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Abstract—An algorithm to perform a mode tracking for
parameter dependent eigenvalue problems in computational elec-
tromagnetics is presented. It is based on a Taylor expansion using
the derivatives of the eigenvalue and the eigenvector and allows
distinguishing between intersection and touching points in the
eigenvalue curves. The method is applied to discretizations with
both the finite integration technique (FIT) and the finite element
method (FEM), leading to simple and generalized eigenvalue
problems, respectively. The applications include the calculation of
the Brillouin diagram for a periodic structure and the variation
of a material parameter in a filter structure.

Keywords—Eigenvalue Derivatives, Finite Element Method,
Finite Integration Technique, Mode Tracking, Parametrized
Eigenvalue Problems.

I. INTRODUCTION

Within the last decades a number of efficient algorithms for
the solution of eigenvalue problems (EVP) in electromagnetic
field simulation have been proposed. A particular class are
EVP with a dependency of one or more parameters such as
material constants, geometric properties, or the phase shift of
Floquet modes [1] in periodic structures. In most cases, we
can assume a continuous relation between the parameter and
the eigenmodes, and it is desirable to reflect this fact also
in the solution approach, i.e., to provide algorithms which are
able to track an eigenvalue along the variation of the parameter
within a certain range. As a special challenge for such a mode
tracking method it should be able to follow the eigenvalue
curves also in the vicinity of intersection and touching points,
where the curves of two eigensolutions come close to each
other.

In this paper, we present a mode tracking algorithm for
parametrized EVP which uses the sensitivity of eigenvalues
and eigenvectors w.r.t. the parameter, described by their deriva-
tives. It is applied to two generic types of applications given
by a traveling wave tube with periodic boundary conditions
and a dielectric filter with a sweep of the permittivity in a
specific part of the structure.

A first efficient method for the calculation of eigenvalue
and eigenvector derivatives has been published by Nelson
in 1976 [2] and was extended for non-simple eigenvalues
by Dailey in 1989 [3]. A simple sensitivity analysis of a
waveguide has been calculated in [4]. In [5] it was shown how
to extend this method to higher-order derivatives and it was

applied to periodic structures, where the parameter is defined
by the phase advance between two boundaries. A related mode
tracking technique for the calculation of band structures in
photonic crystals has been presented in [6].

The new mode tracking algorithm presented in this paper
combines all these ideas and can be applied to a general
parameter dependency of an EVP. It is based on a point by
point sampling using Taylor expansions, and a correlation fac-
tor is introduced to distinguish the different eigenmodes near
intersection and touching points. To broaden the application
range of the method, an extension for generalized eigenvalue
problems (GEVP) is shown.

The paper is organized as follows: In Sect. II a short
overview of the basic formulas and an extension for the eigen-
value and eigenvector derivatives of GEVP is given, followed
by the introduction of the mode tracking algorithm in Sect.
III. In Sect. IV we introduce the physical background of our
eigenvalue formulations and discuss the numerical results for
two different applications: The Brillouin diagram of a periodic
structure is based on a model using the finite integration
technique (FIT), leading to mode tracking for a simple EVP.
In the second example the eigenmodes in a dielectric filter
are calculated for a variation of some permittivity values.
Here, we use a finite element (FEM) model, resulting in the
mode tracking algorithm for a GEVP. Finally, a conclusion
and outlook for further improvements are given in Sect. V.

II. EIGENVALUE DERIVATIVES

A. Simple Eigenvalue Problems

We start with the left and right EVP,

yH(A− λI) = 0, (A− λI)x = 0, (1)

where I is the identity matrix, and the matrix A as well
as the eigensolution {x,yH , λ} depend on the parameter p.
The eigenvectors fulfill the relation yHx = 1. Differentiating
n times w.r.t. the parameter p and applying some algebraic
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transformations yields the n-th order eigenvalue derivative
(denoted by .(n), for details of this derivation see [5]):

λ(n) = yHA(n)x

+
n−1∑
k=1

(
n

k

)
yH
(
A(n−k) − λ(n−k)I

)
x(k). (2)

Note, that for the n-th order derivative in (2) all previous
derivatives of the eigenvalue, eigenvector and system matrix
are required. However, once this information is available, the
formula can be evaluated with very little effort just by matrix
vector multiplications.

