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Abstract ─ A numerical study based on the finite 

difference time domain (FDTD) method is presented for 

the oblique incidence of TE modes with an emphasis on 

dispersion properties. The proposed medium has 

sinusoidally modulated dielectric permittivity. In order 

to truly address this scattering problem, total field-

scattered field (TFSF) approach is suggested, which 

yields accurate results for the electric field distribution 

inside the modulated medium. A comparison between 

analytical plots and the FDTD results reveals the ability 

of FDTD in rigorous analysis of band diagrams for any 

arbitrary value of modulation factor. In addition, a closed 

form formula for numerical dispersion relation is derived 

for the case of small modulation. 

 

Index Terms ─ Dispersion analysis, FDTD, 

inhomogeneous media, Mathieu functions, oblique 

incidence, permittivity-modulated media, scattering, 

TFSF. 
 

I. INTRODUCTION 
Modulated structures have gained a great deal of 

attention in recent years. It is mainly due to their  

band-gap behavior which allows one to control the 

propagation and possible radiation of electromagnetic 

waves off these configurations. These platforms are 

extensively used to realize both radiating and non-

radiating devices such as leaky-wave antennas, 

metamaterial lenses, filters, and etc. [1-3]. In antenna 

applications they are particularly useful for 

miniaturization, bandwidth enhancement, surface-

coupling reduction, and generation of holographic 

surfaces.  

In general, two common solutions are offered to 

exhibit band-gap properties in materials. First is by 

periodic arrangement of parasitic loads, which suggests 

modulation of the surface impedance. The second 

solution is periodic variation of electromagnetic 

properties of the material, i.e., modulation of effective 

permittivity. Drilling holes in dielectrics [4] or periodic 

variation of the width of microstrip line [5] are among 

solutions proposed to change effective dielectric 

permittivity in terms of fabrication and manufacturing.  

Over the past years surface impedance modulation 

has received considerable studies (see [2] for instance), 

whereas modulation of effective dielectric permittivity 

has been investigated in an intermittent way throughout 

the years [5-6]. It is due to the complexity involved in 

Maxwell’s equations, once the permittivity of the 

medium is altered as a function of space coordinate(s). 

This in fact changes the whole dynamic of the wave 

equation, which makes it impossible to find a simple 

analytic solution. In this case, one has to take into 

consideration that the medium is no longer homogeneous 

and it will treat electromagnetic waves differently as they 

try to propagate through. Since inhomogeneous media 

are finding very attractive applications in electromagnetic 

and antennas, it is absolutely necessary to find techniques 

to analyze such configurations [7,8]. 

A lot could be said about the characteristics of  

wave propagation by inspecting the dispersion curve 

corresponding to the structure along which the wave 

travels. Therefore the first step in designing unit cells is 

to obtain the related dispersion diagram. However this is 

not a straightforward process even for the case of 

homogeneous structures. Now for the non-homogeneous 

media, this could be quite a challenge since it requires 

exact knowledge of the effective permittivity of the 

medium at hand. Various numbers of numerical 

approaches have been adopted over the years for this 
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purpose. Despite the satisfactory results derived by these 

methods, they are still suffering from a deplorable lack 

of generality. Furthermore, the application of these 

methods is restricted by some factors like the 

configuration of the unit cell, the amount of loss 

associated with the excited modes, and etc. [2,5,9]. All 

these restrictions make it difficult to effectively employ 

the useful features of modulated structures. Hence, we 

were stimulated to revisit this problem in more depth. 

Therefore, the main motivation of this work is to develop 

a more general procedure capable of analyzing modulated 

structures in a fast and accurate way. Another aspect of 

this work is that it is focused on the study of an open 

structure, while mostly the investigations found in the 

literature have only considered closed structures.  

Here we apply finite difference time domain FDTD 

method in an attempt to find both the dispersion and  

also field distributions for a medium whose effective 

permittivity has been sinusoidally modulated. The 

FDTD method has been selected since in addition to its 

generality it is robust and proved to produce reliable 

results for a wide number of applications [10]. However, 

we are aware of some negative impacts of FDTD like the 

numerical dispersion and try to choose the numerical 

parameters to avoid such effects.  

