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Abstract ─ In the radio monitoring, electromagnetic 

interference diagnostics and radar detection, the 

electromagnetic radiation source identification (ERSI) is 

a key technology. A new method for ERSI was proposed. 

The support vector machines (SVMs) have been applied 

to facilitate the ERSI on the basis of the spatial 

characteristics of the electromagnetic radiation sources. 

The radiation sources were located by the triangulation 

method, and then their spatial characteristics were 

collected by a band receiver array, and converted from 

3D data to 1D vector with subscripts as the inputs for the 

SVMs. We trained the model with these 1D vectors to 

enable it to identify the radiation source types with both 

high speed and accuracy. The identification time needs 

only a few seconds, which is much faster than the 

artificial neural networks (ANNs). The influence of 

parameters (e.g., noise from the ambient environment, 

the data collection method, the scaling method for the 

input data, and the penalty parameter) were discussed. 

The proposed method has good performance even in the 

noisy environments. The results were verified by a 

designed measurement. The proposed approach is very 

useful for the ERSI of unknown radiation sources in 

practice. 

 

Index Terms ─ Band receiver array, electromagnetic 

radiation source identification, spatial characteristics, 

support vector machines. 
 

I. INTRODUCTION 
Electromagnetic radiation source identification has 

been a topic of intense researches due to its applications 

in the radio monitoring and electromagnetic interference 

diagnostics as well as radar sensor [1-10]. Nowadays, the 

EMC diagnosis is mainly confronting with a challenge, 

that is, the identification and localization of different 

interference sources. The traditional EMC diagnosis 

widely relies on the experience of engineers and the 

exact knowledge of the electronic system, and there is no 

unitized methodology can be referred to. [1] proposed an 

electromagnetic radiation source identification method 

based on the independent component analysis (ICA) 

theory. By using a kurtosis-based ICA algorithm, the 

radiated emission feature of different sources is extracted 

from some spectrum data measured at different 

positions. This method requires that the sources are 

independent signals, whose features are different 

frequencies. If the frequencies overlap, the method may 

be unavailable. Moreover, the accuracy is affected by the 

noise in the environment significantly. [2-8] investigated 

the possibility of detecting and identifying the electronic 

devices based on their electromagnetic emissions. Short-

term FFT combined with a cross correlation technique 

was applied to identify different devices [2]. The signal 

was separated from the noise on the basis of different 

frequency, and then the envelope of the signal was 

recovered. The devices were identified by their 

envelopes with a cross correlation or a neural network. 

Thus, the different frequencies and envelopes are 

necessary for this method. [3] presented a method for 

detecting and identifying the vehicles based on their RF 

emissions. The parameters like the average magnitude or 

the standard deviation of the magnitude within a 

frequency band were extracted from the measured 

emission data. These parameters were used as the inputs 

to the artificial neural networks (ANNs) that were trained 

to identify the vehicle that produced the emissions. 

When a spark event was not captured, however, the 

neural network was unable to successfully identify the 

responsible vehicle. Thus, a high signal to noise ratio is 

needed. In the radar detection, many published 

literatures are focus on the emitter identification (EID). 

The conventional identification approaches, which sep-

arate the received pulses into individual emitter groups, 

are usually based on the basic pulse parameters, such as 

the direction of arrival (DOA), radio frequency, time-of-

arrival, pulse width and pulse repetition interval; these 

approaches are not applicable when the EM source 

frequencies overlap and are sensitive to noise [9-18]. In 

the radio monitoring, the distinction between the 

radiation sources mainly depends on the frequency 

separation by using a spectrum analyzer [19-20]. 

Our group has been working on the radiation source 

identification when the frequencies of sources overlap in 
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the noisy environment [21-22]. Firstly, we proposed to 

identify the radiation sources based on their spatial 

characteristics by using the artificial neural networks 

[21]. The method is very accurate without any additive 

noise. However, the accuracy is affected by the noise 

significantly. Thus, an improved method was brought 

forward [22]. The radiation source type was recognized 

by the support vector machines (SVMs), which can 

withstand some strong noise. Nevertheless, the above 

two methods have same limitation for they use the same 

receiver array, which is located in a 3D cube. This 

requires that the test data must be collected in the same 

way as the training data collected. It means all data are 

collected in the enlarged or shrunken cubes in the main 

lobe of the radiation sources, and only small bias is 

allowed. 