The n-th order eigenvector derivative is given by a similar
formula:

(A− λI)x(n) = −
n−1∑
k=0

(
n

k

)(
A(n−k) − λ(n−k)I

)
x(k). (3)

Here, a linear system with rank defect has to be solved, appro-
priate techniques are given, e.g., in [2], [3]. Since the matrix
to be inverted in (3) remains the same for each n, a matrix
decomposition technique is efficient if higher order derivatives
are required. Further, such techniques can be combined with
model order reduction for a faster calculation as described in
[5].

B. Generalized Eigenvalue Problems

To extend the formulas above to a GEVP we start again
with the eigensolution {x,yH , λ} of the left and right GEVP,

yH(A− λB) = 0, (A− λB)x = 0, (4)

respectively, with yHBx = 1. The eigensolution as well as
both system matrices A and B might have a dependency of
the parameter p. Differentiating the GEVP w.r.t. this parameter
using the chain rule leads to some additional terms compared
to the case of a simple EVP. Still, the approach is very
similar to the one for simple EVP in [5]. The right GEVP is
differentiated n times, and by reordering the terms we obtain
the formula for the eigenvector derivative as:

(A− λB)x(n) =

−
n∑
k=1

(
n

k

)A(k) −
k∑
j=0

(
k

j

)
λ(j)B(k−j)

x(n−k). (5)

Multiplying from the left with the left eigenvector yH the
highest order derivative of the eigenvector vanishes, and by
reordering the terms we find the derivative of the eigenvalue:

λ(n) =
n−1∑
k=1

(
n

k

)(
yHA(k)x(n−k)

−
[ k−1∑
j=0

(
k

j

)
λ(j)yHB(k−j)x(n−k) + λ(k)yHBx(n−k)

])

+ yHA(n)x−
n−1∑
j=0

(
n

j

)
λ(j)yHB(n−j)x. (6)

Again, this long formula only contains matrix vector multipli-
cations and can therefore be calculated with little effort. As a
cross check, (6) simplifies to (2) if B = I and B(i) = 0 (∀i >
0) are chosen as in the case of a simple EVP. The same holds
for (5) compared to (3). Moreover, and analogously to the
simple EVP in (3), the matrix to be inverted in (5) remains
the same for each order n, allowing similar techniques for an
efficient implementation as described above.

C. Polynomial and Nonlinear Eigenvalue Problems

With its extension to GEVP, there is also the possibility
to apply this algorithm to polynomial eigenvalue problems
(PEVP), where higher powers of the eigenvalue λ appear
in the formulation. Such PEVP (quadratic, cubic, etc.) arise,
e.g., from discrete models including dispersive materials (with
rational functions in ω for the permittivity) or a perfectly
matched layer (PML) boundary condition in its classical form.
A couple of such problems are described in [7]. In principle,
a PEVP can always be transformed into a GEVP with larger
dimension, which allows its solution using the presented
mode tracking algorithm. However, more efficient approaches
without doubling the matrix dimensions may exist.

The next step of generalization are nonlinear EVP with an
arbitrary, non-polynomial dependency of the eigenvalue in the
formulation. Such problems appear, e.g., for models with a
special radiation boundary condition for waveguide problems
and have been briefly discussed in [8]. Of course a general
expression for the eigenvalue derivative of such formulations is
not available. However, they may be tackled using linearization
approaches in an expansion point with a limited range of valid-
ity, which again makes the method presented here a candidate
for mode tracking. However, the general properties of such
non-linear EVP can be quite different from the standard case,
and thus this scenario still needs to be tested.

III. MODE TRACKING ALGORITHM

The mode tracking algorithm can best be explained by
Fig. 1. First a starting point is chosen at an arbitrary p ∈
[pmin, pmax]. In this point, the EVP is solved and the mode k
for the tracking is selected. (For simplicity, the index k for the
chosen mode is omitted in most of the following formulas.)

As an initialization step, the derivatives of the system
matrices A(i),B(i) of the EVP as well as the derivatives of
the eigensolution {x(i), λ(i)} are required. Note that for some
simulation models the matrix derivatives can be computed
analytically (such as in our first example in Fig. 2, see below).
If no analytical formulas are available, some additional compu-
tational effort is necessary to calculate the matrix derivatives
numerically, using, e.g., a simple finite difference approach
(such as for our second example, Fig. 4). Once the derivatives
of the system matrices are available, formulas (2) and (3) for
the simple EVP, or (6) and (5) for the GEVP, respectively, can
be evaluated.