The paper is structured as follows. In Section II, we 

begin by the wave equation inside the stratified structure. 

Then in Section III, we proceed to the more complicated 

task of finding dispersion plots. Three major methods of 

graphical, analytical and numerical are investigated and 

dispersion plots from each method are compared. It is 

proved that the proposed numerical method is capable of 

accurately predicting wave behavior and band gap limits 

inside the modulated medium and it has no restriction 

regarding the value of the modulation index as opposed 

to the analytical method. A demonstration of the electric 

field distribution inside modulated medium is also 

presented that agrees well with the theory which 

confirms the validity and reliability of the proposed 

method. 

 

II. FORMULATION OF THE PROBLEM 

A. TE wave equation 

For a transverse electric, TE wave obliquely 

incident from free space to the semi-infinite medium of 

Fig. 1, under the assumption  𝜕 𝜕𝑦⁄ = 0, the wave 

equation is given by: 

 
𝜕2𝐸

𝜕𝑥2 +
𝜕2𝐸

𝜕𝑧2 = 𝜇𝑜𝜀𝑜𝜀𝑟(1 − 𝑀cos2𝜋
𝑧

𝑑
)

𝜕2𝐸

𝜕𝑡2 , (1) 

where 𝜀(𝑧) = 𝜀𝑟(1 − 𝑀cos2𝜋
𝑧

𝑑
), being the relative 

dielectric permittivity of the modulated medium with 𝜀𝑟 ,
𝑑, and 𝑀 identifying the average permittivity, periodicity, 

and modulation constant respectively.  

 

 
 

Fig. 1. Oblique incidence on a semi-infinite stratified 

medium. Shown to the left and right hand side of the x-

axis, are the permittivity constants of the un-modulated 

and modulated media, respectively. The un-modulated 

medium is considered free space, hence its relative 

permittivity, 𝜀1 is equal to 1. 

 

B. FDTD discretization 

For FDTD computation we first set the following 

assignments: 

 𝐸(𝑥𝑖 , 𝑧𝑚 , 𝑡𝑛) =  𝐸(𝑖∆𝑥, 𝑚∆𝑧, 𝑛∆𝑡) = 𝐸𝑖,𝑚
𝑛 , (2) 

 𝜀(𝑧𝑚) =  𝜀𝑟(1 − 𝑀cos2𝜋
𝑚∆𝑧

𝑑
 ) = 𝜀𝑚. (3) 

Now we use central-time central-space discretization 

scheme to form the discretized version of (1): 

𝐸𝑖,𝑚
𝑛+1 = 2𝐸𝑖,𝑚

𝑛 (1 − 𝜃𝑥 − 𝜃𝑧) + 𝜃𝑥(𝐸𝑖+1,𝑚
𝑛 + 𝐸𝑖−1,𝑚

𝑛 ) +

𝜃𝑧(𝐸𝑖,𝑚+1
𝑛 + 𝐸𝑖,𝑚−1

𝑛 ) − 𝐸𝑖,𝑚
𝑛−1, (4) 

where 𝜃𝑥 =
1

𝜇𝑜𝜀𝑜𝜀𝑚
(

∆𝑡

∆𝑥
)

2

, and 𝜃𝑧 =
1

𝜇𝑜𝜀𝑜𝜀𝑚
(

∆𝑡

∆𝑧
)

2

 with 

∆𝑥, and ∆𝑧, being grid spacing and ∆𝑡 designating time 

increment. In the next sections, we employ this scheme 

to calculate the electric field intensity inside the 

modulated medium.  

 