In this paper, to make the method more applicable, 

the receiver array is improved by using a band shape 

instead of a 3D cube. The band receiver array is more 

consistent with the pattern recognition theory. It relaxes 

the requirement that the test data should be exactly 

collected in the same way as the training data collected, 

where all the data are collected in a narrow cone around 

the main lobe of the radiation sources. In our model, the 

ERSI problem is considered as a nonlinear mapping 

problem, the mapping from the space of the feature 

vectors of the radiation source to the space of the source 

type. The effectiveness of the method is demonstrated as 

a multi-ERSI problem with and without the additive 

noise. With this method, taking the spatial characteristics 

as the feature vectors is enough to obtain the high 

accuracy for the identification, which is much simpler 

than the multi-features for the identification in [9]. 

  

II. SVMs FOR CLASSFICATION  
The data used for the SVM classification is often a 

pair comprising an input object (typically a vector, called 

attribute or feature) and a desired output value (called 

label). A supervised learning algorithm analyzes the 

training data and produces inferred functions, which are 

called “classifiers”. The inferred function should predict 

the correct output value for any valid input object. This 

approach requires the learning algorithm to generalize 

unseen situations in a “reasonable” way. 

In classification, however, it often happens that the 

data sets to discriminate are not linearly separable in a 

finite dimensional space. For this reason, it is proposed 

that the original finite-dimensional space is mapped into 

a much higher-dimensional space, presumably making 

the separation easier in that space. In our model, the data 

sets composed by the electric field strengths at 27 points 

are difficult separated in the finite dimensional space, so 

they should be mapped into a higher-dimensional space 

by using a kernel function ( , )i jK x x  [23-24]. The radial 

basis function (RBF), a kind of the kernel functions, is 

suitable for the case that the class labels and attributes is 

nonlinear. In our model, the attributes are the electric 

field strengths at 27 points, and the labels are the types 

of the radiation sources, so the RBF is chosen for this 

nonlinear issue; 

 2( , ) exp( || || ), 0i j i jK = γ γ> x x x x . (1) 

After the data are mapped to a higher-dimensional 

space with the RBF, the soft margin method will choose 

a hyper-plane that splits the examples as cleanly as 

possible, while still maximizing the distance to the 

nearest cleanly split examples [25]. The method 

introduces the non-negative slack variables i  to mark a 

degree of the classification error of sample xi. Given a 

training set of attribute-label pairs (xi, yi), 1, ,i m , 

where Ri nx  and yi   1,1
m

 , the SVMs require the 

solution of the following optimization problem: 
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Here, the training vectors xi are nonlinearly mapped  

into a higher dimensional space by the function  . The 

RBF has the relationship with function  , that is, 

( , ) ( ) ( )T
i j i jK = x x x x . w  is the normal vector to the 

hyper-planes. We should minimize w to find the 

maximum distance between these hyper-planes. C>0 is 

the penalty parameter of the error term, and the 

compromise between the maximal margin and the 

classification error can be achieved by adjusting C. Eq. 

(2) tries to increase the margin and decrease the error 

introduced by i .  

The steps using the SVMs for the classification in this 

paper are listed below: 

1) Collect data sets comprising attributes (electric field 

strengths at 27 points) and labels (types of the 

radiation sources), and randomly divide them into the 

training sets and test sets.  

2) Scale the attributes. 

The scaling of attributes is to avoid the attributes in 

greater numeric ranges to dominate those in smaller 

numeric ranges, and can accelerate the convergence 

of the SVMs. Since the kernel values usually depend 

on the inner products of the feature vectors, large 

attribute values may also lead to numerical problems. 

As a result, each attribute is scaled to the range [0, 

1] in our model. An arc tangent, logarithm scaling 

and linear scaling are applied, and the results are 

compared in Section IV. 

3) Choose the RBF kernel function.  

The RBF usually works well in the situation that the  
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number of feature is small, but the size of the 

training set is intermediate. For the model 

introduced in the paper, which contains 27 feature 

points and 9,000 rows in the training set, the RBF 

kernel can help provide enough variance to fit the 

training data within the constraints. 

4) Perform cross-validation to find the best parameters 

C and γ . The influence on identification accuracy 

from different C and γ is investigated in Section IV. 

