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Abstract— Electromagnetic wave propagation phe-

nomena in nonlinear metamaterials are investigated

for waves propagating either in the left-handed

frequency band or in the frequency band gaps.

In the left-handed band, we implement directly

the reductive perturbation method to Faraday’s and

Ampére’s laws and derive a second-and a third-

order nonlinear Schrödinger (NLS) equation, de-

scribing solitons of moderate and ultra-short pulse

widths, respectively. Then, we find necessary con-

ditions and derive exact bright and dark soliton so-

lutions of these equations. On the other hand, in the

frequency band gaps with negative linear effective

permittivity and positive permeability (where linear

electromagnetic waves are evanescent), we derive

two short-pulse equations (SPEs) for the high- and

low-frequency band gaps. The structure of the SPEs

solutions is discussed, and connections with the

NLS soliton solutions are presented. Numerical

simulations of the SPEs solutions are included and

compared with those of the reduced wave equa-

tions. Directions towards the modelling of wave

propagation in nonlinear chiral metamaterials are

pointed out.

Index Terms— Frequency band gaps, left-handed

media, negative refractive index, nonlinear metama-

terials, nonlinear Schrödinger equations, ultra-short

pulses.

I. INTRODUCTION
The remarkable electromagnetic (EM) properties

and numerous potential applications of metamate-

rials (MMs) have been meticulously documented

in the literature (see e.g. the classic books [1,2].

By considering a Drude model for the effective

permittivity ε and a Lorentz model for the magnetic

permeability μ of the MM, it is seen that there exist

three different types of frequency bands in the MM:

(i) those displaying a right-handed (RH) behavior

characterized by ε > 0, μ > 0, or (ii) a left-handed

(LH) behavior characterized by ε < 0, μ < 0,

and thus exhibiting negative refractive index, or

(iii) frequency band gaps, namely domains where

linear EM waves are evanescent, e.g., for ε < 0
and μ > 0. Each of the above bands exhibits

significantly different properties referring to the as-

sociated propagation and localization of EM waves.

The RH band has been extensively analyzed; here,

we focus on waves propagating either in the LH

regime or in the band gaps.

Concerning first LH MMs, they exhibit negative

refractive index at the microwave [3-5] as well

as at the optical frequencies [6], and hence they

are characterized by unique properties, including:

reversal of Snell’s law, backward wave propagation,

reversal of the Doppler shift and Cherenkov ef-

fect, collecting lens behavior forming 3-D images,

perfect lens performance, and so on [7,8]. To this

end, they have become a subject of intense research

activity; see the reviews [9-12]. Such MMs are

experimentally realized mainly by periodic arrays

of thin conducting wires, exhibiting plasma behav-

ior, and split-ring resonators (SRR’s), resembling

parallel plate capacitors, generating negative ε and

μ, respectively [3,4]. For other realizations of LH

MMs and related discussions see [13-15].

So far, MMs have been mainly investigated in

the linear regime, where ε and μ are independent

of the EM fields intensities. Nevertheless, nonlinear
MMs, which may be created by embedding an

array of wires and SRR’s into a nonlinear dielec-

tric [16,17], are useful in various applications. In

particular, it has been demonstrated that the field

intensity acts as a control mechanism, altering the

MM properties from LH to RH and back. Hence,

the study of MMs nonlinear properties may assist

in the implementation of tunable structures with

intensity controlled transmission and in studying

nonlinear effects in negative refraction photonic
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crystals. Furthermore, it was shown in [18] that

LH weakly nonlinear MMs support propagation of

vector solitons.

On the other hand, concerning the frequency

band gaps, they are characterized by ε < 0 and μ >
0 and hence linear EM waves are evanescent. In

particular, there exist two band gaps which will be

named as the “low-frequency” (LF) and the “high-

frequency” (HF) gap. However, when a nonlinearity

occurs, e.g. in the dielectric response of the MM

[16-22], then nonlinearity-induced localization of

EM waves is possible. Such localization is indi-

cated by the formation of gap solitons, occurring

mainly in nonlinear optics [23]. Gap solitons were

also predicted in nonlinear MMs as solutions of a

nonlinear Klein-Gordon equation [24].

In this work, first we analyze EM wave propaga-

tion in nonlinear lossy LH MMs. The methodology

consists in starting from the Maxwell’s equations,

and using the reductive perturbation method to de-

rive systematically a nonlinear Schrödinger (NLS)

equation and a higher-order NLS (HNLS) equation

for the EM fields envelopes, governing the propa-

gation of ultra-short solitons. Analyzing the NLS

and HNLS equations, we find necessary conditions

for the formation of bright or dark solitons in the

LH regime, and derive exact ultra-short solitons

propagating in nonlinear LH MMs. The developed

direct analysis of the Maxwell’s equations, rather

than the coupled wave equations for the EM fields

envelopes, shows that the electric field envelope is

proportional to the magnetic field one (their ratio

being the linear wave-impedance). Thus, for each

of the EM wave components, we derive a single
NLS (for moderate pulse widths) or a single HNLS

equation (for ultra-short pulse widths), rather than a

system of coupled NLS equations (as in existing lit-

erature, see e.g. [18]). The HNLS equation, which

incorporates higher-order dispersive and nonlinear

terms, generalizes the one describing short pulse

propagation in nonlinear optical fibers.

