the FPGA (speedup of 71 versus 12). 
As the image size increases, increasing the number 
of FPGAs compensates for added computational 
workload, and the total time remains constant. 
However, the GPU system shows signs of 
decreased efficiency with increased workload 
(image size). This can be better observed if one 
considers the ratio of the time it took to construct 
the image on the FPGA system versus the GPU 
system. It is observed that for the single 
accelerator case, the GPU system is approximately 
six times faster than the FPGA. As the number of 
accelerators is increased (proportionally with the 
pixels generated), the ratio drops to roughly two. 
This is due to the higher efficiency achieved by 
the FPGA implementation as well as the faster 
decreasing efficiency of the GPU implementation. 
The decreasing efficiency of the GPU is due to the 
overhead associated with the setup and merging of 
the results before transferring the output back to 
the CPU . The GPU requires more resources to be  
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Fig. 7. Total execution time. 
 

allocated and becomes less efficient. 
The system efficiency was calculated by 

taking the ratio of the measured time to the 
theoretically expected time for each system to 
complete the calculations. The theoretical time 
calculations are based on the system parameters 
such as the bandwidth, processing speed, etc. The 
efficiencies for both implementations are depicted 
in Fig. 8, demonstrating that despite being slower 
than the GPUs, FPGA implementations show 
higher efficiency. 

 

 
 

Fig. 8. Efficiency of FPGA vs. GPU. 
 

 
 

Fig. 9. Scalability of algorithm on FPGA vs. GPU. 

In order to investigate the scalability, we 
compare the speedup scale with increasing image 
size as depicted in Fig. 9. It is observed that the 
FPGA computations when compared to GPU 
computations scaled more closely to the 
theoretical linear expectations.  
 

VII. CONCLUSIONS 
While the comparison of performance in terms 

of execution time shows that the GPU based 
implementation performs better than the FPGA, it 
should be noted that the FPGA system has 
significantly more limited resources in terms of 
clock speed (100 MHz vs. 1.3 GHz) and on board 
memory (48 MB total vs. 16 GB total). From that 
perspective, the FPGA implementation proves to 
be significantly more efficient than the GPU 
implementation. This is shown in the comparison 
of the system efficiencies, where the FPGA 
implementation achieved about 90% efficiency as 
opposed to the 40% observed for the GPU 
implementation. It is worthwhile noting that the 
SRC Carte programming environment allows the 
user flexibility in controlling the data utilization in 
terms of pipelining and parallelization, whereas 
with Jacket environment the user is oblivious to 
how the GPU is controlled. This comes at the 
expense of ease of use, as Jacket is very much like 
MATLAB and very easy to use, while the learning 
curve in Carte is steeper. The tradeoff between 
productivity versus efficiency is one of the key 
features for hardware accelerated computing on 
these platforms. While FPGAs can be 
programmed to perform a specific task in a highly 
efficient way, they currently lack the wide 
commercial support enjoyed by GPGPUs. 
Consequently, they require a good knowledge of 
hardware and ability to program in hardware 
languages such as VHDL and/or Verilog to 
program them most efficiently. 
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