The optimized C and γ are found by the genetic 

algorithm (GA), which are 2 and 1 respectively in 

our model. 

5) Utilize the best parameters C and γ  to train the data 

sets and then find an appropriate inferred function. 

6) Test and predict the accuracy with the test data sets, 

and then check the validity of the method. 

 

III. MODEL AND CALCULATION 
For the intentional electromagnetic radiation, it is 

often generated from the radiator, namely antenna. For 

instance, the radiation from a mobile phone usually 

comes from the phone antenna, such as the planar 

inverse-F antenna (PIFA), the radiation from a base 

station is often generated by a planar antenna, and the 

radars transmit the electromagnetic wave through the 

phased array antennas, etc. On the other hand, for the 

unintentional radiation, it is often caused by the 

equivalent antennas. For example, a bare wire in an 

electronic device often causes the electromagnetic 

interference (EMI), which is usually modeled with a 

dipole antenna. The radiation caused by a printed circuit 

board trace is often modeled with a loop antenna. In  

a word, the devices causing the radiation interference  

can be modeled with their primary radiated antennas. 

Obviously, the spatial characteristics of different antennas 

are different, which are unique features used for 

identification of the antennas, thereby achieving the ERSI. 

In [21] and [22], the spatial characteristics of the 

radiation sources are collected by a 3D cube. The 

dimensions of this cube are 50 mm x 50 mm x 50 mm. 

The 27 receivers distributed in a cube are located at the 

center of edges, faces and volume. Two neighboring 

receivers are set 25 mm away from each other. The cube 

moves with a 20 mm steps in the x, y and z directions in 

a cone around the main lobe to collect the data sets. In 

those models, the way collecting the data sets for the 

recognition should be similar with the way collecting 

data sets for the training. That is, the 27 receivers collect 

the data sets in the enlarged or shrunken cubes in a 

narrow cone around the main lobe of the radiation 

sources. In other words, the high identification accuracy 

is achieved under these conditions:  

(1) The test data sets are collected at the same plane as 

the training data sets, shown in Fig. 1. 

(2) For an alternative method, if the test data sets are 

collected at different plane from the training data 

sets, the distance between the neighboring receivers 

should vary with the distance from the radiation 

source to the receiver cube, and the formula is 

presented in [21]; 

 .650HL  , (3) 

where L is the distance between the neighboring 

receivers, H is the distance from the radiation source to 

the receiver cube. 

We have tested the ability of the method proposed 

in [21] to withstand the deviation between the test data 

sets and the training data sets. It is found that the 

identification accuracy decreases significantly with the 

deviation, as shown in Table 1. 

 

 
 

Fig. 1. Data collection for a dipole antenna. 

 

Table 1: Identification accuracy vs. deviation 

                       Training Data Location 

Test Data Location 
5 m 10 m 

1.5 m 13.59% 19.03% 

3 m 50.46% 29.37% 

5 m 89.86% 46.2% 

6 m 78.6% 55.12% 

10 m 63.7% 91.49% 

15 m 54.94% 71.25% 

20 m 51.93% 60.08% 

 

Table 1 shows that the location deviation between 

the training data sets and the test data sets gives rise to 

an accuracy degeneration. 

To solve the problem, hence, this paper brings up a 

new receiver array. In practice, before the data are 

collected by the receiver array, the position of the 

radiation source should be located. The triangulation 

method is often used. As Fig. 2 shows, a directional 

antenna with a narrow range is located at TP1. The DOA 

(direction of arrival) of the radiation source is 

determined [26], which is in the line of r1. Similarly, 

another directional antenna is located at TP2, which 

determines that the radiation source is in the line of r2. 

Therefore, the intersection point between r1 and r2 is the 

location of the radiation source [27].  
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Fig. 2. Triangulation for determining the position of a 

radiation source. 

 

After the location of the radiation source is 

determined, the receiver array is moved around the 

equator of the radiation source to collect the electric field 

distribution of the source, and then the data are sent to 

the SVMs for the training and recognition. The steps of 

the ERSI are shown in Fig. 3. 

 

 
 

Fig. 3. Steps of ERSI. 