In the next step, a step width ∆p is determined, depending
on the derivatives of the eigenvalue and eigenvector. The
smaller the derivatives are, the larger the step width can be
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Start:

• choose start
point for p

• solve EVP

• calculate
A(i), (B(i)),
λ(i),x(i)

determine
stepwidth ∆p

get
λapprox,xapprox

calculate new
A(i), (B(i)), λ(i),
x(i) at p + ∆p

perform Back-
ward check

accept new λ,x

resolve EVP
at p + ∆p and

calculate ρi

accept new λ,
x with highest
ρi, recalcu-

late λ(i), x(i)

do until the whole tracking is done:

ok

n.ok

∆p ↓

every m steps

Fig. 1. Flowchart of the mode tracking algorithm.

chosen and vice versa. This step width control is important to
prevent errors due to a too high step width at intersection
or touching points, where the eigenvector derivatives are
typically huge. On the other hand, a too small step width can
considerably increase the numerical effort.

After the step width ∆p has been chosen, approximations
λapprox of the eigenvalue and xapprox of the eigenvector at
the point p+ ∆p are computed, using the eigensolutions at p
and the Taylor expansions:

λapprox = f

(
p, λ, ...,

∂n

∂pn
λ

)
, (7)

xapprox = f

(
p,x, ...,

∂n

∂pn
x

)
. (8)

Using these approximations, the new derivatives of this eigen-
pair at p + ∆p can be calculated. To do so, the new matrix
derivatives at p + ∆p have to be computed first as explained
above.

To control the quality of the approximations involved,
a backward check is performed (see, e.g., [6]): A Taylor
expansion at the new expansion point p + ∆p is evaluated
for the previous point p using the new derivatives at p+ ∆p.
The deviation between the previous eigenvalue λ(p) and
the backward approximated eigenvalue λapprox,backward from
p+∆p has to be smaller than some predefined tolerance. When
the difference is small enough, the eigenpair approximation
as well as their derivatives are considered to be correct,
and the point p + ∆p is used as a new starting point p to
continue the tracking procedure. If the backward check for the
eigenpair approximation (and their derivatives) fails, i.e., the
backward approximated eigenvalue is not close to the original
eigenvalue, the step width ∆p needs to be corrected. Using a
new, smaller step width, the previous steps are repeated until
the backward check succeeds.

Up to this point, the algorithm works in a purely recursive
manner, and small deviations in every step may sum up to
an error which at some point can no longer be tolerated. A
suitable indicator to check the quality of the solutions is the
residual of the eigenpair at each p. Since no corrector equation
is not used here to decrease this error, every couple of steps
of this algorithm the EVP has to be solved newly to eliminate
this error. Here, the main challenge is to identify the proper

eigenmode from this new solution. At some points within the
parameter range, a couple of eigenvalues can be very close
to each other or may even coincide. To identify the correct
eigenpair a correlation factor,

ρk =
xHk xapprox

||xk|| ||xapprox||
, (9)

is introduced as the normalized scalar product between the
approximated eigenvector and the eigenvectors from the re-
calculated EVP. This factor is computed for all candidates
from the recalculated solution of the EVP, and the eigenmode
with the highest ρk is accepted as the proper mode. The new
eigenpair is also used as a new starting point for the tracking
procedure, and the corresponding derivatives are calculated.
In this way, the recursive error is eliminated every couple of
steps.

This tracking procedure is repeated until the end of the
interval of parameters p is reached. This completes the mode
tracking, and solutions for each calculated point on the eigen-
value curve are available. In contrast to the standard procedure
with a simple parameter sweep, the number of full EVP
solutions can be considerably reduced.

IV. NUMERICAL RESULTS

A. Traveling Wave Tube (TWT)

The first example to test this algorithm is a so-called trav-
eling wave tube (TWT), taken from the library of application
examples of the commercial tool CST Microwave Studio [9],
see Fig. 2.

The discrete model consists of a small longitudinal section
of this TWT, and periodic boundary conditions are used at
the front and the back plane. A predefined phase lead for the
tangential fields at these boundaries defines the eigenmodes of
the model to be ’macroscopic’ waves, and the eigenvalues their
(squared) angular frequency. Varying this phase angle between
0 and 180 degrees, the correlation of the phase advance and the
eigenfrequency defines the dispersion diagram (or Brillouin
diagram) of each mode. Additionally, the electric fields (the
eigenvectors) are of interest, e.g., to analyze their interaction
with charged particles within the TWT.

The standard procedure to compute the Brillouin diagram
is to solve the EVP many times for a number of phase angles.
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Here, however, we interpret the phase angle as the parameter
of a parametrized EVP and apply our mode tracking algorithm.