III. DISPERSION ANALYSIS 

A. Graphical dispersion 

For the medium presented in Fig. 1 as shown in [6], 

solutions of wave Equation (1) can be described in the 

form of Mathieu functions and there is no closed form 

formula for the dispersion relation. In fact, dispersion in 

such medium can be obtained by the help of “Mathieu 

stability diagrams” using the graphical approach. A 

comprehensive study of this kind can be found in [6]. In 

what follows we will present a brief illustration of the 

method. We restrict our discussion to the case of oblique 

incidence in Fig. 1 considering 𝑘𝑜 = 𝜔√𝜇0𝜀0 the free 

space wavenumber, with 𝑘𝑡 and 𝑘𝑢 being the 

wavenumbers along x and z directions respectively given 

by 𝑘𝑡 = 𝑘𝑜√𝜀1𝑠𝑖𝑛𝜃 and 𝑘𝑢
2 = 𝑘𝑜

2𝜀𝑟 − 𝑘𝑡
2, where 𝜀1 is  

the relative permittivity of un-modulated medium and 𝜃 

is the angle of incidence. The last expression, i.e.,  

𝑘𝑢
2 = 𝑘𝑜

2𝜀𝑟 − 𝑘𝑡
2, would be the dispersion relation if no 

modulation was present in the medium, namely 𝑀 = 0.  
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However, when 𝑀 ≠ 0 the propagation constant along z, 

namely ĸ, has to be obtained by employing an iterative 

process to numerically solve a continued fraction 

expression. This leads to “stability diagrams” of Fig. 2. 

It is customary to plot stability diagrams in a-q axes 

[5,6]. The vertical axis, q is basically an indication of 

modulation parameter, 𝑀 which is multiplied by 

(√𝜀𝑟𝑘𝑜𝑑 √2𝜋⁄ )
2
 to factor in the effect of average 

dielectric constant and also frequency, since dispersion 

is the description of wavenumber variation with respect 

to frequency and also as modulation index, 𝑀 varies, 

wave experiences different stratifications in the medium, 

and hence different dispersion effects, so modulation 

coefficient 𝑀 has to be included in the definition of the 

axis as well. A more sophisticated physical meaning of 

parameter q is actually dependent on the specific 

problem at hand for which Mathieu equation arises. For 

example, in a problem where Mathieu equation describes 

vibrating modes of an elliptical membrane, q is associated 

with the eigenfrequencies of those vibrating modes [11]. 

The horizontal axis is 𝑎 = (𝑘𝑢𝑑 𝜋⁄ )2 and it arises when 

the method of ‘separation of variables’ is used in the TE 

wave Equation of (1) to find solutions of Mathieu 

equation. (See [6] for more details). 

From Fig. 2 one can distinguish two distinct regions, 

the shaded areas are “stable regions” where ĸ is real, 

whereas in the unshaded areas (unstable regions) ĸ 

becomes complex. Furthermore, we can draw a line 

through origin that will cut through all the regions of 

stability diagrams. Intersection points are shown with 

red stars in Fig. 2. The slope of this line can be written 

as: 

 tan 𝜑 =
0.5𝜀𝑟𝑀

𝜀𝑟−𝜀1𝑠𝑖𝑛2𝜃
 . (5) 

From (5), one realizes that at a specific angle 𝜃 and 

for constant values of , 𝜀1, and 𝜀𝑟 the slope of this line, 

tan 𝜑 is fixed and an intersection point with stability 

diagrams is the value of ĸ excited at a certain frequency. 

If 𝑀 = 0, then the slope of the line is zero and it will fall 

on the horizontal axis which is described by 𝑘𝑢
2 and as 

stated earlier, 𝑘𝑢
2 is the wave number in the absence of 

modulation in the medium. 

In a general case where 𝑀 ≠ 0, in order to construct 

dispersion diagram we have to find variation of ĸ versus 

frequency. Note that by changing frequency, parameters 𝑎, 

and 𝑞 vary along the straight line yielding different 

intersection points each corresponding to a specific value 

of propagation constant at that frequency. Such diagram 

is shown in Fig. 3 where one can recognize a band-gap 

between 15.99 𝐺𝐻𝑧 − 18.99 𝐺𝐻𝑧. This is a result of the 

straight line of Fig. 2 passing through the first unstable 

region of stability diagrams and exciting waves with 

complex values of ĸ. 

 

 
 

Fig. 2. Mathieu stability diagram (using the data in [12]). 

The intersecting points, shown with red stars on the 

straight line, determine the wavenumbers of modes 

excited in the modulated medium. Parameter 𝜆 used  

in the definition of 𝑞 is the free space wavelength  

which is 1 𝑐𝑚 at the design frequency of 𝑓 = 30 𝐺𝐻𝑧. 

Other parameters are as follows; 𝑑 = 1 𝑐𝑚, 𝑀 = 0.15,
𝜃 = 30𝑜, 𝜀𝑟 = 𝜀1 = 1. 
 