 

The receiver array is composed by 27 elements, 

which are utilized to collect the spatial characteristics of 

the radiation source simultaneously. The receivers are 

located at a band, which is 30° in latitude and 120° in 

longitude. All the receivers are arranged at 3 rows and 9 

columns. The receivers at 9 columns are shown as MP1 

to MP9 in Fig. 2. The neighboring receivers are 15° 

intervals in latitude and 15° intervals in longitude. Then 

the receiver band moves along the equator of the 

radiation sources with a 0.1° step. When the band moves 

360° along the equator, 3600 data sets are collected, and 

every data set includes 27 values, which can be 

expressed as a 1D vector with 27 elements: 

 kp kp kp kp kpk kp
p mn11 12 13 14 39= [ , , , , , ]E E E E E E E , (4) 

where k is the label of the radiation source type, p is the 

position label of the band receiver array, m is the row 

label of the receiver in the band, and n is the column label 

of the receiver in the band. 

Three EM radiation sources, namely, the bare wires, 

mobile phones, and RFID systems, are modelled with 

their primary radiators, that is, a dipole antenna, a planar 

inverse-F antenna (PIFA), and a microstrip antenna, 

respectively. These three antennas are all working at  

3 GHz to ensure that the SVMs identify the radiation 

sources on the basis of the spatial characteristics other 

than the frequency. The electric field distributions 

around these sources, called “spatial characteristics”, are 

collected by the simulation with the HFSS software, a 

commercial software based on the finite element method 

[28]. The band receiver arrays vs. the antenna patterns 

are displayed from Fig. 4 to Fig. 6. 

 

 
 

Fig. 4. Receivers vs. pattern of a dipole antenna. 

 

 
 

Fig. 5. Receivers vs. pattern of a PIFA antenna. 

 

 
 

Fig. 6. Receivers vs. pattern of a microstrip antenna. 

 

Obviously, the spatial characteristics of these three 

antennas are different as shown in Figs. 4-6. They are 
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collected by a band receiver array, which is a circular and 

part of a big ring around the radiation source, and are 

used as the unique features for the SVMs to identify. The 

spatial information is converted from 3D array to 1D 

vector with subscripts as inputs to simplify the model. 

Since there are 3600 data sets, that is, 3600 1D vectors 

for each antenna, 10800 data sets for these three antennas 

are obtained. These data sets are expressed as a 

combined vector set 1 1 3 '
1 2 3600= [ , , , ]totalE E E E , where 

the superscript in the vector set represents the type of the 

radiation source, and the subscript in the vector set 

represents the position of the band receiver array. The 

vector set totalE is scaled to the range [0, 1] with a linear 

scaling and marked with the source type. For instance, the 

data sets belonging to the dipole antenna are marked with 

“1” at the end of the data sets, the data sets belonging to 

the PIFA antenna are marked with “2”, and the third one 

is marked with “3”. The vector set totalE  includes 10800 

vectors, which are randomly divided into two categories 

for the training and the test. In the training process, the 

RBF kernel function is utilized to extract the relationship 

between the spatial characteristics and the source types, 

and constructs a hyper-plane classifying the sources 

based on the vectors. Since the distinction among the 

spatial characteristics of the radiation sources is apparent, 

the hyper-plane is easy to construct. The RBF kernel 

function has two important parameters, called “kernel 

parameter γ  and penalty parameter C”. The GA is 

applied to find the best parameters C and γ  by an 

iteration searching, which are 2 and 1 in this model 

respectively. After trained with 9000 data sets within a 

few minutes, the SVMs can identify these EM source 

types by their spatial characteristics rapidly and 

accurately. The 1800 data sets left are applied for the test. 

When the vectors are input into the SVMs, the SVMs can 

identify the source types these vectors belong to, and the 

identification accuracy is up to 100%. The F1 measure is 

used for checking the validity of our model. F1 combines 

the recall (r) and the precision (p) with an equal weight 

in the following form: 

 
2

1 =
+

rp
F

r p
, (5) 

where p is the number of the correct results divided by 

the number of all returned results, and r is the number of 

the correct results divided by the number of results that 

should have been returned. The F1 in this model is 1, 

which reflects the validity of our method. 
 

IV. DISCUSSION 

A. The influence from the noise  

In this section, the influence from ambient noise is 

investigated. The Gaussian noise is added in our model. 

