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Abstract ─ Finite-difference frequency-domain technique 

in conjunction with the particle swarm optimization 

algorithm is presented as an effective procedure for 

ridged waveguides design optimization. A suitable 

objective function is furthermore able to deal with the 

conflicting requirements of wide bandwidth and high 

power handling capability. Different configurations 

have been analyzed, and the influence of the algorithm 

parameters on the optimized structure has been 

investigated. 

 

Index Terms ─ Cutoff frequency, finite-difference 

frequency-domain, microwave components, microwave 

filters, optimization, PSO, ridged waveguides, waveguide 

modes. 

 

I. INTRODUCTION 
In RF engineering, a large number of applications 

require very intense fields, thus devices with high 

power handling capabilities and low losses are required. 

Metallic hollow waveguides (WGs) represent the 

structures more suitable to satisfy such strict 

requirements. WG modal propagation is high-pass and 

dispersive [1], so WGs can be used only in the frequency 

range characterized by single-mode propagation. Such a 

useful bandwidth (BW) is relatively narrow. Ridged 

waveguide (R-WG) structures have been proposed to 

increase significantly the BW, retaining all the useful 

WG properties [2]. 

The first approach to the electromagnetic analysis 

of rectangular R-WG [3,4] is the transverse resonance 

technique (TRT) [5]. TRT is able to compute, in an 

approximate way, the cut-off frequencies of the first 

few modes of a R-WG and their attenuation. Moreover, 

Hopfer [4] was able to compute also the power handling 

capability (PHC) taking also into account, in an 

approximate way, the singular behaviour of the field at 

the wedges. 

Despite of the reduced accuracy, TRT is still a 

useful tool for the “back-to-envelope” evaluation of the 

cut-off frequency of the fundamental mode [6]. But, of 

course, numerical techniques such as finite-difference 

frequency-domain (FDFD) [7] or finite element method 

(FEM) [8] allow to compute the cut-off frequencies and 

the modal distribution of a R-WG with a far better 

accuracy. On the other hand, the accuracy of TRT is 

sufficient to compute the PHC of a R-WG [4]. 

In practical applications, the increase in BW comes 

together with a reduced PHC of R-WGs which can limit 

their use. In other words, we have to deal with two 

conflicting requirements. Suitable optimization procedures 

are therefore needed in order to obtain an effective 

trade-off. Such procedures are based on a synergic 

work of a time-effective EM analysis program of the 

structure and of a suitable optimization algorithm. 

In this work, an effective in-house FDFD-TRT 

procedure has been developed to compute eigenvalues, 

mode distribution and PHC of different R-WG 

configurations, whereas the optimization problem has 

been solved by using the particle swarm optimization 

(PSO) algorithm. In the following section the procedure 

is described in detail. 

We have considered different ridged configurations 

with different design specifications, extending therefore 

the results presented in [9]. 

 

II. FDFD 
The R-WG analysis procedure is realized using a 

FDFD strategy [7], which can be applied both to scalar 

[10]-[12] and vector [13] problems. As a matter of fact, 

the FDFD approach, namely the direct discretization of 

the differential eigenvalue problem, is the simplest 

numerical strategy to compute eigenvalues and modes 

of metallic hollow WGs [14]. Therefore, it is well 

tailored to be used in PSO, but it is useful also in the 

procedures based on method of moments (MoM) [15]-

[16] or mode-matching (MM) [17]. The WG section is 

partitioned in a set of regular discretization cells, and 

the differential eigenvalue problem [18] is replaced by a 

finite difference one, using suitable Taylor approximations 

of second [7] or fourth [19] order. The standard FDFD 

approach, using two Cartesian sampling grids (one for 
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TE modes and the other for TM, due to the different 

boundary conditions), allows a very effective solution 

for rectangular WGs or, more generally, for WGs with 

piecewise rectangular boundaries, since in these cases 

the boundary is perfectly fitted to the grid, either 

uniform or non-uniform. The FDFD has been suitably 

generalized [20] to evaluate all modes (either TE or 

TM) on a single grid. The discretization results in a 

matrix eigenvalue problem, which is sparse, so a very 

effective computation is possible. Once the eigenvalue 

problem is solved, the smallest two eigenvalues give 

directly the BW. 

 

III. PSO 
PSO is an iterative algorithm designed to find out 

the solution of optimization problems, very efficient in 

solving multidimensional problems in a large variety of 

applications. It has been proposed first by Kennedy and 

Eberhart [21] for non-linear functions optimization and 

neural network training. Later on, it has been introduced 

in electromagnetic research for antenna design [22]-

[25], and subsequently it has been applied to artificial 

ground plane for surface wave antennas [26], microstrip 

antennas [27]-[29], linear and planar array geometry 

[30]-[31], log-periodic array dipole antennas, aperture 

antennas, and so on. 