Then, we proceed with the analysis of nonlinear

localized EM waves propagating in the frequency

band gaps of nonlinear MMs. More precisely,

we derive nonlinear evolution equations describing

ultra-short pulses (possessing pulse widths of the

order of a few cycles of the carrier frequency) that

can be formed in these band gaps. In doing so, we

consider a MM characterized by the permittivity

ε and permeability μ of [3], as well as a weak

Kerr-type nonlinearity in its dielectric response

[20,21,24]. By modifying the techniques of [25,26],

we derive appropriate expressions for μ in the HF

and LF band gaps. Then, we use a multiscale per-

turbation method, with different small parameters

for the HF and LF gaps depending on the MM

characteristics, to derive from Maxwell’s equations

two short-pulse equations SPEs. Each of these

equations describes the evolution of ultra-short

pulses either in the HF or the LF gap. The SPE has

been shown to be the proper model for describing

the evolution of ultra-short pulses in nonlinear

fiber optics [25]; moreover in [25] the solutions of

Maxwell’s equations were compared numerically to

the ones of the SPE and NLS models and it was

shown that the accuracy of the SPE (NLS) increases

(decreases) as the pulse width shortens. We also

discuss the structure of the resulting peakon-like

solutions of the SPEs derived in our context of

nonlinear MMs, and draw parallels to NLS-like

soliton solutions (which can be regarded as ultra-

short gap solitons in nonlinear MMs). Numerical

simulations of the peakon-like and breather-like

solutions are also included both in the context of

the SPEs as well as in that of the reduced wave

equations originating from Maxwell’s equations.

Investigations of the above described phenomena

were initiated in [27] and [28]. This paper contains

a unified treatment of these investigations, provides

appropriate extensions and points out generaliza-

tions concerning the modelling of wave propaga-

tion in more complicated types of nonlinear MMs

(e.g. chiral MMs).

II. DESCRIPTION OF THE
NONLINEAR METAMATERIAL

We consider a composite lossy nonlinear MM,

consisting of an array of conducting wires and

SRRs, with the slits of the SRRs filled with a

weakly nonlinear dielectric [16,18-20,22]. The MM

is characterized by a frequency dependent effective

complex permittivity ε̂(ω) and magnetic permeabil-

ity μ̂(ω) (below f and f̂ denote any function f
in the time- and frequency-domain, respectively)

given by [3,16]:

ε̂(ω; |E|2) = ε0

(
εD(|E|2) − ω2

p

ω2 + iωγε

)
,

μ̂(ω; |H|2) = μ0

(
1 − Fω2

ω2 + iωγμ − ω2
0NL(|H|2)

)
,

where ε0 and μ0 are the vacuum permittivity and

permeability, ω is the EM wave’s frequency, ωp

is the plasma frequency, F is the filling factor, γε

and γμ are the linear loss frequencies, ω0NL is the

nonlinear resonant SRR frequency [16], E and H
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are the electric and magnetic field intensities. In the

linear limit, εD → 1 and ω0NL → ωres (ωres is the

linear resonant SRR frequency).

In particular, we assume the decompositions [18-

22,29]:

ε̂(ω; |E|2) = ε̂L(ω) + εNL(|E|2), (1)

μ̂(ω; |H|2) = μ̂L(ω) + μNL(|H|2). (2)

For the linear parts we assume a Drude (Lorentz)

model for the permittivity (permeability) [27]:

ε̂L(ω) = ε0

(
1 − ω2

p

ω2 + iωγε

)
, (3)

μ̂L(ω) = μ0

(
1 − Fω2

ω2 + iωγμ − ω2
res

)
, (4)

while the weakly nonlinear parts of the permittivity

and permeability exhibit a Kerr-type behavior and

are, respectively, given by [18-22]:

εNL(|E|2) = ε0α|E|2, (5)

μNL(|H|2) = μ0β|H|2, (6)

where α and β are the Kerr coefficients; α > 0
and α < 0 corresponds to focusing and defocusing

dielectrics.

Assuming that ωp > ωres and that the linear

losses γε and γμ are small compared to the op-

erating frequency, the dispersion relation k2
0 =

ω2
0Re[ε̂L(ω0)]Re[μ̂L(ω0)] (k0 the wavenumber cor-

responding to the carrier frequency ω0) shows that

linear waves exist (k2
0 > 0) in the bands ω > ωp

and ωres < ω < ωM ≡ ωres/
√

1 − F , where

the medium is right-handed (RH) and left-handed

(LH), respectively. These bands will be called the

RH and LH bands. On the other hand, there exist

two bands, with Re[ε̂L] < 0 and Re[μ̂L] > 0, where

linear waves are evanescent (k2
0 < 0). These “band-

gaps” are 0 < ω < ωres [“low-frequency” (LF)

gap], and ωM < ω < ωp [“high-frequency” (HF)

gap]. Typical dispersion curves of Re[ε̂L](ω) and

Re[μ̂L](ω) are shown in Fig. 1.

In the sequel, we consider the physically relevant

[18] values of parameters: F = 0.4, ωres = 2π ×
1.45 GHz, ωM = 2π × 1.87 GHz, and ωp = 2π ×
10 GHz, for which α may be positive or negative,

while β is positive.

