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Abstract ─ A new method is proposed to analytically 

evaluate the line integral on truncated-wedge 

incremental length diffraction coefficients (TW-ILDCs). 

By utilizing the coherence of a geometry, the trailing 

edges can be divided into several linear segments, and 

the line integrals can be reduced as the two end-point 

contributions for each segment based on the 

mathematical model derived in this paper. Thus, the 

efficiency is greatly enhanced in comparison with the 

traditional numerical techniques. Numerical results for 

the bistatic radar cross sections show excellent 

performance of the proposed method both in accuracy 

and efficiency.  

 

Index Terms ─ Closed form, linear division, TW-

ILDCs. 

 

I. INTRODUCTION 
It is well known that the surface integral in the 

physical theory of diffraction (PTD) has the following 

form: 

      2 2

1 1

,
,

v u
jk u v

v u
I k f u v e dudv


   , (1) 

in which k is a large wavenumber,  ,f u v  represents 

the amplitude of the integrand, and  ,u v  is the phase 

function, both of them have two arguments u and v. The 

integral on u is seen as the inner integral with the lower 

and upper limits 1u  and 2u ; while the integral on v is 

thought to be the outer integral with limits 1v  and 2v .  

As is known, this PTD surface integral was firstly 

introduced by Ufimtsev, who has also reduced it into 

point contributions. But his reduction procedure is a 

directly surface-to-point process, lacking the surface-to-

line step, which may contribute to ‘very complicated and 

immense equations’ [1]. Thu, Ufimtsev’s result is not 

very practical [3].  

Therefore, there have been numerous contributions 

to better evaluate the inner integral in (1) in the past 

decades [2]-[10]. The theory of incremental length 

diffraction coefficients (ILDCs) [2] proposed by Mitzner 

has made significant improvement for such evaluation. 

In ILDCs, the two associated faces of a wedge are 

assumed to be two half-planes based on high frequency 

localization phenomenon. Hence, the inner integral limit 

is from zero to infinity. Meanwhile, a function vB  [11] 

is used to describe the fringe-wave surface current

 ,f u v , the variable of which only contains u without  

v in this case, and the phase function  ,u v  can be 

expressed separately by  u  and  v  for the inner 

and outer integral. Thus, the inner integral in (1) is able 

to be reduced into closed form, and  I k  can be 

evaluated analytically for straight wedges. For curved 

wedges, the stationary phase method [13] can be used  

to asymptotically reduce the outer integral into point 

contributions. Hence, ILDCs is an efficient algorithm, 

and has been successfully applied to design B-2 stealth 

aircraft [14]. 

However, some problems exist in ILDCs. Firstly, 

singularities emerge in some combinations of incidence 

and observation directions. The reason, as pointed out by 

Michaeli, is the inappropriate selection of the coordinate 

system [3]. Unlike ILDCs, who chooses the direction 

normal to the wedge edge as the inner integral direction, 

Ref. [3] has selected the grazing diffracted direction, 

which is a more natural way as pictured by the ray 

behavior in the geometrical theory of diffraction (GTD) 

[15]. As a result, most singularities were removed except 

the non-removable Ufimtsev singularity. Secondly, the 

half-plane assumption is in contrast to real conditions, 

which will influence the accuracy especially when the 

observation direction is close to the grazing diffracted 

ray [9]. This problem of ILDCs leads to the necessity  

to consider the second-order diffraction. In this 

circumstance, the upper limit of the inner integral is a 

finite value because the fringe wave surface current 

incremental strips will be truncated when hitting the 

second-order diffraction points. Work related to solve 

this kind of inner integral includes Refs. [6], [7] for the 

half-plane, and [8] for a right-angled wedge. Though the 

expression for a wedge with arbitrary angle was firstly 
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gained by Michaeli [9], the non-removable singularities 

still exist due to the improper mathematical derivation 

procedure. This difficulty was finally overcome by 

Johansen [10] with no non-removable singularities 

emerged in his result. Therefore, an analytical, more 

accurate and robust evaluation of the inner integral in (1) 

than ILDCs is achieved. Thus, the method in [10], named 

as truncated-wedge incremental length diffraction 

coefficients (TW-ILDCs), has been widely used and 

implemented in Xpatch [16] and GRASP [17].  