Fig. 2. Simulation setup with periodic boundaries at the front 
and back plane.

The model is discretized using the finite integration tech-
nique (FIT, [1]) on a Cartesian computational grid. The state
variables in the FIT are the grid voltages _e and

_

h, defined
as the line integrals of the electric field and the magnetic
fields along the edges of the primary and the dual Grid
G, G̃, respectively. Using these definitions, FIT transforms
Maxwell’s curl equations in frequency domain (for linear,
isotropic and non-dispersive materials, and without currents
and space charges):

curlE = −jωµH, curlH = jωεE, (10)

(with ω the angular frequency, E,H the electric and magnetic
fields, ε, µ the permittivity and the permeability, and j the
imaginary unit) into matrix-vector equations, the so-called
Maxwell’s Grid Equations:

C_e = −jωMµ
_

h, CT
_

h = jωMε
_e, (11)

Here, C denotes the discrete curl operator, and Mε and Mµ

are the discrete material matrices. For a Cartesian grid with np
grid points the discrete field vectors have approximately 3np
components, and the dimension of the matrices is approxi-
mately 3np × 3np. Eliminating

_

h in equations (11) yields the
discrete electromagnetic eigenvalue problem:

(CTM−1
µ C− ω2Mε)

_e = 0. (12)

It’s a unique property of the FIT that the material matrices Mε

and Mµ are diagonal and can be easily inverted. Thus, (12)
can be transformed into the simple EVP:

(M−1
ε CTM−1

µ C− ω2I)_e = 0. (13)

The periodic phase shift between the tangential fields at
the front and the back plane is described by the Floquet
condition: It maps the electric field from one boundary,
_e1, to those at the other one, _e2, multiplied by the phase
shift: _e1 = _e2 exp (jϕ). With this relation, the tangential
electric components at one side of the mesh are no longer
independent degrees of freedom and can be eliminated from

the formulation. This leads to a reduced vector _ered with a
reduced dimension.

The phase shift — the parameter p of the EVP — is formally
included into the matrix formulation using a sparse matrix
Lϕ(p) as described in [7] or [10]. Additionally, the permittivity
matrix has to be slightly modified in its dimension as well as
in its values at the boundary. This leads to the parametrized
EVP:(

M−1
ε,perL

H
ϕ (p)CTM−1

µ CLϕ(p)︸ ︷︷ ︸
=Acc(p)

−ω2I
)

_ered = 0, (14)

which can be tackled by our mode tracking algorithm. Note
that the parameter dependency of this formulation is concen-
trated in the Lϕ matrices, which makes it easy to compute the
matrix derivative analytically.

The example shown in Fig. 2 is discretized using np =
46.787 grid points, resulting in approximately 140.000 degrees
of freedom in the eigenvalue equation. The geometric model-
ing is performed within the CST software, and the mesh and
matrix data are imported into Matlab [11], where the periodic
boundaries and the mode tracking have been implemented.
The problem size of this model is still quite small, and all
computations can be performed on a standard computer. (CPU
times are not reported here since the implementation has not
been optimized so far.)

The simulation results are shown in Fig. 3. First some
modes around a target frequency are calculated using Matlab’s
standard eigenvalue solver, and a mode in the middle of this
part of the spectrum is chosen for the mode tracking algorithm.
Additionally, the plot shows some more eigenvalues which are
close to the chosen mode, and of course there exist a large
number of further eigenvalues inside the spectrum. They do
not affect the analysis of the targeted eigenmode and are not
plotted to ensure the readability of the figure. The reference
curves (in gray) in the figure are obtained by a multiple
solution of the EVP for parameter values covering the phase
shift between 0 and 180 degrees. The red curve is calculated
from the mode tracking scheme as described above. As a first
result we can state that both solutions agree very well although
most of the results of the mode tracking scheme originate from
Taylor expansions rather than from full EVP solutions.

A zoom of an interesting section of the dispersion diagram
is shown in the bottom right corner of Fig. 3. As mentioned
previously, the algorithm detects an intersection as well as
a touching point and properly tracks the eigenvalue through
these challenging domains. Note that such a tracking is not
available from the reference solution: The standard strategy
to multiply solve the EVP fails to distinguish between these
intersection or touching points, although the parameter step
width is very small and a correlation factor between two
solutions is used. The reason is that even when the two
solutions of the EVP are close to each other and the changes in
the eigenvalue are quite small, the changes in the eigenvector
become very high at intersection and touching points, as
well as their derivatives. As a consequence, the eigenvector
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correlation between two solutions can become very unstable
and unable to identify the correlation between the modes.