PSO takes inspiration from the animal kingdom, in 

particular from the group movement in search of a 

common objective. The algorithm consists of a swarm 

randomly initialized inside a predetermined solution 

space, which represents the set of the admissible 

solutions for the problem. The quality of the solution is 

measured through a suitable objective function, 

associated with each position in the solution space. The 

choice of the objective function is a key point of every 

PSO procedure, since it must be accurately defined to 

well describe the requests of the problem. The group of 

particles moves iteratively inside the solution space, 

trying to reach the position which represents the 

optimal solution, corresponding to the minimum value 

of the objective function. The movement of each 

individual is based on its own instinct, on the memory 

of its path and on the iterations with the other 

individuals. Each particle is described by a vector of 

variables x, which are the coordinates of the solution 

space and, at the same time, the parameters to be 

optimized. In the j-th iteration, the i-th particle is 

characterized by its position xi,j (1) and velocity vi,j (2). 

Next position, direction and velocity of the single 

particle are updated according to its position and 

velocity at the previous step, the best solution found by 

the particle in its path (personal best, p), and the best 

solution found by the whole swarm (global best, g). 

Therefore, 
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wherein, w scales the velocity component in the same 

direction of the previous step (inertia weight), r1, r2 are 

two random numbers between 0.0 and 1.0 which 

simulate the random component of the swarm 

behaviour, c1, c2 provide a weight between the pull of g 

and p: low values allow particles to roam far from 

target positions before being attracted to, whereas high 

values provide movements more strongly orientated 

towards the target. Eberhart suggested that the best 

choice for c1 and c2 is 2.0 [32] for most of applications. 

In general, velocity is applied to position updating for a 

time-step Δt which is set to 1 in this work. 

The main steps of the algorithm can be indentified 

in the following (Fig. 1): 

1. Initialization of swarm position and velocity; 

2. Systematic particles movement in the solution 

space. For each particle: 

a) Objective function fitness evaluation (g, p 

update) 

b) Velocity update 

c) Position update (swarm movement); 

3. Iteration of point 2 until a stop criterion (convergence 

or maximum number of iterations) is reached. 

The objective function shown in Fig. 1 is relative to the 

model proposed in this paper and evaluates the 

performance of the R-WG, whose geometrical parameters 

constitute the x vector components, and therefore the 

dimensions of the solution space. 

 

 
 

Fig. 1. PSO block diagram. 
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IV. WG DESIGN 
The implementation of an optimization algorithm 

starts from the definition of the optimization variables, 

which define the solution space through their constraints. 

In our case, the variables are the geometrical dimensions 

of all the ridges (width w and height h) and the horizontal 

spacing s between them. However, use of FDFD requires 

the WG section be discretized. As a consequence, the 

variables can assume only values that are multiples of 

the discretization steps (Dx, Dy) of the WG section. The 

solution space of the PSO is therefore a discrete one, 

and its constraints are set to prevent all singular 

configurations. Four different R-WG configurations 

have been considered, with either equal or unequal 

ridges, and are shown in Fig. 2. 

 

V. EVALUATION OF POWER HANDLING 

CAPABILITY 
The PHC depends on both the WG shape and, for 

hollow WGs, the dielectric capability of the air. In 

order to compare different R-WGs, the maximum value 

of E  has been set to 1. Following Hopfer [4], we start 

from the well known relation between the power flux P 

and the total energy for unit length WEM: 

 
0

,EM

c
P W

k


  (3) 

wherein   is the propagation constant, c and k0 are 

respectively the speed of light and the wavenumber in 

vacuum. Then we obtain: 
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where V is the fundamental mode voltage at the ridge 

edge, and C is the capacitance equivalent to each 

discontinuity: 
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wherein b is the height of the waveguide, and d is the 

height of the ridged area. 

The total energy can be evaluated on the 

transmission-line equivalent circuit used for TRT. Since 

the details of the configurations 1 (Fig. 2 (a)) and 2 

(Fig. 2 (b)) are discussed in an appendix of [4], we add 

here some considerations for the six-ridges case (shown 

in Fig. 2 (c)), since the generalization is not trivial. 