 
 

Fig. 3. Dispersion diagrams for the modulated medium 

shown in Fig. 1 using the graphical approach.  

 

For the case represented in Fig. 2 based on the 

values given in the caption, the slope of the straight line 

given by (5) is equal to 0.1, and as can be seen it cuts 

through the stability diagrams where the appearance of 

the first band gap (first unshaded region) is noticeable, 

whereas it hardly cuts through the 2nd unstable region; 

hence the 2nd band gap is almost non-existent for such a 

small value of line slope. Therefore Fig. 3 is only focused 

on the first band gap. For higher values of incidence 

angle or modulation index the slope of the line increases 

and it will cut through both 1st and 2nd unshaded areas  

of Fig. 2 for which case both band gaps should be  
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considered. 

 

B. Analytical dispersion 

The above approach, though accurate but is 

frustrating since every time a single parameter in (5) 

varies, the whole process needs to be repeated. A more 

straightforward way is to use the following analytic 

expression suggested in [6] which is capable of 

predicting dispersion curves only when the value of 𝑞 is 

taken very small and the solution is considered inside 

pass bands or the “stable’ regions of the Mathieu stability 

diagram: 

 
ĸ

𝑘𝑢
= 1 +

1

1−(𝑘𝑢𝑑 𝜋⁄ )2 (
𝜋

𝑘𝑢𝑑

𝑞

2
)

2

. (6) 

Under these circumstances, (7) is a good approximation 

for the solution of electric field inside the modulated 

medium: 

𝐸𝑦(𝑥, 𝑧)

= [1 −
𝑞

2
.
cos (

2𝜋𝑧
𝑑

) − 𝑗
𝑘𝑢𝑑

𝜋
sin (

2𝜋𝑧
𝑑

)

1 − (𝑘𝑢𝑑 𝜋⁄ )2
] 𝑒𝑗𝑘𝑡𝑥𝑒𝑗ĸ𝑧𝑒𝑗𝜔𝑡 . 

 (7) 

Designated with blue rhombus is the dispersion plot 

of (6) depicted in Figs.4 (a) and (b). One recognizes that 

(6) is quite accurate in pass-bands but when it comes to 

band-gaps its values cannot be trusted, which was 

expected as stated earlier. 

 

C. Numerical dispersion 

To find more satisfactory results we tried the FDTD 

technique. The discretized version of (7) is applied into 

(4) which reveals the numerical dispersion relation as in: 

 sin2 (
𝜔∆𝑡

2
) = 𝜃𝑥sin2 (

𝑘𝑡∆𝑥

2
) + 𝜃𝑧sin2 (

ĸ∆𝑧

2
). (8) 

Note that the actual expression is much more 

complicated and what is given in (8) is derived after 

taking into account certain approximations [13]. 

To examine the amount of numerical dispersion 

introduced by FDTD method into the solution one may 

try to find the ĸ-𝜔 diagram of (8) but due to 𝜃𝑥 and 𝜃𝑧 

being functions of space, as shown in Figs. 4 (a) and (b), 

plots will change for different nodes along the axis of 

modulation 𝑧. 

This makes it hard to understand whether or not the 

numerical scheme is giving valid results in terms of band 

diagrams. However one interesting fact concluded from 

comparing Figs. 4 (a) and (b), is that such trend is 

periodic. As a matter of fact within one period, 

dispersion plots for nodes symmetrically located around 

𝑧 = 𝑑 2⁄ , (line of symmetry) are the same. Another 

interesting observation is that for the values selected 

here, neither of these plots suggests the existence of 

“numerical” band-gaps. The only effect is a small drift 

of dispersion plots along the nodes. This was expected 

since permittivity is a function of 𝑧, which means the 

guided wavelength varies along the modulation direction 

and so does the propagation constant. 

 

 
    (a) 

 
    (b) 

 

Fig. 4. Comparison of dispersion diagrams obtained by 

the approximate analytical solution in (6): blue rhombuses 

in both Figs. 4 (a) and (b), versus those obtained using 

(8) for: (a) sample nodes on the first half (left-hand) of 

the unit cell symmetry line, and (b) sample nodes on the 

second half (right-hand) of the unit cell line of symmetry. 

