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Abstract ─ Two effective approaches to correct known 

positioning errors in a near-field – far-field (NF–FF) 

transformation with spherical scan for electrically long 

antennas are proposed and validated numerically and 

experimentally. They rely on a nonredundant sampling 

representation of the voltage acquired by the probe, 

obtained by assuming that the antenna under test is 

enclosed in a cylinder ended in two half-spheres. The 

former approach exploits the singular value decomposition 

method, to retrieve the NF data at the points fixed by the 

sampling representation from the acquired irregularly 

spaced ones, and can be used when the nonuniformly 

spaced samples lie on nonuniform parallels. The latter 

employs an iterative technique, which can be adopted 

even if such a hypothesis is not satisfied, but requires the 

existence of a one-to-one correspondence associating at 

each uniform sampling point, the nearest nonuniform 

one. Once the uniform samples have been recovered, the 

NF data needed by the classical spherical NF–FF 

transformation are efficiently evaluated via an optimal 

sampling interpolation algorithm. 

 

Index Terms ─ Antenna measurements, nonredundant 

sampling representations, probe positioning errors 

compensation, spherical near-field – far-field transformation. 
 

I. INTRODUCTION 
Among the techniques which allow the evaluation 

of the antenna far field from measurements performed in 

the near-field region, the near-field – far-field (NF–FF) 

transformation with spherical scanning is the most 

interesting one, due to its unique features to allow the full 

reconstruction of the radiation pattern and to avoid the 

errors related to the truncation of the measurement 

surface. Therefore, it has attracted a considerable 

attention in the last four decades [1-15]. In fact, the first 

work dealing with a NF–FF transformation with 

spherical scanning based on the spherical wave 

expansion (SWE) was the Ph.D. dissertation thesis of 

Jensen [1], published later in a more complete form in 

the paper [2], wherein a proper transmission formula for 

the probe correction was derived. An efficient fast 

Fourier transform scheme to evaluate the SWE 

coefficients of the antenna under test (AUT) was then 

developed by Wacker [3], that also proposed the use of a 

probe with a pattern azimuthal dependence of the first 

order. Further improvements in the numerical efficiency 

were achieved in [4,5]. A comprehensive book [6], 

which deals with the theoretical as well as practical 

aspects of the classical probe-compensated NF–FF 

transformation with spherical scanning, was published 

by Hansen. Alternative probe-corrected formulas were 

derived in [7,8] by expressing the probe output in terms 

of the spatial derivatives of the incident field. Recently, 

the probe correction has been generalized to higher-order 

probes [9,10], thus allowing the characterization of 

wideband antennas without changing the probe. 

The classical spherical NF–FF transformation [6] 

has been modified in [11], by taking into account  

the spatial bandlimitation properties of radiated 

electromagnetic (EM) fields [16]. In particular, the 

highest spherical wave to be considered has been fixed 

by these properties and the number of data on the 

parallels has resulted to be decreasing towards the poles. 

In this framework, the application of the nonredundant 

sampling representations of radiated EM fields [17,18] 

has allowed the development of effective NF–FF 

transformations with spherical scanning [11-14], which 

usually require a number of NF data remarkably lower 

than that needed by the classical one [6]. As a matter of 

fact, the NF data required by this last are accurately 

retrieved by interpolating a minimum set of 

measurements via optimal sampling interpolation (OSI) 

expansions. A remarkable measurement time saving  

can be so obtained making these nonredundant 

transformations more and more appealing, since today 

such a time is very much greater than the computational 

one needed to perform the transformation. This result 

relies on the fact that, according to the abovementioned 

representations, the EM fields radiated by antennas, 

enclosed in a convex domain bounded by a rotational 

surface Σ and observed on a surface M with the same 

rotational symmetry, can be very well approximated by 

spatially band-limited functions when a proper phase 

1054-4887 © 2016 ACES

Submitted On: July 2, 2015
Accepted On: November 3, 2015

106ACES JOURNAL, Vol. 31, No. 2, February 2016



factor is singled out from the field expression and proper 

parameterizations are adopted to describe M [17]. Since 

the voltage acquired by a nondirective probe has the 

same effective spatial bandwidth of the field radiated by 

the AUT, these representations can be applied to the 

voltage too. In particular, an elongated antenna has been 

considered as enclosed in a prolate ellipsoid [11,12] or 

in a rounded cylinder (a cylinder ended in two half-

spheres) [13,14], whereas an oblate ellipsoid [11,12] or 

a double bowl (a surface formed by two circular bowls 

with the same aperture diameter, but with bending radii 

which can be different for a better fitting of the AUT 

geometry) [13,14] have been employed to model a quasi-

planar antenna. 