However, compared with ILDCs, when considering 

the second-order diffraction, the outer integral in (1) 

cannot be analytically evaluated even for a straight 

wedge, because the length of each incremental strip is 

different and depends on the geometry of an object. To 

calculate such an integral, the numerical quadrature 

method has been used [16], [18], [19]. In Ref. [16], to 

implement TW-ILDCs in Xpatch, sample points on a 

wedge’s leading edge are taken, and the incremental 

strips of the fringe wave surface currents, emanated from 

each sample point, will travel until hitting a point on 

another discontinuous edge. Obviously, the length of the 

incremental strip has to be calculated again for different 

sample points and incident angles. In Ref. [18] the 

distance between every two sample points is set to be 

/10 , which is a frequency-related value and a similar 

value is taken in [19] as well. Thus, the final result of 

 I k  is the summation of the diffraction coefficients 

calculated from all sample points. Consequently, to deal 

with such highly oscillatory integral, the computation 

time will increase largely as the frequency increases. To 

accelerate this numerical technique, a fixed truncated 

length TW-ILDCs method was proposed based on the 

idea of rectangular strip [7]. Similar to ILDCs, the 

amplitude of the integrand in the outer integral in (1) is 

thereby constant and this line integral can be reduced to 

closed form resultantly. Though the efficiency was 

improved by this approach, the accuracy cannot be 

guaranteed which has been illustrated by the examples in 

Ref. [18]. 

In this paper, we propose a new method that can 

rigorously reduce this line integral into a closed-form 

expression for planar structures. For the commonly used 

triangular patch mesh, it is found that the trailing edges 

can be divided into several linear segments, and on each 

of them, the outer integral in (1) can be evaluated 

analytically. The mathematical model required in this 

process is derived in details. Meanwhile, the efficiency 

can be greatly improved in comparison with the 

numerical technique. 

This paper is organized as follows. In Section II, a 

mathematical model referring to the integral on the 

complementary error function is introduced. Then its 

application to PTD is described in Section III, including 

details in integral reduction. Numerical results are given 

in Section IV to illustrate the validation of the proposed 

method. Finally, Section V gives the concluding remarks. 
 

II. MATHEMATICAL MODEL 
Consider the integral form given below: 

      2 2+
1 1 2 2 1 1, , , +

jk a z b
I a b a b F a z b e dz  , (2) 

in which z  is the integral variable, 1 1 2 2, , ,a b a b  are the 

constant terms, and  F x  is the modified Fresnel integral 

[9]. The aim here is to rigorously reduce the integral (2) 

into a closed form. 
 

A. The general case 

Note that the modified Fresnel integral has a 

relationship with the complementary error function [20] 

   
2
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 then (2) can be rewritten as: 
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By using the approach of integrating by parts, and noting 

that  
2
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For the integral contained in (4), it has, 
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 (5) 

Therefore, based on the relationship between modified 

Fresnel integral and the error function, the final result of 

(2) can be obtained by taking (5) into (4) as: 
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 (6) 

 

B. The singular case 

In (3), when 1 2+ 0,a ka   the integral will be 

changed as the following form: 

       1 2+
1 1 2 2 1 1, , , 2 + .

j b kb
I a b a b e erfc j a z b dz   (7) 

Referring to Ref. [21], the result of integral  
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 z erfc z dz  is listed in its table. Noting that

   0.5 erfc z dz z erfc z dz   , it is easy to get the 

value of (7) by variable substitution: 
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 (8) 

 

III. APPLICATION TO PTD 

A. The line integral on TW-ILDCs 

The geometry of a perfect conducting wedge with 

two finite sized polygonal planes is shown in Fig. 1. The 

points B and C are two points on the leading edge, from 

which the fringe wave incremental strips emanate, along 

the grazing diffracted direction ̂ , hit an edge at point 

B' and C'. The dashed lines BB' and CC' are their 

propagation paths, whose lengths are Bl  and Cl , 

respectively. And the equivalent edge currents are 

distributed on the polygon face AA'B'C'D. Therefore, 

edges A'B', B'C' and C'D are the so-called trailing edges. 