Figure 3 represents the transmission line model (TLM) 

of only half of the transversal section of a six-ridge 

WG, so it stores half of the total energy. The antipodal 

case (shown in Fig. 2 (d)) can be dealt with in the same 

way.t 

 

 
 

Fig. 2. (a) Configuration 1: a standard R-WG with two 

ridges centred along the widths of a rectangular WG; 

(b) configuration 2: a standard R-WG with a ridge centred 

along a width of a rectangular WG; (c) configuration 3: 

a standard R-WG with six ridges with equispaced 

centres; (d) configuration 4: a three-symmetric-antipodal 

R-WG. 

 

 
 

Fig. 3. Transmission line model for a six ridges 

geometry. 
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The TRT starts by considering the transversal 

section of the R-WG as a resonator. The propagation 

constant is the same for each line (representing a 

parallel plate section of the R-WG) and it is equal to the 

transverse propagation constant kc, while the impedance 

is proportional to the WG height. To evaluate the PHC, 

a voltage VM corresponding to the maximum electric 

field is set at the open-circuit (i.e., at the WG center), 

and an unknown current IS at the short circuit end (i.e., 

at the WG lateral wall). 

Letting l1 = wi/2, l2 = s, we have: 
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where kx is the propagation constant in the x direction at 

cutoff and is given by kx = kc = 2π/λc and, 
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2,inI , 3,inI  are the input currents at the lines after the 

capacitors nodes: 
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The unknown current IS can be obtained by 

imposing the continuity of the voltages at the steps. The 

electric field is described from the (6) as: 
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the constants G1, G2, G3, G4 can be obtained by 

imposing the voltage continuity at the steps. 

 

VI. RESULTS 

A. FDFD and PSO parameters 

A 6x2 cm WG has been considered for all cases of 

Fig. 2. The WG cross-section has been discretized using 

a TE grid with steps (Dx, Dy) = 0.1 mm. It follows that 

the dimensions w, h, and s are expressed in terms of 

number of nodes in the grid. The structure has been 

tested for different values of acceleration coefficient and 

number of particles np (i.e., the swarm size), and it has 

been verified whether different PSO parameters modify 

or not the results. In all the tests, a varying inertia weight 

is applied by linearly changing its value from 0.9 at the 

beginning of the iterations to 0.4 towards the end (a 

smaller inertia weight encourages the local search [33]). 

We will show the optimal bandwidth 2 1c cBW f f  , 

and the ratio NBW  between the bandwidth of the optimal 

R-WG and of the rectangular one with the same external 

size. 1cf , 2cf  are the cut-off frequencies of the first two 

R-WG modes. 

 

B. Objective functions 

An appropriate objective function must be defined to 

obtain the solution best suited to the required application. 

It has been selected an objective function able to 

optimize the BW with a constraint on the power. More 

precisely, the following objective function: 

 

2

/
( ) ,

rect ridge rect

ridge ridge

P k P BW
f k

P BW


   (10) 

maximizes the BW with a constraint on the power 

decrease (k-time reduction with respect to the rectangular 

WG). Pridge, BWridge are the values for the R-WG at hand, 

whereas Prect, BWrect are the values for the host 

rectangular WG [34]. In the following, it has been 

usually chosen k = 2.0; 3.0, so that the objective function 

tries to optimize the BW with a maximum power 

reduction equal to 50% or 66%. 

 

C. Convergence test 

The behaviour of a R-WG in terms of BW is rather 

well-known. Some preliminary optimization of f(∞) 

(i.e., BW-only optimization) have been then performed 

to evaluate the convergence properties of our approach. 

Since the solution space is discrete, we assume as 

convergence criterion the equality of the best and worst 

fitness values of the swarm. 

A test on configuration 1 leads to the result that the 

largest BW requires the highest possible ridges (h = 99) 

with a large width (w = 192). This optimum is always 

obtained using different c1, c2, np values and starting 

point, since no traps are present. The smaller ci’s, the 

more rapid the convergence: for np = 5, the convergence 

require about 80 steps for c1 = c2 = 1.5, and about 100 

steps for c1 = c2 = 2. A similar behaviour has been 

obtained for larger np. On the other hand, a larger ci’s 

allow to better explore the solution space, and therefore 

to escape more easily from traps. The increase in the 

computational cost is quite small and, since the 

introduction of the PHC constraints modifies the 

topology of the solution space and can introduce some 

local minima (i.e., traps) we have, in the following, 

chosen c1 = c2 = 2. 

Then, we have tested the dependence of the 

number of particles of the swarm. A typical value for np 
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is 1.5 to 2 times the number of optimization variables. 