III. EM WAVE PROPAGATION IN
THE LEFT-HANDED BAND

First, we analyze the frequency band 2π ×
1.45 GHz < ω < 2π×1.87 GHz, inside which the

SRRs are negative-index LH media (with Re[ε̂L] <
0 and Re[μ̂L] < 0), as was discussed above.

ω  [a.u.]

R
e[

ε L]/ε
0,  

R
e[

μ L]/μ
0  [

a.
u.

]

0
ω ω ωM pres

  LH
regime

  RH
regime

   HF
  gap

   LF
  gap

Fig. 1. Re[μ̂L]/μ0 [solid (red) line], and Re[ε̂L]/ε0
[dashed (blue) line] versus ω in arbitrary units

(a.u.). Linear waves propagate (Re[ε̂L]Re[μ̂L] > 0)

for ω > ωp (RH regime) and ωres < ω < ωM

(LH regime). Dotted regions with Re[ε̂L] < 0 and

Re[μ̂L] > 0 depict the LF gap (0 < ω < ωres) and

the HF gap (ωM < ω < ωp).

A. Propagation along the +ẑ axis
We consider the propagation along the +ẑ direc-

tion of a x- (y-) polarized electric (magnetic) field,

namely,

E(z, t) = x̂E(z, t) , H(z, t) = ŷH(z, t). (7)

Then, using the constitutive relations (in frequency

domain) D̂=ε̂Ê and B̂=μ̂Ĥ (D̂ and B̂ are the

electric flux density and the magnetic induction),

Faraday’s and Ampére’s laws respectively read (in

the time domain):

∂zE = −∂t(μ ∗ H), ∂zH = −∂t(ε ∗ E), (8)

where ∗ denotes the convolution integral, i.e., f(t)∗
g(t) =

∫ +∞
−∞ f(τ)g(t−τ)dτ , for functions f(t) and

g(t).
Note that Eqs. (8) may be used in either the RH

or the LH regime of a MM: once the dispersion

relation k0 = k0(ω0) and the evolution equations

for the fields E and H are found, then k0 > 0
(k0 < 0) corresponds to the RH (LH) regime.

Alternatively, for fixed k0 > 0, one should shift

the fields as [E, H]T → [±E,∓H]T (either up

or down sign combinations), thus inverting the

orientation of the magnetic field and associated

Poynting vector. Below, in our consideration we

will assume that the wavenumber k0 = k0(ω0)
obtained from the linear dispersion relation [see Eq.

(20) below] will be k0 < 0 for the LH regime.

Next, we consider that:

[E(z, t),H(z, t)]T = [q(z, t), p(z, t)]T ei(k0z−ω0t),
(9)
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where q and p are the unknown EM fields en-

velopes.

B. Nonlinear evolution equations by the reduc-
tive perturbation method

Nonlinear evolution equations for the field en-

velopes can be found by the reductive perturbation
method [30] as follows. First, we assume that the

temporal spectral width of the nonlinear term with

respect to the spectral width of the quasi-plane-

wave dispersion relation is characterized by the

formal small parameter ε [31,32].

Then, we introduce the slow variables:

Z = ε2z, T = ε(t − k′
0z), (10)

where k′
0 ≡ v−1

g is the inverse of the group

velocity (hereafter, primes will denote derivatives

with respect to ω0). Additionally, we express q and

p as asymptotic expansions in terms of ε,

q(Z, T ) =q0(Z, T ) + εq1(Z, T ) + ε2q2(Z, T ) + · · ·
(11)

p(Z, T ) =p0(Z, T ) + εp1(Z, T ) + ε2p2(Z, T ) + · · ·
and assume that the Kerr coefficients α and β are of

order O(ε2) (see, e.g., [18,31] as well as [33,34]).

Moreover, the linear components of ε̂L and μ̂L

are decomposed into real and imaginary parts, as

follows:

ε̂L(ω) = ε̂R(ω) − iε̂I(ω), (12)

μ̂L(ω) = μ̂R(ω) − iμ̂I(ω), (13)

where the imaginary parts are assumed to be O(ε2).
Note that the effect of losses in ε̂L and μ̂L is taken

here for the first time into account since the analysis

of [27] concerns the lossless case.

Then, substituting Eqs. (11) into Eqs. (8), using

Eqs. (1), (2), and (10), and Taylor expanding ε̂L,

and μ̂L, we arrive at the following hierarchy of

equations:

O(ε0) : Wx0 = 0, (14)

O(ε1) : Wx1 = −iW′∂Tx0, (15)

O(ε2) : Wx2 = −iW′∂Tx1 +
1
2
W′′∂2

Tx0

+
k′′

0

2
∂2

Tx0 − i∂Zx0 − (A − iB)x0, (16)

O(ε3) : Wx3 = −iW′∂Tx2 +
1
2
W′′∂2

Tx1

+
i

6
W′′′∂3

Tx0 +
ik′′′

0

6
∂3

Tx0 +
k′′

0

2
∂2

Tx1

− i∂Zx1 − (A − iB)x1 − (B′∂T − iC)x0,
(17)

with xi = [qi, pi]
T (i = 0, 1, 2, 3) unknown vectors,

and

W =
[ −k0 ω0μ̂R

ω0ε̂R −k0

]
, Axi = ω0

[
β|p0|2pi

α|q0|2qi

]

B =
[

0 ω0μ̂I

ω0ε̂I 0

]
, (18)

Cx0 =
[ −β∂T (|p0|2p0) + iω0β(p0p

�
1 + p�

0p1)p0

−α∂T (|q0|2q0) + iω0α(q0q
�
1 + q�

0q1)q0

]

with � denoting complex conjugate.