The parameter of signal-to-noise ratio (SNR) is applied, 

which is expressed as follows: 

 
avg

10
noise

SNR (dB) = 10 log
P

 
P

 , (6) 

where Pavg is the average power of the input data, and 

Pnoise is the power of the Gaussian noise. 

The identification accuracy versus SNR is listed in 

the Table 2. It also gives the comparison between the SVMs 

and the ANNs. The ANNs are classic back-propagation 

(BP) neural networks which include one input layer, one 

hidden layers, and one output layer. There are 30 neurons 

in the hidden layer. The levenberg-marquardt algorithm 

is applied in the training. When the mean square error 

(MSE) falls below 0.01 or the epochs exceed 30000, the 

training stops. The data for the training and the test are 

same with those for the SVMs, and a linear scaling is 

used. From Table 2 it is found that if no noise is added, 

the identification accuracy with the SVMs and the ANNs 

is both very high. However, the SVMs are not closely 

related to the noise. When the SNR decreases from 20 dB 

to 15 dB, the accuracy varies from 99.94% to 97.12%. Even 

in a strong noise environment, where the SNR is only 10 dB, 

the accuracy with the SVMs is still 76.57%. Thus, the 

method using the SVMs to identify the radiation sources 

can be applied in the noisy environments. Whereas the 

accuracy with the ANNs significantly decreases as the 

noise increases. When the SNR is 15 dB, the accuracy 

rate with the ANNs degrades to 64.1%, and it cannot 

work when the SNR is 10 dB. 

 

Table 2: Identification accuracy vs. SNR 

SNR/dB No Noise 25 20 15 10 

Accuracy of 

SVMs/% 
100 100 99.94 97.12 76.57 

Accuracy of 

ANN/% 
99.98 98.43 82.3 64.1 38.87 

 
B. The influence from the data collection  

The spatial characteristics are represented by the 

data sets. Thus, the method of the data collection is 

important to the identification accuracy. In [22], we 

proposed to collect the data sets by using a 3D cube with 

27 receivers. The 3D cube moves along a cone, whose 

angle is 60°. So the data sets mainly represent the spatial 

characteristics of the main lobe of the antennas. As an 

improved method, the data sets are collected with a band 

receiver array, and the band moves around the equator of 

antennas. According to the pattern recognition theory, it 

is preferable to identify the radiation sources with the 

global information other than the local information, 

which has been proven by the result comparison between 

this method and that proposed in [22]. 

Some other test results also support this point. 

Firstly, we use a band receiver array with 9 receivers to 

collect the data sets. The neighboring receivers are 1° 

intervals in longitude. The identification accuracy is not 

good, and the best accuracy is only 71.2%. So we 
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suppose that the receiver number is not enough to collect 

the spatial characteristics. Then the receiver number is 

increased to 30, and the neighboring receivers are also 1° 

intervals in longitude. Unfortunately, the identification 

accuracy is still not satisfactory. Thus, we increase the 

intervals between the neighboring receivers to 15° in 

longitudes and 27 receivers are applied, and good results 

are obtained finally. The reason lies in the fact that the 

pattern recognition has better performance when the 

object is recognized as a whole. The results using a 

receiver array with different intervals are compared in 

Fig. 7. 
 

 
 

Fig. 7. Accuracy of three data collection methods. 

 

From Fig.7 it can be found that the method using 27 

receivers with 15° intervals is the most accurate one 

among these three methods. 

 

C. The influence from the scaling method 

Different scaling methods give different 

identification accuracy. In this section, three typical 

scaling methods, namely the tangent scaling, logarithm 

scaling and linear scaling, are utilized to investigate the 

influence from the scaling method on the accuracy. 

As mentioned in Section III, a total of 10800 input 

vectors are expressed as a combined vector set 
1 1 3 '
1 2 3600= [ , , , ]totalE E E E . The elements in totalE  are 

scaled by three different methods. 

The following formula is applied for the arc tangent 

scaling: 

 = tan 2 π( )totalE E
s

a , (7) 

where 
s

E  is the input vector sets after the scaling. 

Eq. (8) is used for the logarithm scaling: 

 10= log ( )s totalE E . (8) 

Eq. (9) is applied for the linear scaling: 

 min

max min

i
i

x

x x






x
y , (9) 

where xi is the element of totalE ; yi is the element of sE

after the scaling; xmax and xmin are the maximum and 

minimum elements of totalE , respectively. 