An alternative sampling technique for reducing the 

needed NF data has been developed in [15]. It makes use 

of a proper decision threshold to adaptively concentrate 

the acquisition on the strongly changing NF regions, 

while skipping the sampling points from the smoothly 

varying ones. 

It must be stressed that the errors due to an imprecise 

control of the positioning systems and their finite 

resolution do not allow the exact placing of the probe at 

the points fixed by the sampling representation, even if 

their location can be accurately determined by optical 

devices. Therefore, it is very important to develop an 

effective algorithm for an accurate and stable 

reconstruction of the NF data needed by the NF–FF 

transformation from the irregularly spaced ones. To this 

end, an approach based on the conjugate gradient 

iteration method and exploiting the unequally spaced fast 

Fourier transform [19,20] has been developed for 

compensating the positioning errors in the classical  

NF–FF transformations with planar [21] and spherical 

[22] scannings. Unfortunately, such an approach is not 

tailored to the aforementioned nonredundant NF–FF 

transformations. A viable and convenient strategy [23] is 

to retrieve the uniform samples from the irregularly 

spaced (nonuniform) ones and then reconstruct the 

needed NF data via an accurate and stable OSI 

expansion. In this context, two different approaches have 

been proposed. The former is based on an iterative 

technique, which converges only if it is possible to build 

a biunique correspondence associating at each uniform 

sampling point the nearest nonuniform one, and has been 

applied to the reconstruction of the uniform samples in 

plane-rectangular [23], cylindrical and spherical grids 

[24]. The latter relies on the singular value decomposition 

(SVD) method, does not exhibit the above limitation and 

has been applied to the uniform samples reconstruction 

in planar [25,26] and cylindrical [27] geometries. It 

allows to exploit the data redundancy to increase the 

algorithm stability, but can be conveniently applied only 

if the uniform samples recovery can be reduced to the 

solution of two independent one-dimensional problems. 

At last, both the approaches have been applied and 

numerically compared in [28] with reference to the 

positioning errors compensation in the nonredundant 

spherical NF–FF transformation based on the prolate 

ellipsoidal AUT modelling. 

The aim of this paper is to validate numerically and 

experimentally the application of these two approaches 

to the NF–FF transformation with spherical scanning for 

long antennas [13] using the rounded cylinder modelling 

(Fig. 1). The experimental tests have been carried out in 

the Antenna Characterization Lab of the University of 

Salerno, provided with a roll over azimuth spherical NF 

facility supplied by MI Technologies. 

The nonredundant sampling representation on the 

scanning sphere for the voltage measured by the probe, 

obtained by modelling the AUT with a rounded cylinder, 

is summarized in Section 2. The two approaches to 

compensate known positioning errors are then presented 

in Section 3, and numerically and experimentally 

validated in Sections 4 and 5, respectively. Finally, the 

conclusions are drawn in Section 6. 

 

II. NONREDUNDANT SAMPLING 

REPRESENTATION ON A SPHERE 
Let us consider an electrically long AUT, enclosed 

in a convex domain D bounded by a surface Σ with 

rotational symmetry, a nondirective probe scanning a 

sphere of radius d in the antenna NF region, and adopt 

the spherical coordinate system 
  
(r,,)  for denoting an 

observation point P (Fig. 1). Since the voltage measured 

by this type of probe has the same effective spatial 

bandwidth of the field radiated by the AUT, the 

nonredundant representations of EM fields [17] can be 

applied to obtain an effective sampling representation of 

it. Accordingly, it is convenient to adopt an optimal 

parameter   to describe each of the curves C (meridians 

and parallels) representing the sphere and to introduce 

the “reduced voltage”: 

 
j ( )