 

̂

1z

2z
Bl

Clx

Al

D

z

'A

'B

'C
Trailing edge

The Leading edge

0Face

F
a
ce

n

ˆ
ik

ˆ
sk

y
i

i
s

s

A

B

C

 
 
Fig. 1. The geometry of a perfectly conducting wedge. 

The dashed lines on the wedge represent the propagation 

paths of the fringe wave incremental strips. Segments 

AB and BC are the projections of line segments A'B' and 

B'C' on the leading edge AD. i  and s  are the angles 

from the x axis to the projections of ˆ
ik  and ˆ

sk  on the xy 

plane, i  and s  are the angles from the leading edge 

to ˆ
ik  and ˆ

sk , respectively.  

 

The fringe-wave field is expressed by the radiation 

integral [12] as: 

  ˆ ˆ ˆˆ ˆ+ ,
4

jkR
fw

T s s T s

e
jk ZI M dz

R



    
 E k k t k t  (9) 

where 0Z  is the impedance, ˆ ˆt z , the direction of the 

leading edge, and TM , TI  are the truncated equivalent 

magnetic and electric currents [10], having the 

expressions that T ut corM M M  , TI  ut corI I ,  

in which utM  and utI  represent the untruncated 

equivalent magnetic and electric currents and their 

expressions can be obtained in Ref. [3], while corM  and 

corI  are the correction terms when considering partly the 

secondary diffraction, respectively.  

 

Since utM  and utI  are constants for a wedge edge, 

the integrals on them can be expressed analytically. 

Hence, the main work here is to evaluate the integral on 

the correction terms corM  and corI : 
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The expressions of corM  and corI  are obtained 

from Ref. [10] and listed as: 
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The argument L in the modified Fresnel integral has the 

expression: 

 2sin ,iL kl   (13) 

in which l  is the truncated length for each incremental 

strip, and the angle-related terms for both excitation and 

observation, such as i , i , s , s  and  , are the 

same as these defined in Ref. [10].  

Taking (11), (12) into (10), it can be found the key 

point when dealing with the integrals in (10) is to 

calculate the two integrals below: 
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 (15) 

 

B. Linear division and representation 

When the mesh of an object is based on triangular 

patches, each edge of the meshed model is a linear 

segment. Therefore, within each linear segment, the 

truncated length of any point on the corresponding 

leading edge segment can be expressed as a linear 

function of the point’s position on the leading edge. As 

illustrated by Fig. 1, take edge BC as an example. For 

face 0, the distance between points A and B is 1z , 

between points A and C is 2z , the distance between 

point A and any point on edge AD is assumed to be z, 

and the position vector is z. For face n, it has ˆ ˆz z ; 

hence, the starting point of the wedge edge should also 

be changed. The truncated length of each point on edge 

BC is: 

  1
2 1

+ .C B
B

l l
l z z l

z z





  (16) 

Thus, the slope for this trailing edge is given as  

l Ck l   2 1/ ,Bl z z   then l  is further written as 

+l ll k z c , where lc  can be derived from (16).  

As a result, the variable L in (18) and (19) can be 

represented as: 

 + ,L LL k z c  (17) 

in which 
2sinL l ik kk  , 

2sinL l ic kc  . 
 