0 45 90 135 180

1.2

1.4

1.6

1.8

2

·1011

ω
in

H
z

full EVP
Modetracking

The correlation factor ρ introduced in the previous section,
however, does not show this weakness, since it does not rely
on two nearby vector solutions calculated separately, but on
the solution at one point and the approximation of this solution
which is obtained from the previous one. This method is very
robust in detecting the proper eigenmode.

B. Dielectric Filter
The second example is a dielectric filter which has been

reported in many publications so far and may serve as a quasi-
standard application for the simulation of highly-resonant
microwave devices. Here we do not calculate the transfer
behavior related to the two input/output ports, but only the
relevant eigenmodes which are dominated by two dielectric
rings with high permittivity. More details of the structure and
all geometric dimensions are given in [12].

This example, as shown in Fig. 4, is modeled using the
finite element method (FEM) on a tetrahedral mesh and first-
order edge-elements wi. The parameter considered here is
the permittivity of the ceramic resonator rings. To obtain a
more challenging situation of the parameter dependency of the
eigenmodes, including an intersection point, the investigated
range was shifted from the original value εr = 38 to an
interval around εr = 57.

The theory behind the finite element discretization is not
repeated here and can be found, e.g., in [13]. The FEM model
has ne = 130.872 non-zero edge-elements, and the resulting
EVP is a generalized one, reading:(

A− ω2B
)

(Ei) = 0, (15)

where the electric field E(r) =
∑
iEiwi(r) is represented

by the degrees of freedom (Ei) with i = 1 . . . ne. The

matrix A denotes the stiffness matrix and B the so-called mass
matrix, respectively, with entries as reported in [13]. The main
difference to the FIT formulation is that in FEM the matrix B
holding the permittivity information is not a diagonal matrix
and thus can not be efficiently inverted. Therefore the extended
mode tracking variant for GEVP has to be used here.

Fig. 4. Simulation setup of the dielectric filter, with different 
permittivity for the inner rings.

The derivatives of the matrix A and B are calculated
numerically using a finite different (FD) approach. This results
in a slightly increased computational effort compared to the
case of matrix derivatives which are available analytically.
Note, however, that the way these matrix derivatives are
calculated does not play an important role in our mode tracking
algorithm. Also, the algorithm is not limited to a specific kind
of discretization technique.

52 54 56 58 60 62
3.1

3.15

3.2

3.25

3.3
·1010

εrings

ω
in

H
z

full GEVP
Modetracking

Fig. 5. Mode tracking of a chosen mode of the dielectric 
filter within the spectrum with a zoom on the black marked 
section of interest.

The results of the mode tracking algorithm for the dielectric
filter are shown in Fig. 5. A mode with some candidates for
intersection or touching points inside the parameter range is
chosen for the analysis. As for the previous example, only a

ϕ in ◦
Fig. 3. Mode tracking of a chosen mode of the periodic 
structure within the spectrum with a zoom on the black 
marked section of interest.
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small part of the eigenvalue spectrum is plotted for readability.
Again, on the right bottom of Fig. 5 a zoom of the black
dashed section is depicted. In contrast to the first example,
the modes in the dielectric filter interact only weakly with
each other due to the more separated geometric distribution
of the corresponding fields. Thus, the eigenvector changes do
not become as large as in the first example in the intersection
points, and a larger step width can be chosen by the algorithm.
Again, the intersection points are handled properly by the
algorithm also in this case.

V. CONCLUSION AND OUTLOOK

A mode tracking algorithm for parametrized eigenvalue
problems in computational electromagnetics has been pre-
sented. It can be used for simple as well as generalized
EVP and thus be applied to discrete models from different
discretization methods such as the finite integration technique
or the finite element method.

A significant advantage of the new algorithm is its ability
to handle intersection and touching points within eigenvalue
curves without any additional post-processing, which is often
necessary for comparable approaches. Furthermore, the pre-
sented algorithm is not limited to periodic structures with
varying phase shift or changes in the permittivity, and it
has been successfully tested with other parameter dependent
problems like geometric variations. The presented formulas
for generalized eigenvalue problems open the path to tackle
also nonlinear EVP using a linearization as described in Sect.
II-C. A next step could be to find a formulation for polynomial
EVP without using linearization.

Finally, the method should also be easily extendable to mode
tracking in EVP which depend on more than one parameter.
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