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Abstract ─ This paper exposes two procedures in order 
to develop a refined analytical model which describes 
the behaviour of a linear switched reluctance motor. 
The first approach is based on the flux linkage and the 
second on the inductance, both versus position and 
current. Taking into account the non-linearity of the 
magnetic circuit, models are expressed by either Fourier 
series or polynomials where the only first three 
components are considered. Results of these analytical 
approaches are compared with those obtained using 
finite element methods (FEM) where a good agreement 
is observed. 
 
Index Terms ─ Actuator, analytical model, computer 
simulation, electromagnetic force. 
 

I. INTRODUCTION 
Nowadays, linear switched reluctance machines are 

widely used. Unfortunately, in order to generate a high-
propulsion force the LSRM must be operated in the 
saturation zone. In saturation conditions, main magnetic 
characteristics, such as flux linkage, inductance and 
propulsion force, are highly nonlinear. Consequently, 
the analytical methods based on some hypotheses are 
not very accurate to determine system performances 
and to elaborate control strategies. Regarding their 
modelling, there are many approaches such as lookup-
table techniques, magnetic equivalent-circuit analysis, 
cubic-spline interpolations and finite-element methods 
(FEM), [3-4]. 

In a linear switched reluctance machine, the phase 
inductances and flux linkages vary with rotor position 
due to stator and rotor saliencies. The phase inductances 
and flux linkages at any rotor position also vary with 
the instantaneous phase currents because of magnetic 
saturation. However, these variations can be modelled 
analytically using the data obtained through FEM or 
through experiments. These analytical expressions are 
used to represent the linear switched reluctance 
machine dynamics and hence, the machine performance 
can be obtained, [1-2]. 

In order to determine a refined model which 
describes the behaviour of a saturated reluctant structure, 

there are basically two ways to represent the static 
LSRM characteristics. The first way is to plot the flux 
linkage versus rotor position and different phase 
currents. In this section, two approaches will be 
developed. The second way is to plot the phase 
inductance as function of rotor position and different 
phase currents, [5-8]. 

The paper is organized as follows. Taking apart the 
introduction and the conclusion, in Section 2, two 
approaches based on flux linkage model are developed. 
Section 3 gives the second method based on inductance 
model. Finally, Section 4 is reserved to determine the 
dynamic performances with and without saturation for 
the LSRM. 
 

II. FLUX-LINKAGE-BASED MODEL OF 
LSRM 

As previously stated, in a linear switched reluctance 
machine, the magnetic flux depends on both the relative 
stator and rotor position and winding current. Using 
Fourier series, the stator-phase flux linkage of the 
LSRM limited to the second harmonic order is: 

 ( ) 0 1 2
2 4, cos cosi x x xπ πϕ ϕ ϕ ϕ
λ λ

   = + +   
   

. (1) 

For a given phase current, coefficients φ0, φ1 and φ2 
can be derived as functions of the aligned position flux 
linkage φc; the unaligned position flux linkage φop and 
the flux linkage at the midway φi, as follows, [9-10]: 
 ( )0

1 1
2 2 c op iϕ ϕ ϕ ϕ = + +  

, (2) 

 ( )1
1
2 c opϕ ϕ ϕ= − , (3) 

 ( )2
1 1
2 2 c op iϕ ϕ ϕ ϕ = + −  

. (4) 

Based on the above description, the proposed 
analytic modelling can be developed by using three 
curves: the aligned, the unaligned and the midway-
position curves. The unaligned position curve, as shown 
in Fig. 1, is approximated by a straight line and can be 
described by: 
 op opL iϕ = , (5) 
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where Lop is a constant. 
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Fig. 1. Flux linkage against phase current for different 
mover positions. 
 

To determine φc and φi and consequently the 
coefficients of the Fourier series φ0, φ1 and φ2, two 
approaches have been developed. 
 
A. First approach 

Obviously, there is no linear relationship between 
the flux linkage and current in the saturated region for 
both aligned and midway positions, as shown in Fig. 1. 
At aligned and midway positions, the flux linkage may 
be approximated by an arctangent function: 
 ( )1

2

arctan
c

a i
a

ϕ = , (6) 

 ( )1

2

arctan
i

m i
m

ϕ = , (7) 

where a1, a2, m1 and m2 are constants to be evaluated in 
the following sequence of steps. 
• Step1: Choose two points φmc and φsc on the 

aligned position, Fig. 1. φsc is the flux linkage at the 
threshold saturated current is, and φmc is the flux 
linkage at the value of the triple to quadruple of im. 