( ) ( ) e ,V V
 

   (1) 

where ( )V   is the voltage 1V  or 2V  measured by the 

probe or by the rated probe, and ( )   is a proper phase 

function to be determined. The error, occurring when 

( )V   is approximated by a bandlimited function, becomes 

negligible as the bandwidth exceeds a critical value W  

[17] and can be effectively controlled by considering 

approximating functions with bandwidth ,'W  where 

' 1   is the enlargement bandwidth factor, slightly 

greater than unity for electrically large antennas. As 

shown in [13], an effective modelling for an elongated 

antenna is obtained by assuming a rounded cylinder as 

surface Σ enclosing it, namely, a cylinder of height   h'  

ended in two half-spheres of radius   a'  (see Figs. 1 and 

2). 
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Fig. 1. Spherical scanning for a long antenna. 

 

 
 

Fig. 2. Relevant to the rounded cylinder modelling. 
 

When considering a meridian, the bandwidth ,W  

the parameterization  and the corresponding phase 

function are [13,17]: 

 '/ 2W   , (2) 

   1 2 1 22 ''R R s s        , (3) 

   1 2 1 2
' ''R R s s        , (4) 

where is the wavenmumber, ' 2 ( ' )'h a    is the 

length of the intersection curve 'C  between the meridian 

plane through the observation point P and , 1,2R  are the 

distances from P to the two tangency points 1,2P  

between the cone of vertex at P and ',C  and 1,2's  are 

their curvilinear abscissae (see Fig. 2). The explicit 

expressions of 1,2R  and 1,2 ,'s  which change depending 

on the location of the points 1,2,P  have been determined 

in [13] and are reported below for reader’s convenience. 

In particular, three cases occur when varies in the 

angular range [0, ] (see Fig. 2). 

For 10 sin ( / ),'a d    it results: 

    
2 2 2

1 'sin cos / 2 ,'R d d h a      (5) 

 
 1 1

1 2 2
1

sin '/ 2 cos'
sin ,' '

'

a d R h d
s a

R a

    
  

 
 (6) 

 
 1 2

2 2 2
2

' sin '/ 2 cos
' 'sin ,

'

a d R h d
s a

R a

    
  

 
 (7) 

and 
  
R2  R1 . 

For 
  
sin1(a'/d)    sin1(a'/d) , 

  
R1  and 

  
s
1'  

are given by (5) and (6), while: 

    
2 2 2

2 'sin cos / 2 ,'R d d h a      (8) 

 1 2
2 2 2

2

sin ' / 2 cos'
' sin .' '

'

a d R h d
s h a

R a

            
 (9) 

Finally, when 
  
sin1(a'/d)     , 

  
R2  and 

  
s2'  

are again given by (8) and (9), whereas: 

    
2 2 2

1 'sin cos / 2 ,'R d d h a      (10) 

 1 1
1 2 2

1

sin / 2 cos''
' sin ,' '

'

R d a h d
s h a

R a

            
 (11) 

when C is a parallel, the phase function is constant and it 

is convenient to use the azimuthal angle  as parameter. 

The related bandwidth W  is given [13,17] by: 





2 2

2 2

''
max ( ) max ' '( ')

2 2

' '( ') ,

( ) ( )

( ) ( )

zz
W R R z z z

z z z


 

 

 

      

   

 (12) 

wherein sin ,d   ' ( )'z  is the equation of in 

cylindrical coordinates and the maximum is achieved 

[13] at: 

 

 

2

2 2

'/2

' '/2 '' 'sgn( ) /2
2 ( sin ) '/2

z z h

h z h az z z h
d z h

 

     
   


,(13) 

 
sgn()  being the sign function. 