Of course, for the simple cases involving only two 

variables, we have taken np ≥ 5. It appears that a 

significant increase of np introduces no reduction in the 

number of iterative steps. Even worse, this number 

usually increases a little bit (10-30% in the cases we 

have tested). Therefore, we conclude that the typical 

value of np quoted above is also the more effective, 

since we need, at each step, np evaluation of 

eigenvalues and mode distributions. 

 

D. Optimization results 

The objective functions f(2) and f(3) have been 

chosen to constraint the ratio Pridge/Prect to 50% or 33% 

respectively. The tests confirm the effectiveness of the 

objective function: the constraint on PHC is fulfilled 

with a smaller discrepancy. 

The optimized geometries of the configuration 1 

have been obtained with np = 5 for equal ridges (2 

optimization variables) and np = 10 for different ridges 

(4 variables), and they are shown in Table 1. Actually, 

the optimum is always with equal ridges, so that only 

this case is shown. The optimum BW should be compared 

with the best one obtained with no PHC constraints, 

which is equal to 6.7726 GHz (i.e., BWN = 2.711), but 

in this case the maximum power flux is very small 

respect to Prect. 

 

Table 1: Results configuration 1 

k 
w

a
 

h

b
 

BW 

(GHz) 

BWN 

(GHz) 

2 0.35 0.20 3.07 1.23 

3 0.33 0.27 3.42 1.37 

 

Similarly, the Table 2 presents the performance of 

the configuration 2. A single ridge presents a lower 

improvement in terms of bandwidth with respect to the 

2-ridges case. 

 

Table 2: Results configuration 2 

k 
w

a
 

h

b
 

BW 

(GHz) 

BWN 

(GHz) 

2 0.28 0.37 3.00 1.20 

3 0.26 0.52 3.29 1.32 

 

The configurations 3, and 4 investigate the effect of 

the side ridges. The configuration 3 does not work for 

the equal ridges case: as expected, large side ridges 

prevent the BW improvement, so the algorithm tends to 

remove them and the geometry tends toward 

rectangular WG without ridges. Regarding the case 

with different ridges, the symmetry of the fundamental 

mode allows to simplify the problem to a symmetric 

structure with respect to its two axes: it has been  

considered a geometry whose central ridges (wC, hC) 

vary independently of the side ones (wS, hS), and the 

spacing between the ridges s is chosen as another 

parameter to be optimized. The solution space has 

therefore 5 dimensions and the optimized geometries 

(obtained with np = 20 particles in the swarm) are 

shown in Table 3. A comparison with Table 1 shows a 

significant BW improvement (for a given PHC) due to 

the additional (optimized) side ridges. 

 

Table 3: Results configuration 3 

k 
cw

a
, ch

b  

sw

a
, sh

b  

s

a  

BW 

(GHz) 

BWN 

(GHz) 

2 0.32, 0.38 0.32, 0.24 0.01 3.48 1.39 

3 0.29, 0.36 0.32, 0.15 0.03 3.67 1.47 

 

As a further analysis of the side ridges effect, we 

consider an antipodal geometry (configuration 4), where 

the two external ridges are equal and equally spaced 

from the central one. Such configuration can also be 

obtained by adding two lateral ridges to configuration 2 

on the un-ridged side. Since the ridge spacing is also an 

optimization variable, the solution space has again 5 

dimensions, and we have used np = 20 in the tests. 

Table 4 displays the performance of this geometry.  

 

Table 4: Results configuration 4 

k 
cw

a
, ch

b  

sw

a
, sh

b  

s

a  

BW 

(GHz) 

BWN 

(GHz) 

2 0.19, 0.46 0.03, 0.16 0.35 3.25 1.300 

3 0.12, 0.47 0.03, 0.05 0.34 3.27 1.307 

 

In both cases, the lateral ridges are small and 

distant from the central one and, unlike the configuration 

2, the central ridge does not cross the horizontal axis of 

the WG. It is apparent from Table 4 that the antipodal 

configuration allows a BW improvement when a 

relatively loose constraint on PHC is set. For the tested 

case, a constraint of 50% reduction in power gives an 

improvement in BW around 10%. On the other hand, 

when a small PHC is required, the single ridge geometry 

is preferable. 

 

VII. CONCLUSIONS 
In this paper, the effectiveness of PSO in the 

geometrical optimization of a guiding structure has 

been illustrated. It has been shown how a suitable 

objective function allows to make a trade-off between 

two conflicting requests: the BW of a R-WG has been 

maximized for a determined power decrease respect to 

the un-ridged geometry. Among the different geometries 

presented, the 6-symmetric ridge geometry results to be 

the best solution in terms of bandwidth. 
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