• Step 2: Constant a1 is evaluated by using curve-
fitting so that: 

 ( )
( )

1

1

arctan
arctan

ϕ
ϕ

= mmc

sc s

a i
a i

. (8) 

• Step 3: Constant a2 is calculated by: 
 

( )2
1arctan

ϕ
= sc

s
a

a i
. (9) 

• Step 4: Proceed the same way for m1 and m2. 
Specifications of the designed prototype of the 

LSRM are shown in Fig. 2 and Table 1. 
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Fig. 2. Main dimensions of the conceived actuator. 
 
Table 1: Motor mechanical and electrical parameters 

Number of modules 4 
Tooth width (b) 3 mm 
Slot width (a) 3 mm 
Tooth pitch ( λ ) 6 mm 
Phase separation (c) 1.5 mm 
Mover length 135 mm 
Stator length (L) 40.5 mm 
Air gap width (δ ) 0.1 mm 
Step size 1.5 mm 
Number of turns per phase 520 
Height of the mover teeth (h) 4 mm 

 
Figure 3 shows the comparison of flux linkage 

versus phase current for different positions. We notice 
that the flux linkage versus current with different 
positions characteristics obtained by the proposed 
model closely match those obtained by FEM in the 
saturated region. However, the deviation in the linear 
region, as shown in Fig. 4, is obvious. Consequently, it 
is necessary to develop a new method to solve this 
problem. 
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Fig. 3. Extreme left phase: comparison of flux linkage 
versus current with different positions (-Model, *FEM). 
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Fig. 4. Extreme left phase: comparison of flux linkage 
versus current with different positions in the linear 
region (-Model, *FEM). 
 
B. Second approach 

The flux linkage of the aligned position, shown in 
Fig. 1, can be expressed as, [11-17]: 

 
2

1

ϕ

= 

− ≥

c s

c
s

L i i i
aa i i
i

, (10) 

with 
 2

1= −c s
s

aL i a
i

. (11) 

In a similar way, we get for the midway position: 

 
2

1

ϕ

= 

− ≥

i s

i
s

L i i i
mm i i
i

, (12) 

with 
 2

1= −i s
s

mL i m
i

, (13) 

where Lc and Li are also constants. 
Constants a1, a2, m1 and m2 are evaluated by using 

respectively points M1, S1 and M2, S2 in Fig. 1. 
Figure 5 gives the comparison of flux linkage 

produced by the left extreme phase versus current for 
different positions. It can be observed that results 
obtained by the proposed analytical model closely 
match those obtained by finite element methods. 

The force produced by an LSRM is proportional to 
the rate of change of co-energy as the rotor moves from 
one position to another, as follows: 
 ( , )( , ) ∂

=
∂
cW i xF i x
x

, (14) 

 
0

( , ) ( , )ϕ= ∫
i

cW i x i x di , (15) 

Using (14) and (15), we get: 
 

0

( , )( , ) ϕ= ∂
∂∫

i i xi x diF
x

. (16) 

As shown previously, the electromagnetic force of 
the conceived motor is formulated by Equation (16). 
Now, the flux linkage is limited to the second order 
Fourier model as indicated by (1) and its related 
relations (2), (3) and (4). After necessary mathematical 
manipulations, it is not difficult to get, [18-19]: 

 0 0

0 0 0

1 2 2sin
2

2 4 1 1sin
2 2

i i

c op

i i i

c op i

F x di di

x di di di

π π ϕ ϕ
λ λ

π π ϕ ϕ ϕ
λ λ

   = − −       
   − + −       

∫ ∫

∫ ∫ ∫

. (17) 

Electromagnetic force Equation (17) is a highly 
nonlinear function with respect to the mover position 
and current. Figure 6 represents the comparison of the 
thrust force produced by the left extreme phase as 
function of mover position. Characteristics are calculated 
via the proposed model and respectively by FEM. 
Evidently, the main difference comes from the choice 
of the mathematical model, specifically the linkage flux 
model, Equation (1). We expect that the accuracy may 
be improved by introducing higher order harmonics in 
Equation (1) and eventually by correctly choosing the 
number of Fourier terms. 

Figure 6 shows a reasonable coincidence between 
the proposed analytical model with those obtained by 
the finite element method (FEM) which attests to the 
truth of the approach. Therefore, the second order of 
Fourier series is sufficient to achieve the desired results. 

The flux linkage based model has larger error, but 
basically the results cover satisfactory in the second 
order of Fourier series. In order to improve these 
results, it was essential to develop a more realistic 
approach, [20-21]. 
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Fig. 5. Extreme left phase: comparison of flux linkage 
versus current with different positions (-Model, *FEM). 
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Fig. 6. Extreme left phase: comparison of the thrust 
force as function of mover position for different order 
of Fourier series (-Model, *FEM). 
 