According to the above results, the reduced voltage 

at P on the meridian at  can be efficiently reconstructed 

by means of the OSI expansion [13]: 

      
0

0 1

( ), , , , , , "

n q

n n

n n q

V V G N N       



  

  , (14) 

where  0 Int ,n     2q is the number of retained 

intermediate samples  , ,nV    i.e., the reduced voltages 

at the intersection points between the sampling parallels 

and the meridian passing through P: 

      ", , , , " ,n n N nNG N N D          , (15) 

 2 2 " 1 ;( )n n n N       '" Int 1 ,N N   (16) 

  ' Int 1'N W  ;   N  N" N ' ; 
 
  q , (17) 

 being an oversampling factor controlling the truncation 

error [17] and Int(x) denoting the integer part of x. In 

(15), 
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  
 

"

"sin (2 1) / 2
,

"(2 1) sin( / 2)
N

N
D

N










 (18) 

  
   

  

2 2

2

2cos / 2 cos / 2 1
, ,

2 cos / 2 1

N
N

N

T

T

 
 



  
 


 (19) 

are the Dirichlet and Tschebyscheff sampling functions 

[17], 
  
TN ( )

 
being the Tschebyscheff polynomial of 

degree N. The intermediate samples are given by [13]: 

     
0

0

,,

1

", , , , , ,

m p

m n n nn n m n

m m p

V V G M M      



  

  ,(20) 

wherein  0 Int / nm    , 2p is the retained samples 

number,  ,,n m nV    are the reduced voltage samples on 

the parallel fixed by 
 
n, and 

 , "2 (2 1)/ nm n nm m M      ;  '" Int 1n nM M  , (21) 

 
  
Mn'  Int *W (n)  1; 

  
Mn  Mn"Mn' , (22) 

 
  
* 1('1) sin(n) 

2/3
; 

 
  pn . (23) 

The accurate reconstruction of the voltages 
  
V1  and 

  
V2  at any point on the sphere can be then obtained by 

matching the OSI expansions (14) and (20). 

 

III. FROM NONUNIFORM TO UNIFORM 

SAMPLES 

Two different approaches to correct known 

positioning errors are presented in this section by 

highlighting their advantages and limitations. These 

approaches are then numerically and experimentally 

validated in Sections 4 and 5, respectively. 
 

A. The SVD-based approach 

Let us suppose that, apart the sample at the pole 

0,   the irregularly spaced samples lie on parallels not 

uniformly distributed on the scanning sphere, which 

represents a realistic hypothesis in a spherical NF 

facility, when the NF data are acquired by scanning 

along parallels as it is required to exploit the possibility 

to reduce the number of NF data on the noncentral 

parallels, offered by the previous nonredundant 

representation. In this case, the uniform samples 

recovery reduces to the solution of two independent one-

dimensional problems. 

The uniform "2 1kM   samples on a nonuniform 

parallel at ( )k   are recovered as follows. Given a 

sequence of "2 1kkJ M   nonuniform sampling points 

( , )jk   on such a parallel, the related reduced voltages 

( , )jkV    can be expressed in terms of the uniform ones 

by means of (20), thus getting a linear system which can 

be rewritten in the matrix form: 

 ,A x b  (24) 

where x is the vector of the unknown uniform samples 

,( , ),m kkV    b  is that of the known nonuniform ones 

( , )jkV   , and A  is a "(2 1)k kJ M   matrix, whose 

elements: 

   

  
ajm G j ,m,k,k , Mk, Mk

"  , (25) 

are the weight functions of the OSI expansion, where 

  
m,k  mk  2m(2Mk

"1) and 
 
k  pk. It is 

useful to note that, for a fixed row j, the elements 
 
ajm  

are zero if the index m is external to the range 

  
[m0(j )  p1, m0(j )  p] . The SVD method is then 

applied to get the best least square approximated solution 

of (24). After this step, the OSI expansion (20), where 

the samples ,( , )m kkV    take the role of the  ,,n m nV    

ones, is employed to determine the intermediate samples 

( , )kV    at the intersection points between the 

nonuniform parallels and the meridian through P. Since 

these samples are again irregularly spaced, the voltage at 

P can be found by first recovering the uniformly 

distributed intermediate samples  ,nV    again via 

SVD and then interpolating them by means of the OSI 

expansion (14). 

Both the distances between each nonuniform 

parallel and the related uniform one and those between 

the nonuniform sampling points and the associated 

uniform ones on the nonuniform parallels have been 

assumed less than one half of the corresponding uniform 

spacing to avoid a strong ill-conditioning of the related 

linear systems. 