The compatibility conditions required for the

solvability of Eqs. (14)–(17) (known also as Fred-

holm alternatives [30,31]) are: LWxi = 0, where

L = [1, ẐL] is a left eigenvector of W, such that

LW = 0, and ẐL =
√

μ̂R/ε̂R is the linear wave-

impedance, when dissipation is small enough to be

ignored.

The leading-order Eq. (14) provides the follow-

ing results. First, the solution x0 of Eq. (14) has

the form:

x0 = Rφ(Z, T ), (19)

where φ(Z, T ) an under determination scalar field

and R = [1, Ẑ−1
L ]T a right eigenvector of W, such

that WR = 0. Second, by using the compatibility

condition LWx0 = 0 and Eq. (19), we obtain that

LWR = 0, which is actually the linear dispersion

relation:

k2
0 = ω2

0 ε̂Rμ̂R, (20)

with all functions of frequency evaluated at ω0.

Eq. (20) is also obtained by the nontrivial solution

condition detW = 0. Third, the electric and

magnetic field envelopes are proportional to each

other, i.e. q0 = p0ẐL.

Next, at O(ε1), the compatibility condition for

Eq. (15) results in LW′R = 0, written as:

2k0k
′
0 = ω2

0(ε̂Rμ̂′
R + ε̂′Rμ̂R) + 2ω0ε̂Rμ̂R. (21)

This is actually the definition of the group velocity

vg = 1/k′
0, as can also be found by differentiating

the dispersion relation Eq. (20) with respect to ω.

Furthermore, by combining Eqs. (15) and (19), we

get that:

x1 = iR′∂T φ(Z, T ) + Rψ(Z, T ), (22)

where ψ(Z, T ) is an unknown scalar field. Next,

at order O(ε2), the compatibility condition for

Eq. (16), combined with Eqs. (19) and (22), yields

the following nonlinear Schrödinger (NLS) equa-

tion:

i∂Zφ − 1
2
k′′

0∂2
T φ + ϑ|φ|2φ = ig̃φ, (23)
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where k′′
0 is the group-velocity dispersion coeffi-

cient, while g̃ and ϑ are, respectively, the linear

loss and nonlinear coefficients which are given by:

g̃ =
k0

2ε̂Rμ̂R
(ε̂Rμ̂I + μ̂Rε̂I) , (24)

ϑ =
ω2

0

2k0

(
ε0αμ̂R + μ0βε̂RẐ−2

L

)
. (25)

Importantly, once φ is obtained from the NLS

Eq. (23), the electric and magnetic field envelopes

are, respectively, determined by means of Eq. (19)

as q0 = φ and p0 = Ẑ−1
L φ, similarly to the case of

a linear medium.

Finally, to order O(ε3), we use the compatibility

condition for Eq. (17), as well as Eqs. (16), (19),

and (22), and obtain a NLS equation, incorporating

higher-order dispersive and nonlinear terms. This

equation describes the evolution of ψ, and yet con-

tains φ, which obeys Eq. (23). By following [31]

and [32], we introduce a new combined function

Φ = φ + εψ, and then combine the NLS equations

obtained at O(ε2) and O(ε3) to find that Φ obeys

the higher-order NLS (HNLS) equation:

i∂ZΦ − 1
2
k′′

0∂2
T Φ + ϑ|Φ|2Φ

= iε

[
1
6
k′′′

0 ∂3
T Φ − ϑ

ω0
∂T (|Φ|2Φ) + ig̃′∂T Φ

]
.

(26)

For ε = 0, the HNLS Eq. (26) is reduced to

the NLS Eq. (23), while for ε �= 0 generalizes

the HNLS equation describing ultra-short pulse

propagation in optical fibers [31,32] (where μ =
μ0, while dispersion and nonlinearity appear solely

in the fiber dielectric properties). As in the case of

the NLS Eq. (23), Eq. (26) provides the field Φ
which determines the electric and magnetic fields

at O(ε3), respectively, as q0 + εq1 = Φ and

p0 + εp1 = Ẑ−1
L Φ [see Eqs. (19) and (22)]. Note

that Eqs. (23) or (26) can be used in the LH (RH)

regime, taking k0, ε̂R, and μ̂R negative (positive),

as per the discussion above.

In the sequel, we derive analytically exact soliton

solutions of Eqs. (23) and (26).

C. Solitons solutions of the NLS equation
First, we analyze in detail the NLS Eq. (23):

we start by measuring length, time, and the field

intensity |φ|2 in units of the dispersion length

LD = t20/|k′′
0 |, initial pulse width t0, and LD/|ϑ|,

respectively, and reduce Eq. (23) to the following

dimensionless form:

i∂Zφ − s

2
∂2

T φ + σ|φ|2φ = igφ, (27)

TABLE I: Conditions for the formation of bright

or dark solitons (BS or DS) for the NLS Eq. (27)

s = +1 s = −1
σ = +1 α > 0 DS BS

σ = −1 α < 0, |α
β
| >

Z2
0

Ẑ4
L

BS DS

σ = +1 α < 0, |α
β
| <

Z2
0

Ẑ4
L

DS BS

where s = sign(k′′
0), σ = sign(ϑ), and g = LDg̃.