III. INDUCTANCE-BASED MODEL OF 
LSRM 

In LSRM, the reluctance of the magnetic path in a 
given phase changes with rotor movement. The 
reluctance is maximum in unaligned position and 
minimum in the aligned position. As a consequence, 
phase inductance changes periodically as function of 
the rotor position. At any given rotor position, the phase 
inductance also varies with the instantaneous phase 
current. Therefore, the phase inductance versus mover 
position will be represented by Fourier series (18) and 
the nonlinear variation of its coefficients with current 
will be expressed by polynomial functions (20, 21), 
[22-23]: 

 
0

( , ) ( ) cos
=

=∑
m

k r
k

L x i L i kN x , (18) 

where i, x and m are respectively the phase current, the 
position of the mover and the number of terms in the 
Fourier series. 

The accuracy and stability of numerical simulations 
are the main challenges which should be met. To 
simplify expression (18), only the first three terms of 
the Fourier series are considered. The inductance 
expression is given by Equation (19), [24-25]: 

 
0 1

2

2( , ) ( ) ( ) cos( ( ( 1) ))

2( ) cos(2 ( ( 1) ))

j j j r
r

j r
r

L x i L i L i N x j
NN

L i N x j
NN

π

π

= + − −

+ − −
, (19) 

with L(x, ij) and N are respectively the inductance associate 
to the phase j in the position x of the mover for the 
current ij and the number of phase. 

To determine the three coefficients L0, L1 and L2,  

we use the inductance at three positions: aligned position 
Lc (ij), unaligned position Lop (ij) and midway position 
between the above two positions Li (ij). Note that, Lop (ij) 
can be treated as a constant but, Lc (ij) and Li (ij) are 
functions of the phase current ij and can be approximated 
by the polynomials, [25-26]: 

 
0

( )
=

=∑
p

n
c j n j

n
L i a i , (20) 

 
0

( )
=

=∑
p

n
i j n j

n
L i b i , (21) 

where p is the order of the polynomials and an, bn are 
the coefficients. 

In our research, p = 6 is chosen after we compare the 
fitting results of different p values, (p = 3, p = 4, p = 5 
and p = 6 have been tried and compared). As a result 
the inductance of the aligned position Lc (ij) and midway 
position Li (ij) are approximated respectively by the 
Equations (22) and (23). Figure 7 shows the good 
agreement between the FEM and the proposed curve 
fitting methods. FEM results are obtained by Magnet 
2D software. Analytical calculations were performed by 
means of curve-fitting matlab toolbox: 

 

6 5 4 3 2
1 2 3 4

1 2

5

4

7

7

3

6

6

5

 ( )
 a  = -0.4883   = 1.356

  a  = -1.153    = 0.1993
  a  = 0.06603   = -0.02222

a  = 0.1253

cL i
a
a
a

a i a i a i a i a i a i a= + + + + + +

, (22) 

 

6 5 4 3 2
1 2 3 4 5 6 7

1 2

3 4

5 6

7

 ( )
= -0.3227   = 1.186

  = -1.609   = 0.9716
  

 
 = -0.2766   = 0.03345

 = 0.09355

i b i b i b i b i b i b i b
b b
b b
b

i

b
b

L = + + + + + +

. (23) 

Consequently, the three coefficients for the Fourier 
series can be computed as, [27-29]: 

 ( )0
1 1
2 2
 = + +  

c op iL L L L , (24) 

 ( )1
1
2

= −c opL L L , (25) 

 ( )2
1 1
2 2
 = + −  

c op iL L L L . (26) 

The stator phase inductance at the aligned position 
is very affected by the stator phase current variations. 
On the contrary, the unaligned inductance is practically 
constant due to the large reluctance that characterizes 
this position. 

It is worth mentioning that, found analytical model 
remains valid for any position x and any current i as 
illustrated by Figs. 8 and 9. 
 

MAHMOUD, FATHALLAH, REHAOULIA: NONLINEAR MODELLING APPROACH FOR LINEAR SWITCHED RELUCTANCE MOTOR 198



 

0.2 0.4 0.6 0.8 1

0.08

0.09

0.1

0.11

0.12

0.13

Current (A)

L
c 

(H
)

 

 

FEM
 Curve-fitting

(a) (b) 

0.2 0.4 0.6 0.8 1

0.08

0.09

0.1

0.11

0.12

0.13

Current (A)

L
i (

H
)

 

 
FEM
Curve-fitting

 
 
Fig. 7. Evolution of the winding inductance versus 
current: (a) aligned position, and (b) midway position. 
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Fig. 8. Extreme left phase: comparison of inductance 
versus current with three positions (-Model, *FEM). 
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Fig. 9. Extreme left phase: comparison of inductance 
versus position with different currents (-Model, *FEM). 