It must be stressed that it is convenient to retrieve 

the same number 
 
N  of uniform samples on each 

nonuniform parallel to minimize the computational 

effort. In fact, in such a case, these samples are aligned 

along the meridians and, accordingly, the number of 

systems to be solved is minimum. Obviously, the number 

 
N  is that corresponding to the equator, wherein the 

azimuthal bandwidth 
 
W  attains its maximum value. 

Once the uniform samples have been determined, the 

data needed by the standard NF–FF transformation [6] 

can be evaluated by means of the OSI expansions (14) 

and (20), this last properly modified to account for the 

redundancy in . 

The SVD-based approach could be still used when 

the irregularly spaced samples no longer lie on parallels, 

but the dimension of the involved matrix would become 

very large, thus requiring a huge computational effort. 

Accordingly, in such a case, it is more convenient [28] 

to resort to the iterative technique, which will be 

described in the next subsection. 
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B. The iterative approach 

Let us now suppose that, save for the sample at the 

pole    0, all the others are irregularly spaced on the 

scanning sphere. Moreover, let us assume that the 

nonuniform samples distribution is such that it is 

possible to build a biunique correspondence between 

each uniform sampling point and the “nearest” 

nonuniform one. By expressing the reduced voltage at 

each nonuniform sampling point ,( , )j kk   as a function 

of the unknown values at the nearest uniform ones 

,( , )n m n   by means of the OSI expansions (14) and 

(20), we obtain: 

 
0

0

,

1

( , ) , , , , "

n q

j kk k n

n n q

V G N N    



  

   

    
0

0

,, ,

1

", , , , ,

m p

j km n nnm nn

m m p

V G M M    



  
 . (26) 

The resulting linear system can be rewritten in the 

form A x b , where b  is the vector of the known 

nonuniform samples ,( , ),jk kV    x is that of the unknown 

uniform ones ,( , ) ,n m nV    and A  is a sparse banded 

matrix of sizes ,Q Q  wherein Q  is the overall number 

of uniform/nonuniform samples. By splitting the matrix 

A  into its diagonal part DA  and nondiagonal one ,  

multiplying both members of the system by 1

D
A  and 

rearranging the terms, the following iterative procedure 

results: 

 
  
x

( )
 AD

1
b  AD

1
 x

(1)
 x

(0)
 AD

1
 x

(1)
, (27) 

  x
( )

 being the uniform samples vector estimated at the 

vth step. The necessary conditions for the convergence 

of the procedure are surely fulfulled in the assumed 

hypothesis on the nonuniform samples distribution. In 

fact, the modulus of each element on the principal 

diagonal of A  results to be not zero and greater than 

those of the other elements on the same row and column. 

In explicit form, Eq. (27) becomes: 

 ( )
,,n m nV      

    


1

G n,n, ,N, N" G m,n,m,n , ,Mn ,Mn" 
.  

 
00

0 0

,

1 1

( ) ( )

."( , ) , , , ,

i pq

nn m n

q i i p

n mi

V G N N    



     

  



 



   

    1( )
, , ,", , , , ,m n i iG M M V      




 . (28) 

Once the regularly spaced samples have been 

recovered, the NF data needed by the standard NF–FF 

transformation [6] can be determined via the OSI 

expansions (14) and (20). 

 

IV. SIMULATION RESULTS 

Some numerical results, which assess the 

effectiveness of the described approaches to correct 

known positioning errors in the NF–FF transformation 

with spherical scanning using the rounded cylinder 

modelling of the antenna, are shown in this section. The 

simulations, which complete the preliminary ones 

reported in [29], are relevant to a uniform planar array of 

elementary Huygens sources polarized along the z axis, 

spaced by  0.5  ( being the wavelength), which cover 

a zone in the plane y = 0, formed by a rectangle ended in 

two half-circles. The sizes of the rectangle are: 

  2a' 14  and   h'  40. The scanning sphere has radius 

  d  35  and an open-ended circular waveguide, having 

radius  0.338 , is chosen as probe. 