 

These all mean that the approximations made to 

obtain (8) have worked out for the best since we could 

firstly avoid the numerical band-gaps arising from the 

periodic grid lattice used in the finite difference method 

and secondly, as suggested from Fig. 4(a) and (b), predict 

the dispersion plots quite accurately. 

Back to our oblique incidence problem we need to 

find possible value(s) of ĸ that are excited in the 

modulated medium and also the band-gap frequencies. 

Based on the above analyses, the graphical method 

though accurate enough, is not necessarily the fastest 

way to approach the problem and (8) yields different 

dispersion plots for various nodes. It is also worth to 

emphasize that the approximations in (8) are only valid  
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within the pass bands not to mention the restrictions on 

the value of modulation constant. Having that in mind  

it seems like the most convenient way to obtain the 

dispersion curve is to calculate the electric field 

numerically at various sample frequencies and then to 

determine the wavenumber at each frequency. The 

results of such calculations are depicted in Fig. 5.  

 

 
 

Fig. 5. Comparison between dispersion curves obtained 

by graphical approach and FDTD method. 

 

A small discrepancy observed between the graphical 

and numerical plots is believed to be mostly due to a 

certain degree of approximation involved in the 

computation of the actual wavelength of the field. This 

can be explained using Fig. 6 where it can be seen that 

the electric field solution in the modulated medium has  

a slightly perturbed sinusoidal shape. One realizes this 

perturbation is responsible for a slight change of 

wavelength along the propagation direction. Hence, the 

results of Fig. 5 are obtained using the average value of 

the wavelength. There are other factors that affect the 

accuracy of plots in Fig. 5. First one needs to understand 

that the graphical approach, does not always give the 

exact values; to solve for the ĸ values we have to find  

the intersection points in Fig. 2 which requires the 

evaluation of non-integer Mathieu functions of any 

arbitrary order. Not enough tabulations of this kind can 

be found in literature. Furthermore, the intervals between 

two successive steps are often large not to mention the 

restricted range of parameters (namely 𝑞 and 𝑎) for 

which these tables are available. Here we have used 

values in [12] which are obtained with an accuracy of 

10−5, however the intersection points, as presented in 

Fig. 2, do not exactly lie on the graphs available from 

[12] and therefore an interpolation process needs to be 

carried out to find the values in the intermediate steps. 

All these factors will introduce errors in the calculation 

of dispersion diagram, which then result in the small drift 

between the graphical and numerical plots of Fig. 5. 

Lastly, we also computed the electric field solution 

inside the semi-infinite medium of Fig. 1, using a 

sinusoidal excitation at the incidence plane (at 𝑧 = 10 𝑐𝑚) 

chosen twenty wavelengths behind the air-dielectric 

interface (at 𝑧 = 30 𝑐𝑚).  

 

 
     (a) 

 
      (b) 

 

Fig. 6. Electric field distribution in modulated medium 

using: (a) closed form formula of (7) and (b) FDTD. As 

clear from the graph, 𝑧 = 30 𝑐𝑚 is the interface of air 

and the modulated medium whereas the incidence plane 

is set at = 10 𝑐𝑚. To insure accuracy the modulated 

medium has extended over 15 wavelengths beyond the 

interface. 

 

Using the total field-scattered field approach 

(TFSF), we account for multiple reflections that will 

happen due to continuous variation of the permittivity in 

the dielectric medium. It is clear from Figs. 6 (a) and (b) 

that the analytical and numerical results inside the 

modulated dielectric medium are in excellent agreement. 
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IV. CONCOLUSION 
Realizing the challenge exist to address scattering 

problems involved oblique incidence, a numerical study 

based on FDTD has been presented to analyze wave 

propagation inside a modulated medium in terms of 

dispersion and field distribution. To avoid numerical 

dispersion a node-by-node band-diagram monitoring 

process has been carried out in order to adjust FDTD 

parameters to guarantee a distortion-free transmission. 

As an appropriate figure of merit for comparison of the 

numerical results, an approximate closed form formula 

was used. An inspection of band diagram and field 

distribution revealed great agreement between graphical 

and numerical results with the latter being less time 

consuming, more robust and accurate in predicting the 

band-limits. 
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