The accuracy versus different scaling methods is 

shown in Table 3. 

 

Table 3: Accuracy vs. scaling method 

SNR/dB 25 20 15 10 

Accuracy with arc 

tangent scaling/% 
95.09 93.66 84.16 67.21 

Accuracy with 

logarithm scaling/% 
100 99.47 92.4 68.67 

Accuracy with linear 

scaling/% 
100 99.94 97.12 76.57 

 
Obviously, the linear scaling method has the best 

performance among these three scaling methods. The 

reason lies in the fact that the linear scaling works better 

when the data value exceeds 3 while the arc tangent 

scaling is more suitable for the data value in range (0-3), 

and most of the data used in our model are above 4.  

 

D. The influence from the parameters of the SVMs 

For the support vector machines, there are two key 

parameters, namely the penalty parameter C and γ  of 

the kernel function. The penalty parameter C reflects the 

impact from the outlier case, and adjusting it can achieve 

the compromise between the maximal margin and the 

classification error. According to Eq. (2), the loss of the 

object function increases with C when 
1

m

i

i=

ξ is fixed. 

When C is infinite, the problem would be insoluble once 

the outlier case exists. Therefore, smaller C is preferable 

when the same identification rate is achieved since it can 

improve the generalization ability of the SVMs. 

However, if C is too small, the penalty to the outlier case 

is small and the error is large, leading to an identification 

accuracy degradation. For γ  of the kernel function, it 

represents the correlation between those support vectors. 

If γ  is too small, there is no significant correlation 

between the support vectors, and the learning process is 

complex. On the other hand, if γ  is too large, the mutual 

influence between the support vectors is obvious and the 

precision of the model will be affected. Table 4 presents 

the identification accuracy versus C and γ . The 

optimized C and γ are found by the GA, which are 2 and 

1 respectively. Obviously, the most accurate result is 

obtained with these optimized parameters. The accuracy 

decreases as the values of C and γ  deviate from the 

optimized values. If the C and γ are too small or too 

large, the accuracy is poor. 

 

Table 4: Accuracy vs. parameters 

Parameters 
C=0.1, 

γ=0.1 

C=0.2, 

γ=0.2 

C=2, 

γ=1 

C=20, 

γ=20 

C=100, 

γ=100 

Accuracy/% 79.61 94.66 100 89.58 35.62 
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V. VERIFICATION BY MEASUREMENTS 
Some measurements are made to validate the 

proposed method. The spatial characteristics of the three 

cell phones with above antennas are collected by a 

receiving antenna and a spectrum analyzer in an 

anechoic chamber. The electric field of the points 

distributed within the sphere that surrounds the source 

can be obtained by setting the rotation angle of the 

receiving antenna. A 1° interval is applied for the 

antenna rotation in the equatorial plane, and 15° intervals 

are used in the meridian plane. Consequently, the data 

within the band from −15° to 15° longitude and 1° to 360° 

latitude around the cell phones are extracted. Then, the 

electric fields at 27 points are divided into groups using 

the same method described in Section III. A total of 90 

data sets are selected randomly from the three cell 

phones (i.e., 30 for each cell phone), combined, and 

scaled. Finally, the scaled data are sent to the proposed 

model to check the validity of the presented method. The 

model can correctly identify the data set belonging to 

which type of the sources. The identification accuracy is 

96%, which proves the validity of the proposed method.  
 

VI. CONCLUSION 
A new method for the ERSI by using the SVMs is 

proposed in this paper. The data collection method has 

been improved. After the position of the radiation source 

is determined by the triangulation method, a band 

receiver array is applied for the data collection. The band 

receiver array moves along the equator of the radiation 

sources and focuses on collecting the data with global 

information, which more coincides with the pattern 

recognition. The results demonstrate that the method 

proposed in this paper has a better identification 

accuracy compared with the ANNs and the 3D cube 

receiver array. It can be applied in a strong noise 

environment, and the deviation between the training data 

sets and the test data sets is allowed.  

In practice, the method proposed in this paper is also 

useful for the radiation predication of the sources. The 

same SVMs model can be applied. After trained by the 

electric field strengths at several points, the SVMs can 

predict all the radiations from the sources accurately, 

which can save a lot of computation time and cost, and 

this will be investigated in the next step. 
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