The first set of simulations (from Fig. 3 to Fig. 6) is 

relevant to the case of irregularly distributed samples 

lying on parallels nonuniformly spaced on the scan 

sphere, so that the reconstruction of the uniform samples 

can be split into the solution of two independent one-

dimensional problems. The nonuniform samples have 

been generated by imposing that the distances in  and  

between each nonuniform parallel and the related 

uniform one and those between the nonuniform sampling 

points and the associated uniform ones on the 

nonuniform parallels are random variables uniformly 

distributed in ( /2, /2)    and ( 2, 2)/ /k k   , 

which is a pessimistic hypothesis in an actual scanning 

system. Figures 3 and 4 show the reconstruction of the 

amplitude of the rotated probe voltage 
  
V2  on the 

meridians at  = 0° and = 90°, respectively. As can be 

seen, the reconstruction is everywhere accurate, thus 

assessing the accuracy of the approach. For 

completeness, the reconstruction of the phase of 
  
V2  on 

the meridian  = 90° is also reported in Fig. 5. To assess 

in a more quantitative way the algorithm performances, 

the mean-square errors in the reconstruction of the 

uniform samples of 
  
V2  have been evaluated. They are 

normalized to the voltage maximum value on the sphere 

and have been obtained by comparing the recovered and 

the exact uniform samples. Figure 6 shows these errors 

for 
 
 1.15, 1.20, 1.25, 

 
 ' 1.20  and p = q ranging 

from 2 to 12. Practical identical results, non-reported 

here to save space, have been obtained by applying the 

iterative algorithm to the same set of irregularly spaced 

NF data, which fulfils also its applicability conditions. 
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Fig. 3. Amplitude of 
  
V2  on the meridian at = 0°. Solid 

line: exact. Crosses: reconstructed from nonuniform 

samples via the SVD-based algorithm. 
 

 
 

Fig. 4. Amplitude of 
  
V2  on the meridian at  = 90°. Solid 

line: exact. Crosses: reconstructed from nonuniform 

samples via the SVD-based algorithm. 
 

 
 

Fig. 5. Phase of 
  
V2  on the meridian at = 90°. Solid 

line: exact. Crosses: reconstructed from nonuniform 

samples via the SVD-based algorithm. 

 
 

Fig. 6. Normalized mean-square errors in the reconstruction 

of the uniform samples of 
  
V2  via the SVD-based 

algorithm. 

 

The second set of numerical tests refers to the case 

of samples irregularly spaced on the sphere, which do not 

lie on parallels. In such a situation, it is more convenient, 

from the computational point of view, to employ the 

iterative algorithm, which requires the existence of a 

biunique correspondence between the uniform and 

nonuniform samples, that associates at each uniform 

sampling point the nearest irregular one. Therefore, the 

nonuniform samples have been generated in such a way 

that the displacements in  and  between each 

nonuniform sampling point and the corresponding 

uniform one are random variables uniformly distributed 

in 
 
( /3,  /3)  and 

  
(n /3, n/3) . To assess the 

effectiveness of the iterative algorithm, the normalized 

mean-square errors in the reconstruction of the uniform 

samples of 
  
V2  have been evaluated. They are shown in 

Table 1 as function of the number of iterations  and 

retained samples number p = q. As can be seen, these 

errors decrease on increasing  and p = q. Moreover, just 

few iterations are enough to ensure the convergence of 

the iterative scheme. 

Once the regularly spaced (uniform) samples have 

been retrieved by applying the SVD-based approach or 

the iterative one, depending on the considered 

nonuniform samples distribution, they have to be 

interpolated to reconstruct the NF data required by the 

classical spherical NF–FF transformation. Figures 7 and 

8 show the comparison between the exact far field 

patterns in the principal planes and those obtained from 

the former set of irregularly spaced samples via the 

SVD-based algorithm and from the latter by applying the 

iterative approach. As can be seen, a very good 

reconstruction results. 
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Table 1: Normalized mean-square errors in the reconstruction of the uniform samples of 
  
V2  versus the number of 

iterations and the retained samples number 

 
 

 
 

Fig. 7. H-plane pattern. Solid line: exact. Crosses: 

reconstructed from nonuniform samples (first set) via 

the SVD-based algorithm. Circles: reconstructed from 

nonuniform samples (second set) via the iterative 

approach. 