Multiplying the expression of inductance by the 
current (i), it gives the expression of linkage flux, [30-
32]: 
 ( ) ( ), ,ϕ =i x iL i x . (27) 

Figure 10 gives the comparison of linkage flux 
produced by the left extreme phase versus current for 
different positions. It can be observed that the linkage 
flux versus current for different position characteristics 
which are obtained by the proposed model closely 
match those obtained by finite element methods. These 
results prove the effectiveness of the proposed model. 
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Fig. 10. Extreme left phase: comparison of linkage flux 
versus current with different positions (-Model, *FEM). 
 

Furthermore, it is well known that the total 
electromagnetic force is given by the following 
expression: 
 ( )

1
,

=

=∑
N

j
j

F F i x , (28) 

where N is the number of phase, Fj the force of phase j 
and ij the phase current. Consequently, the force Fj can 
be described by the following equation: 

 ( )
( )

, 0

,
,

 
∂  

∂  = =
∂ ∂

∫
i

j j j
c j

j

L x i i di
W

F i x
x x

, (29) 

L (x, ij) is the inductance associate to the phase j in the 
position x of mover for the current ij. 

For a given current, Equation (29) becomes: 

 
[ ]

2( )1( , )
2

=

∂
=

∂
j

j j
i cte

L x
F i x i

x
. (30) 

Figure 11 shows also a reasonable coincidence 
between the curve obtained by the proposed model and 
that taken via the finite element method (FEM). 
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Fig. 11. Extreme left phase: comparison of the thrust 
force as function of mover position (-Model, *FEM). 
 
IV. DYNAMIC PERFORMANCES OF LSRM 

We plan to study the dynamic behavior of the all 
biomedical system. Dynamic electric equations of the 
four phases are: 

( , ) ( , )( , ) A A A
A A A A A

A

L x i d i L x i dxU Ri L x i i i
i dt x d t

 ∂ ∂
= + + + ∂ ∂ 

, (31) 

( , ) ( , )( , ) B B B
B B B B B

B

L x i d i L x i dxU Ri L x i i i
i dt x d t

 ∂ ∂
= + + + ∂ ∂ 

,(32) 

( , ) ( , )( , ) C C C
C C C C C

C

L x i d i L x i dxU Ri L x i i i
i dt x d t

 ∂ ∂
= + + + ∂ ∂ 

, (33) 

( , ) ( , )( , ) D D D
D D D D D

D

L x i d i L x i dxU Ri L x i i i
i dt x d t

 ∂ ∂
= + + + ∂ ∂ 

.(34) 

The mechanical equation relating the rotor 
acceleration, speed, position and load force is: 

 ( )
2

02c r
dx dx dxm F x F signe F
dt dt dt

ξ  = − − − 
 

, (35) 

parameters mc, ξ , F0 and Fr designate the actuator 
mass, the viscous friction force, the dry friction force 
and the load force. 

In order to validate the accuracy of the proposed 
model, Matlab/Simulink was used to perform the 
simulation with this model. This last, has been tested 
and compared by the linear model to predict the 
dynamic performance of the LSRM. Dynamic behaviour 
of position, thrust force and speed are resumed in  
Fig. 12. Note that, the excitation of phase A allows 
positioning the translator on the first step corresponding 
to 1.5 mm. Successive excitation of other phases are 
needed for next steps. 
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Fig. 12. (a) Position, (b) speed, and (c) thrust force 
evolution during four steps (*linear model, -proposed 
model). 
 

The proposed model of the LSRM is characterized 
by a strongly oscillatory translation compared to the 
linear model. These oscillations are expected to disturb  
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the accuracy of the position and the constancy speed 
often required by many industrial applications and 
especially in the medical fields. This problem often 
leads to losses of synchronism, [33-36]. 

 
V. CONCLUSION 

It is essential to have an accurate model of a linear 
switched reluctance motor that describes its static 
characteristics. It has been shown in this paper that 
there are different ways of modelling static 
characteristics of an LSRM. The developed analytical 
models consider the variation of either the phase flux 
linkage or the phase inductance with rotor position 
accounting for magnetic saturation. Results are compared 
to those obtained via the 2D-FEM. The comparison 
shows a reasonable agreement, proving the validity of 
the proposed approaches. 
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