The NLS Eq. (27) admits bright (dark) soliton

solutions for sσ = −1 (sσ = +1).

For our choice of parameters, numerical simu-

lations indicate (see Fig. 2 of [27]) that inside the

LH regime s = +1 (k′′
0 > 0) for 2π × 1.76 <

ω < 2π × 1.87 GHz, while s = −1 (k′′
0 < 0)

for 2π × 1.45 < ω < 2π × 1.76 GHz. On the

other hand, the linear loss coefficient g attains very

small values and can to a certain approximation be

ignored. Moreover, regarding σ, it can take either

the value σ = +1 or σ = −1, depending on the

magnitudes and signs of the Kerr coefficients α and

β. Note that we have assumed that β > 0, and

hence σ = +1 either for a focusing dielectric, with

α > 0, or for a defocusing dielectric, α < 0, with

|α/β| < Z2
0/Ẑ4

L (Z0 =
√

μ0/ε0 is the vacuum

wave-impedance).

Thus, for σ = +1, bright (dark) solitons oc-

cur in the anomalous (normal) dispersion regimes,

namely, for k′′
0 < 0 (k′′

0 > 0), respectively. On the

other hand, σ = −1 for a defocusing dielectric

(α < 0), with |α/β| > Z2
0/Ẑ4

L and, bright (dark)

solitons occur in the normal (anomalous) dispersion

regimes. The above conclusions are summarized in

Table I.

The “flexibility” due to the extra “degree of free-

dom” provided by the dispersion and nonlinearity

properties of the magnetic response of the LH MM

(missing in fiber optics), allows for the formation

of bright (dark) solitons in the anomalous (normal)

dispersion regimes for defocusing dielectrics (see

third line of Table I).

D. Ultra-short solitons solutions of the HNLS
equation

Now, we analyze the HNLS Eq. (26) which, by

using the same dimensionless units as before, is

expressed as:

i∂ZΦ − s

2
∂2

T Φ + σ|Φ|2Φ =

iδ1∂
3
T Φ − iσδ2∂T (|Φ|2Φ) − δ3∂T Φ, (28)
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where the coefficients δ1, δ2, and δ3 are given by:

δ1 = ε
k′′′

0

6t0|k′′
0 |

, δ2 = ε
1

ω0t0
, δ3 = ε

LDg̃′

t0
.

(29)

Ultra-short solitons in nonlinear LH MMs can

be predicted by means of Eq. (28). More precisely,

following [35], and assuming negligible contribu-

tion from the linear losses (i.e. δ3 � 0), we seek

travelling-wave solutions of Eq. (28) of the form:

Φ(Z, T ) = U(η) exp[i(KZ − ΩT )], (30)

where U(η) is the unknown real envelope function,

η = T − ΛZ, and the real parameters Λ, K, and

Ω denote the wave’s inverse velocity, wavenumber,

and frequency. Substituting Eq. (30) into Eq. (28),

the real and imaginary parts of the resulting equa-

tion read:

Ü +
K − s

2Ω2 − δ1Ω3

s
2 + 3δ1Ω

U − σ(1 + δ2Ω)
s
2 + 3δ1Ω

U3 = 0,

(31)

δ1
...
U + (Λ − sΩ − 3δ1Ω2)U̇ − 3σδ2U

2U̇ = 0,
(32)

where overdots denote differentiations with respect

to η.

Notice that when δ1 = δ2 = 0, Eq. (32) is

automatically satisfied if Λ = sΩ and the profile

of “long” soliton pulses [governed by Eq. (27)]

is determined by Eq. (31). On the other hand,

for ultra-short solitons (corresponding to δ1 �= 0,

δ2 �= 0), Eqs. (31) and (32) are consistent if:

K − s
2Ω2 − δ1Ω3

s
2 + 3δ1Ω

=
Λ − sΩ − 3δ1Ω2

δ1
≡ κ, (33)

− σδ2

δ1
= −σ(1 + δ2Ω)

s
2 + 3δ1Ω

≡ ν, (34)

where κ and ν are nonzero constants. In such

a case, Eqs. (31) and (32) are equivalent to the

equation of motion of the unforced and undamped

Duffing oscillator:

Ü + κU + νU3 = 0. (35)

For κν < 0, Eq. (35) possesses two exponen-

tially localized solutions [35], having the form of

a hyperbolic secant (tangent) for κ < 0 and ν > 0
(κ > 0 and ν < 0), and thus corresponding to the

bright, UBS (dark, UDS) solitons of Eq. (28):

UBS(η) = (2|κ|/ν)1/2 sech(
√
|κ|η), (36)

UDS(η) = (2κ/|ν|)1/2 tanh(
√

κ/2η). (37)

These are ultra-short solitons of the HNLS Eq.

(28), valid even for ε = O(1): since both δ1, δ2

of Eq. (28) scale as ε(ω0t0)−1, it is clear that for

ω0t0 = O(1), or for soliton widths t0 ∼ ω−1
0 , the

higher-order terms can be neglected and propaga-

tion is governed by Eq. (27). On the other hand,

if ω0t0 = O(ε), the higher-order terms become

important and solitons governed by the HNLS Eq.