 

 
 

Fig. 8. E-plane pattern. Solid line: exact. Crosses: 

reconstructed from nonuniform samples (first set) via 

the SVD-based algorithm. Circles: reconstructed from 

nonuniform samples (second set) via the iterative 

approach. 

It must be stressed that the reconstructions would 

be severely compromised without using these 

positioning errors compensation techniques, see, for 

instance, Fig. 9, which shows the corresponding 

reconstructed E-plane pattern, obtained from the 

second set of irregularly spaced NF data without using 

the iterative approach. 

It can be interesting to compare the number of the 

used nonuniform NF data (19 489) with those (130 562) 

needed by the classical NF–FF transformation with 

spherical scanning [6]. 

 

 
 

Fig. 9. E-plane pattern. Solid line: exact. Circles: 

reconstructed from nonuniform samples (second set) 

without using the iterative approach. 

 

V. EXPERIMENTAL RESULTS 
The described techniques have been 

experimentally tested in the anechoic chamber of the 

Antenna Characterization Lab of the University of 

Salerno, wherein a roll ( axis) over azimuth ( axis) 

spherical NF facility, supplied by MI Technologies, is 

available. The chamber, 
 
8m5m4m  sized, is 

covered with pyramidal absorbers which ensure a wall 

reflectivity lower than –40 dB. The measurements are 
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carried out by means of a vector network analyzer. The 

reported experimental results refer to a X-band 

resonant slotted waveguide array made by PROCOM 

A/S, which works at 10.4 GHz and has been realized 

by cutting 12 round-ended slots on both the broad 

walls of a WR-90 rectangular waveguide and soldering 

two cylinders on its narrow walls (see Fig. 10). Such 

an antenna has been modelled by a rounded cylinder 

with   h' 28.27 cm,   a '  2.60 cm and mounted in such a 

way that the broad walls are parallel to the plane y = 0 

and its axis is coincident with the z one (Fig. 1). The 

probe voltages have been collected by an open-ended 

WR-90 waveguide on a sphere with radius d = 45.20 cm. 

The first set of figures (from Fig. 11 to Fig. 16) is 

relevant to the case of the irregularly spaced sampling 

points lying on parallels of the scanning sphere. The 

NF data have been collected in such a way that the 

distances between each nonuniform parallel and the 

related uniform one and between the nonuniform 

sampling points and the uniform ones on the 

nonuniform parallels are random variables uniformly 

distributed in 
 
(  /2,  /2)  and ( /2, /2)k k   , 

respectively. The amplitude and phase of the probe 

voltage 
  
V1  on the meridian at  = 0°, recovered via the 

SVD-based approach, are compared in Figs. 11 and 12 

with those directly measured on the same meridian. As 

can be seen, the reconstructions are very accurate, in 

spite of the severe values of the positioning errors. 

The overall effectiveness of the SVD-based 

technique is assessed by comparing the FF patterns in 

the principal planes E and H (Figs. 13 and 14) 