C. Integral reduction  

Taking (17) into (14) and (15), 1T  and 2T  are 

rewritten as: 
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Obviously, the integrals (18) and (19) have the same 

form as (2), so the results of them have the same form  

as (6) and the values of 1 1 2, ,a b a , and 2b  can be 

determined for 1T  and 2T  in this condition. For 1T , 
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and for 
2T , 
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 (21) 

Consequently, for each face of a wedge, the line integral 

on TW-ILDCs is successfully reduced into a closed-form 

expression in terms of the modified Fresnel integral. 

 

IV. NUMERICAL RESULTS 
In this section, the good performance of the 

proposed method will be demonstrated via calculating 

the bistatic radar cross sections on a trapezoid body. The 

results of numerical TW-ILDCs method are also 

exhibited as comparisons. 

The geometry of the object is illustrated in Fig. 2. 

The incident angle is given by 60i   and 30 ,i   

and the observation angles are determined by 90s   

and 0 ~ 360s  using an angular resolution of 0.25 .  

The working frequency is set to be 3 GHz. Numerical 

TW-ILDCs are performed using the method presented in 

[18], in which the /10  mesh on wedge edge is taken 

to give enough accuracy. 
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Fig. 2. Perfectly conducting object. The bottom face is 

ABCD, a 0.6m 0.6m square. The upper face is EFGH, 

the front and back side faces are CDHG and ABFE. 𝜃𝑖, 

𝜃𝑠 are from the z  axis to the incident and scattering 

directions, 𝜑𝑖  and 𝜑𝑠 are from the x axis to the 

projections of the incident and scattering directions on xy 

plane, respectively. 
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Considering the linear division process for all 

discontinuous edges, the trailing edges of edges AE, BF, 

EH and FG can only be divided into one linear segment 

for their two faces, thus these four wedge edges do not 

need to be divided. For the upper face of edge AB, the 

trailing edges are divided into four linear segments: EA, 

HE, DH, part of CD. Thus, the outer integral in (1) can 

be written as the summation of four sub-integrals on 

these four linear segments. For the bottom face of AB, 

the trailing edges are: AD and part of CD. Hence AB 

should be divided into two parts, and the outer integral 

in (1) is the summation of two sub-integrals on these two 

linear segments. The division of BC, CD, CG, EF, GH 

and DH are similar to AB.  

As can be seen from Figs. 3-4, the results of the 

proposed method are almost the same as the numerical 

TW-ILDCs except some small discrepancies which are 

possibly due to the slight numerical errors in the 

calculation process. Moreover, the results of multi-level 

fast multipole method (MLFMM) minus PO are also 

given as a reference, in which the results of MLFMM are 

obtained by software FEKO and the reason for the 

difference between the proposed method and MLFMM 

minus PO is that the higher-order and vertex diffraction 

contributions are not considered by both numerical TW-

ILDCs and the proposed method. 
 

 
 

Fig. 3. HH polarization bistatic radar cross section results. 
 

 
 

Fig. 4. VV polarization bistatic radar cross section results. 

Meanwhile, to illustrate the efficiency of the 

proposed method and numerical TW-ILDCs, the 

computation time is listed in Table 1. 

 

Table 1: Computation time consumed by diffraction 

Frequency 

(GHz) 

Computation Time (s) 

The Proposed 

Method 

Numerical TW-

ILDCs 

3.0 0.827 3.276 

10.0 0.905 10.701 

30.0 0.905 31.121 

 

It can be seen that the time needed by numerical 

TW-ILDCs is increased as the frequency increases; 

while the computation time of the proposed method is 

relatively stable and takes very small part of that of 

numerical TW-ILDCs. 
 

V. CONCLUSION 
In this paper, a new method is proposed to 

analytically treat the line integral on TW-ILDCs. Based 

on the triangular patch mesh, the trailing edges 

corresponding to a leading edge can be divided into 

several linear segments, and the line integral can then be 

reduced to an analytical form in terms of the modified 

Fresnel integral among the linear segments. Thus, the 

efficiency has been improved significantly compared 

with the traditional numerical quadrature method. The 

future work will focus on the higher-order diffraction 

contributions to develop a more accurate algorithm. 
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