(28) are ultra-short, of width t0 ∼ εω−1
0 , satisfying

Faraday’s and Ampére’s laws in Eqs. (8) up to

O(ε3).
Concerning the condition for bright or dark

soliton formation, namely κν < 0, we note that

κ depends on the free parameters K and Ω (and,

thus, can be tuned on demand), while the parameter

ν has the opposite sign from σ. This means that

bright solitons are formed for κ < 0 and σ = −1
(i.e., α < 0 with |α/β| > Z2

0/Ẑ4
L), while dark ones

are formed for κ > 0 and σ = +1 (i.e., α > 0, or

α < 0 with |α/β| < Z2
0/Ẑ4

L).

IV. EM WAVE PROPAGATION IN THE
FREQUENCY BAND GAPS

Now, we consider the EM wave propagation in

the two frequency band-gaps of the nonlinear MM

(characterized by Re[ε̂L] < 0 and Re[μ̂L] > 0),

where, as mentioned above, linear EM waves are

evanescent (k2
0 < 0). To this end, we assume that

the MM exhibits a Kerr-type nonlinearity exclu-

sively in its dielectric response, while the magnetic

permeability is considered a linear function; this

assumption is justified in [20,21,24].

As in (7), also here we assume propagation along

the +z direction of a x- (y-) polarized electric

(magnetic) field. Then, Maxwell’s equations lead to

the following time-domain nonlinear wave equation

for E(z, t):

∂2
zE−∂2

t (εL∗μL∗E)−ε0α∂2
t (μL∗E3) = 0. (38)

Note that once the electric field E(z, t) is obtained

from Eq. (38), the magnetic field H(z, t) is derived

from Faraday’s law.

In the sequel, we analyze the EM wave propa-

gation separately in the “high-frequency” (HF) and

“low-frequency” (LF) gaps. We assume that the

MM is lossless; extensions to the lossy case are

discussed in Sec. V below.

A. The high-frequency band gap

The HF band gap is defined by ωM < ω < ωp

(see Fig. 1). In this regime, by assuming ω 
 ωres,
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Fig. 2. Permeability μ̂L/μ0 in the HF gap.

Solid (red) and dashed (blue) lines correspond,

respectively, to the exact [Eq. (4)] and approximate

[Eq. (39)] expressions of μ̂L(ω)/μ0 in this band.

The approximation produces a relative error less

than 5% for ωa ≡ 2π × 3.1 GHz < ω < ωp =
2π × 10 GHz.

we find that μ̂L(ω) in Eq. (4) is approximated by:

μ̂L(ω) ≈ μ0(1 − F ) − μ0F
ω2

res

ω2
. (39)

Using the parameter values discussed above

(namely F = 0.4, ωres = 2π × 1.45 GHz, ωM =
2π× 1.87 GHz, and ωp = 2π× 10 GHz), in Fig. 2

we show the exact [Eq. (4)] and approximate [Eq.

(39)] expressions for the effective permeability in

this band. As seen, in Fig. 2, the above approxima-

tion produces a relative error from the exact form

of μ̂L(ω)/μ0 less than 5% in a wide sub-interval of

frequencies in this band, namely for ωa ≡ 2π×3.1
GHz < ω < ωp = 2π × 10 GHz.

Next, by using Eq. (39) and employing the

techniques of [28], we reduce Eq. (38) to:

∂2
zE − 1 − F

c2
∂2

t E − 1
c2

[Fω2
res + (1 − F )ω2

p]E

− α

c2

[
Fω2

resE
3 + (1 − F )∂2

t E3
]

= 0,(40)

where c is the velocity of light in vacuum. Next, we

measure time, space, and the field intensity E2 in

units of ω−1
res , v/ωres [where v = c(1 − F )−1/2],

and |α|−1, respectively, and express Eq. (40) in

dimensionless form:

(
∂2

z − ∂2
t − ρ̃

)
E = s

(
F

1 − F
+ ∂2

t

)
E3, (41)

where s = sgn(α) = ±1 for focusing or defo-

cusing nonlinearity, respectively, and ρ̃ = F/(1 −
F ) + (ωp/ωres)2. We have assumed above that

(ωp/ωres)2 
 1 in order to ensure the validity of

the approximation (39) in a wide sub-interval of the

HF band gap. Then, ρ̃ is a large parameter, which

0 2 4 6 8
1
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1.06

1.08

1.1

ω=2πf (GHz)

μ L/μ
0

ωres

LF gap

ωb

Fig. 3. Permeability μ̂L/μ0 in the LF gap.

Solid (red) and dashed (blue) lines correspond,

respectively, to the exact [Eq. (4)], and approximate

[Eq. (44)] expressions of μ̂L(ω)/μ0; a relative error

of less than 5% is achieved for ωb ≡ 2π×1.28 GHz

< ω < ωres = 2π × 1.45 GHz.

suggests that ρ̃ = ρ/ε, where ε is a formal small

parameter, and ρ = O(1). Furthermore, considering

propagation of small-amplitude short pulses, we

introduce a multiple scale ansatz of the form:

E = ε3/2E1(THF, Z1, · · · )
+ ε5/2E2(THF, Z1, · · · ) + · · · , (42)

where THF = ε−2(t − z) and Zn = εnz (n =
1, 2, · · · ). Substituting Eq. (42) into Eq. (41), we

obtain various equations at different orders of ε. In

particular, terms at O(ε−5/2) cancel, there are no

terms at O(ε−3/2), while terms at O(ε−1/2), cancel

provided that:

2∂ζ∂THFE1 + ρE1 + s∂2
THF

E3
1 = 0, (43)

where ζ ≡ Z1. Eq. (43) is the short pulse equation

(SPE), which was derived in Ref. [25] in the con-

text of ultra-short pulses propagation in nonlinear

silica optical fibers.