reconstructed from the nonuniform NF data with those 

(references) obtained from the NF data directly 

acquired on the classical spherical grid. In both the 

cases, the MI Technologies’ software MI-3000, 

implementing the classical spherical NF–FF 

transformation [6], has been used to obtain the FF 

reconstructions. The FF pattern reconstruction in the 

cut plane at  = 90° is then shown in Fig. 15. Also the 

FF reconstructions result to be very accurate, thus 

confirming the effectiveness of the approach. Practical 

identical results (non-reported for space saving) have 

been obtained by applying the iterative approach to the 

same set of nonuniform NF data, which satisfies also 

its applicability conditions. It is useful to note that the 

number of used samples is 836, remarkably less than 

that (5 100) required by the standard NF–FF 

transformation [6]. At last, the FF pattern in the cut 

plane at  = 90°, reconstructed from the collected 

irregularly spaced NF data without using the SVD-

based approach, is shown in Fig. 16. As can be seen, 

this FF reconstruction is severely compromised as 

compared with those achieved by using the proposed 

techniques, thus further confirming their capability to 

effectively compensate known positioning errors. The 

remaining figures (from Fig. 17 to Fig. 20) are relevant 

to the case of sampling points irregularly spaced on the 

sphere which do not lie on parallels and, therefore, 

only the iterative technique can be conveniently 

applied. The nonuniform samples have been acquired 

in such a way that the displacements in  and  

between the position of each nonuniform sample and 

that of the associated uniform one are random 

variables uniformly distributed in 
 
( /3,  /3)  and 

( /3, /3).n n    The amplitude and phase of the 

voltage 
  
V1  on the meridian at  = 0° recovered by 

using 10 iterations are compared in Figs. 17 and 18 

with those directly measured on the same meridian. It 

must be stressed that such a number of iterations 

ensures the convergence of the algorithm with very 

low errors. At last, the overall effectiveness of the 

iterative technique is confirmed by the E-plane and  

H-plane pattern reconstructions reported in Figs. 19 

and 20. 

 

 
 

Fig. 10. Photo of the X-band resonant slotted waveguide 

array. 

 

 
 

Fig. 11. Amplitude of 
  
V1  on the meridian at = 0°. 

Solid line: measured. Crosses: reconstructed from 

nonuniform NF data via the SVD-based algorithm. 
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Fig. 12. Phase of 
  
V1  on the meridian at  = 0°. Solid 

line: measured. Crosses: reconstructed from nonuniform 

NF data via the SVD-based algorithm. 

 

 
 

Fig. 13. E-plane ( = 90°) pattern. Solid line: 

reference. Crosses: reconstructed from nonuniform NF 

data via the SVD-based algorithm. 

 

 
 

Fig. 14. H-plane ( = 0°) pattern. Solid line: reference. 

Crosses: reconstructed from nonuniform NF data via 

the SVD-based algorithm. 

 

 
 

Fig. 15. FF pattern in the cut plane at  = 90°. Solid 

line: reference. Crosses: reconstructed from nonuniform 

NF data via the SVD-based algorithm. 

 

 
 

Fig. 16. FF pattern in the cut plane at  = 90°. Solid 

line: reference. Crosses: reconstructed from nonuniform 

NF data without using the SVD-based algorithm. 

 

 
 

Fig. 17. Amplitude of the voltage 
  
V1  on the meridian 

at  = 0°. Solid line: measured. Crosses: reconstructed 

from nonuniform NF data via the iterative algorithm. 
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Fig. 18. Phase of 
  
V1  on the meridian at  = 0°. Solid 

line: measured. Crosses: reconstructed from nonuniform 

NF data via the iterative algorithm. 

 

 
 

Fig. 19. E-plane (= 90°) pattern. Solid line: 

reference. Crosses: reconstructed from nonuniform NF 

data via the iterative algorithm. 

 

 
 

Fig. 20. H-plane ( = 0°) pattern. Solid line: reference. 

Crosses: reconstructed from nonuniform NF data via 

the iterative algorithm. 

 

VI. CONCLUSION 
In this paper, two different efficient techniques, 

which allow the correction of known positioning 

errors in the nonredundant spherical NF–FF 

transformation using the rounded cylinder modelling, 

have been presented. Both the techniques retrieve the 

nonredundant uniform NF samples at the points fixed 

by the sampling representation from the acquired 

irregularly distributed ones. Then, these retrieved 

samples are efficiently interpolated via an OSI 

algorithm to accurately reconstruct the NF data 

required to perform the classical spherical NF–FF 

transformation. In order to recover the uniform 

samples, the former technique makes use of the SVD 

method and can be profitably employed when the 

nonuniform samples lie on parallels, so that the 

uniform samples recovery can be reduced to the 

solution of two independent one-dimensional 

problems. The latter adopts an iterative scheme, which 

does not require the fulfillment of such a hypothesis, 

but can be applied only if there is a biunique 

correspondence between each uniform sampling point 

and the nearest nonuniform one. Some numerical and 

experimental results assessing the effectiveness of 

both the techniques, even in presence of large and 

pessimistic positioning errors in an actual scan, have 

been shown. 
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