B. The low-frequency band gap

The LF gap is defined by 0 < ω < ωres (see

Fig. 1). For ω � ωres we approximate μ̂L(ω) in

Eq. (4) by:

μ̂L(ω) ≈ μ0

(
1 + F

ω2

ω2
res

)
. (44)

Figure 3 depicts the exact [Eq. (4)] and approxi-

mate [Eq. (44)] expressions for μ̂L(ω) in the LF

band gap for F = 0.02, ωres = 2π × 1.45 GHz.

The relative error is less than 5% for 0 < ω <
ωb ≡ 2π × 1.28 GHz.
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Now, we use Eq. (44) and follow a similar pro-

cedure with that of the HF gap, to reduce Eq. (38)

to:

∂2
zE − 1

c2

(
1 − F

ω2
p

ω2
res

)
∂2

t E − ω2
p

c2
E =

− F

ω2
resc

2
∂4

t E +
α

c2
∂2

t E3 − αF

ω2
resc

2
∂4

t E3. (45)

Notice that in Eq. (45), the ratio (ωp/ωres)2 is

considered to be a O(1) parameter (as, e.g., in Ref.

[24]) since ωp is not involved in the band width of

the LF band gap. In this band, it is convenient to

use the filling factor F as the small parameter; this

is a physically relevant choice for SRRs [36], as

well as for other types of MMs [37].

Next, we measure time, space, and the field

intensity E2 in units of ω−1
res , c/ωres and |α|−1,

respectively, and thus reduce Eq. (45) to the di-

mensionless form:
(

∂2
z − ∂2

t − ω2
p

ω2
res

)
E = s∂2

t E3. (46)

From Eq. (46), we derive an SPE for the LF band

by using the asymptotic expansion:

E = εE1(TLF, Z1, · · · )+ε2E2(TLF, Z1, · · · )+· · · ,
(47)

where TLF = ε−1(t − z) and Zn = εnz (n =
1, 2, · · · ). Substituting Eq. (47) into Eq. (46), the

terms at O(ε−1) cancel, there are no terms at

O(ε0), while terms at O(ε), cancel provided that

E1 satisfies the SPE:

2∂ζ∂TLFE1 +
ω2

p

ω2
res

E1 + s∂2
TLF

E3
1 = 0. (48)

C. Solutions of the short pulse equations
We discuss solutions of the SPEs by unifying

Eqs. (43) and (48) in the single equation with

respect to u ≡ E1:

∂ζ∂τu + Γu +
1
2
s∂2

τu3 = 0, (49)

where Γ = ρ/2 and τ = THF for the HF gap,

and Γ = ω2
p/(2ω2

res) and τ = TLF for the LF gap.

Seeking travelling wave solutions u = u(ξ), where

ξ = ζ − Cτ , Eq. (49) is reduced to the ordinary

differential equation:

−Cuξξ + Γu +
1
2
sC2(6uu2

ξ + 3u2uξξ) = 0, (50)

which by means of the transformation u2
ξ = w(u)

yields:

u2
ξ = −Γu2

C

3sCu2 − 4
(3sCu2 − 2)2

, (51)

subject to the initial condition uξ(±∞) =
u(±∞) = 0 or w(u(±∞)) = w(0) = 0. For

sC < 0 the solutions (51) are always either as-

cending or descending, while for sC > 0 bounded

solutions are allowed. In the case s = +1 (i.e.,

focusing dielectrics with α > 0), which implies that

C > 0, the maximum of the travelling wave occurs

when u =
√

4/3C. To avoid the singularity at

u =
√

2/3C, we consider small amplitude pulses

and Eq. (51) is reduced to u2
ξ = (Γ/C)u2, which

possesses a peakon-like solution (see, e.g. [38]) of

the form:

u(ξ) = A exp(−
√

Γ/C|ξ|), (52)

whose derivative has a discontinuity at ξ = 0,

with amplitude A <
√

2/3C. Also, when the

above approximation is not used, the right-hand

side of Eq. (51) needs to be positive giving |u| <√
4/3|C|. These characteristics are consistent with

the fact that the SPE exhibits loop-solitons (see

[39]).

Moreover, based on the formal connection be-

tween the SPE and the sine-Gordon equation

(SGE), a smooth, sech-shaped, envelope soliton

solution of the SPE, based on the breather solution

of the SGE, was derived in [39]. In the framework

of Eq. (49), this solution has the form:

u ≈ 4m√
3Γ

cos (ζ + Γτ) sech [m (ζ − Γτ)] , (53)

where 0 < m < 1. The shape of the SPE pulse

in Eq. (53) bears resemblance to the NLS soliton,

as it consists of a sech-shaped pulse modulating

a cos-shaped function. In particular, a connection

is established in [28] between the SPE and NLS

equations by showing that the envelope function A
satisfies the NLS equation:

i
(
∂ζ2A + k′∂τ2A

) − k′′

2
∂2

τ̄1
A +

3
2
ω|A|2A = 0, (54)

where ζn = εnζ, τn = εnτ (ε � 1 and

n = 0, 1, · · · ), τ̄1 = τ1 − k′ζ1, k′ = −k/ω,

and k′′ = 2k/ω2. Clearly the well-known sech-

shaped envelope soliton solution of the NLS Eq.

(54) resembles the soliton of Eq. (53), and scales

in space and time similarly. Such smooth SPEs

solutions are weak gap solitons that can be formed

in the HF and LF band gaps of the nonlinear MM.

D. Numerical simulations
We end up by giving some indicative numerical

simulations concerning Eqs. (49) and (41); for

further details, analysis and discussions on these
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simulations see [28]. The utilized methodology for

these simulations relies on Fourier transforming

Eq. (49) with respect to τ , then solving the ensuing

first order ODE in ζ (for each frequency), via a

fourth-order Runge-Kutta scheme, and then Fourier

transforming back to obtain u(ζ, τ). We use the

constant set of parameters s = 1, F = 0.4,

and ωp/ωres = 10/1.45 and ε = 0.1. The initial

condition is depicted in Fig. 4a and is obtained

as the exact breather solution of the SPE equation

(Eq. (22) in [39], with m = 0.32). The evolution

of the breather is shown both in Fig. 4b depicting

the contour plot of the space-time evolution as well

as in Fig. 4d, depicting the center of mass of the

solution vs. time. This is a robust localized struc-

ture propagating through the domain with constant

speed in time. We have also integrated Eq. (41)

with the same type of breather initial profile. In the

latter case, however, from the multiple scale ansatz,

the initial condition of Eq. (41) was E(0, τ) =
εu(0, τ), Ez(0, τ) = −uτ (0, τ). The result of the

time integration is shown in Fig. 4c. Evidently, the

breather is robust in this setting as well, although

its propagation speed is slightly smaller than that of

the SPE breather. This result confirms our predic-

tion that such “gap breathers” should be observable

in the considered type of nonlinear MMs.

V. CONCLUSIONS AND FUTURE
WORK

In conclusion, we analyzed electromagnetic

(EM) pulse propagation in the left-handed (LH)

regime and in the frequency band gaps of nonlin-

ear metamaterials (MMs). In the LH regime, we

used the reductive perturbation method to derive

from Maxwell’s equations a nonlinear Schrödinger

(NLS) and a higher-order NLS (HNLS) equation.

We found necessary conditions for the formation

of bright or dark ultra-short solitons, as well as

analytical expressions for these solitons. In the

frequency band gaps [with negative (positive) lin-

ear permittivity (permeability) hence not allowing

propagation of linear EM waves] we derived short-

pulse equations (SPEs) describing the propagation

of ultra-short pulses. We discussed the structure

of the SPEs solutions and presented peakon-like

and NLS-like solitons, which can be regarded as

weak ultra-short gap solitons. The existence of such

structures, indicates the possibility of nonlinear

localization of EM waves in the gaps of nonlinear

MMs.

Interesting subjects for future research may in-

clude a systematic study of the stability and dy-
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Fig. 4. (a) Breather initial condition used in

Eqs. (49) and (41), (b) space-time contour plot of

the field evolution in Eq. (49), (c) the same as in

(b) but for Eq. (41), (d) evolution of the breathers’

center of mass in the two respective models by

dotted and solid lines.
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namics of the ultra-short or gap solitons, both in

the framework of the HNLS or SPE as well as

in that of Maxwell’s equations. Moreover, it is

also worthwhile to analyze the MM in its initial

form of conducting wires and SRR’s by a suitable

CEM methodology (e.g. FDTD or MoM) in order

to derive the propagating pulses and then compare

them with (i) the solutions of the Maxwell’s system

(8) after assuming an effective medium approach

for the material parameters (see Eqs. (3) and (4)),

and (ii) the ultra-short solitons solutions derived in

Section III-D. On the other hand, the consideration

in the SPE models of the linear losses related to

the permittivity and permeability of the MM would

result to more general and interesting to investigate

SPEs, which would also incorporate first temporal

derivative terms of the electric field constituting

control mechanisms of the evolution of the gap

soliton.

Furthermore, it is highly worthwhile to carry

out the corresponding investigations, concerning

solitons formation and propagation, in other more

complicated types of nonlinear MMs, exhibiting

negative refractive index in a certain frequency

band. For example, a representative material of this

class is an isotropic chiral MM for which one of

the two refractive indices can have a negative real

part [40,41]; for the EM modelling of linear chiral

media see [42], while for applications of negative

index chiral MMs see [43]. For a nonlinear chi-

ral MM, application of the reductive perturbation

method leads to a system of two coupled NLS

equations for the LH and RH Beltrami components

of the EM field. For a sufficiently large chirality

parameter there exists a certain spectral regime

where the refractive index for the LH/RH Beltrami

component is real and negative but that for the

RH/LH Beltrami component is real and positive

[40]. To this direction, it is interesting to approxi-

mate, inside the above regime, the coupled system

of the NLS equations by a completely integrable

system, and hence predict various classes of exact

vector soliton solutions (bright-bright, dark-dark, as

well as dark-bright solitons) that can be supported

in the nonlinear chiral MM. Certain relevant inves-

tigations are reported in [44].
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