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Abstract—This work investigates beam pattern behavior of 
an isotropic point source and a collection of sources distributed 
amongst a spherical volume. Pattern behavior is compared to  
the tapering of a plane wave expansion of spherical waves 
demonstrating self-adjoint characteristics. Beampatterns of atomic 
like orbitals and Zernike polynomials are provided as connections 
to common applications. 

Index Terms—Distributed beamforming. 

I.  INTRODUCTION 
Circular and spherical random arrays were first analyzed  

by Panicali and Lo mainly by using the variance, mean and 
correlation between elements [1]. A more insightful analysis 
was considered by [2] approximately a decade later with further 
examinations of circular [3]–[4] and spherical [5]–[10] array 
geometry.  

This work presents a derivation of the exact and approximate 
array factor and mean-valued radiation pattern for spherically 
and circularly distributed random arrays from [11]–[12]. 

II. FORMULATION OF THE EXACT ARRAY FACTOR 
The exact array factor can be shown as: 
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Since r is not a part of the integration it is placed into the 
term  (eqn. 4, [11]) such that  = 2πΔfr/c. Next, integration is 
done over the spherical volume of an isotropic point source 
located on the z axis by (2), and (3) [1]–[12]. Due to the 
change of variables (x = rn / r) one obtains the multiplication of 
r3 in (4), which reduces to (5) over its circularly symmetric  
integration: 
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Substituting u = [1+x2 – 2x cos ]½ , u du = x sin  d into 
the  integration simplifies (5) to (6) and further reduces to (7) 
[12]: 
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The final integration is divided into two regions due to the 
absolute value of (8) and reduces to (9) for x΄ > 1 and  =  x΄: 
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For x΄ < 1 the term |1 – x| simplifies to (1 – x) and provides:  
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In the two-extremes of large and small x΄, (10) reduces to 
(11) and (10) to (12), respectively: 
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where  =  =  x΄ =  A/r = k A, is taken over all angular 
space (θ, ϕ). This validates Fig. 5 of [10] and yields a  
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graphical solution of 1.815, and agree with analysis provided 
in Fig. 3 of [2]. Expansions of this work in the Fresnel region 
were investigated in [5]–[6].0F

1 
We diverge by the approximation since we do not take an 

integral over the exact space of Rn, but its expansion of (1). 
What is odd about this solution is the lack of pattern 

multiplication. No pattern multiplication exists due to a 
substitution from angular space to  – space.  

A sphere is composed of two symmetries a ball and a shell. 
The ball describes a azimuthal planar distribution in the x an y 
axes. The shell describes elevation symmetry in the z axis. 

In addition, a sphere is composed of two types of symmetry 
a ball containing the interior of the sphere and rings comprising 
the outer shell of the sphere [5]–[10]. 

Compound random variables explains the true solution of  
a spherically distributed array. Pattern multiplication of the 
symmetries differs from historical works of [14]–[15]. We 
also note corrections to works of [3], [4] and [10] in Figs. 17–
21 and Figs. 41–42 of [9]. 

A second method of deriving (12) is provided in [9] where 
integration of a plane wave is expanded as a sum of spherical 
waves in a spherically-symmetric volume: 
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The spherical Hankel function of order zero h0 (l=0) represents 
the spherically symmetric wave field. Hence, upon integration 
of a spherically uniform distribution one obtains the zeroth 
order mode: 
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III. MEAN VALUED RADIATION PATTERN 
The expected beampattern for any geometrically bound 

topology has been shown in [1] by taking the expected value 
of the array factor | F ()2| across the unit interval [-1, 1]. 
Hence, for a volumetric random variable x this provides the 
characteristic functions (1), which are orthogonal in all three 
axes and uncorrelated. Hence, the analysis involves the 
characteristic functions of the aperture distribution [9], [10] 
and [14]:  
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1Reciprocity applies to (12) such that the near field of a 

receiving array equals the far field of a transmit array. 

The square magnitude of the characteristic function describes 
the main-lobe behavior of the array and, analysis of the 
radiation characteristics of random arrays relies on finding  
the characteristic functions of the aperture distribution. An 
example of (15) is applied to a spherical distribution of 
radiators as illustrated in Fig. 1. Verification of the pattern is 
obvious as a spherical distribution is remains consistency in 
its pattern behavior in both; θ and ϕ-cut planes and when 
scanned.  

 

 
 
Fig. 1. Mean radiation pattern and cartesian coordinate 
distribution functions of a volumetric antenna array scanned 
from zenith to the meridian elevation angle. 

IV. PHYSICAL EXPLANATION 
Taking the expected value of a random array is analogous  

to taking the average over all realizations of possible element 
placement. Mathematically, one may sample any topology 
using the inhomogeneous wave equation with point sources: 
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For the reference element the solution is: 
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Otherwise the solution becomes an offset from the origin as: 
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The solution of (18) is approximated using a binomial 
expansion assuming equal path loss (19). For N elements, we 
find (20): 
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The solution of the nth element is out of phase by the angle 
ψn. Beamsteering is achieved by imposing the linear steering 

factor, cos n0. We obtain      0 0ˆ ˆ ˆ, ,n njkr r r re     
. Upon phase 
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correction these sources are now isotropic with equal 
amplitudes and propagate waves that intersect at alternating 
maxima and minima as shown in Fig. 2. A Fourier Transform 
pair describes the superposition of the constructive destructive 
interference of the particle nature of the wave, which is easy to 
visualize in the Fraunhofer region.  

As the number of sources grows to infinity (N) the 
discrete pattern converges to a continuous aperture solution. 
However, when N does not approach infinity the solution is  
the expected value and is illustrated in Fig. 3. The difference  
in relations yields a convergence factor of (1/N) between the 
aperiodic array and continuous aperture where the former is 
the characteristic function on a pedestal (1/N).  

 

Source 1 Source 2

Two-Point Source 
Interference Pattern
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1
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3

4
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Fig. 2. Representation of constructive and destructive 
interference. 

 

 
 
Fig. 3. Superposition diagram (top) converges to a continuous 
aperture distribution (EV) as N (bottom). 

A. Spherical Waves in Unbounded Space 
The characteristic modes of the spherical harmonics are 

derived from the fundamental solution of the Helmholtz 
equation (21) in unbounded space,  
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Thus, the fundamental solution (21) is a point source  
and implies the self-adjointness property such that 

   , ' ',k kG r r G r r . In other words, a spherical wave 
converges to a plane wave in the far field and vice versa. 

An expansion of (21) as a scalar plane wave composed of 
scalar spherical waves can also be written as (22). From the 
orthogonality property of the spherical harmonics, outgoing 
waves are composed from multipole coefficients derived from 
the pattern multiplication of spherical Hankel, Bessel and 
spherical harmonics (23): 
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In the far field the term | r - 'r |  r’- n r , where n  is a unit 
vector pointing in the direction of 'r .    1

lh kr  can be reduced 
in its asymptotic form such that: 
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The scalar plane wave expansion (25) is obtained by 
canceling the factor exp(jkr)/r, taking the complex conjugate, 
and rewriting via the well-known addition theorem (26): 
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Higher order moments do contribute to our overall pattern, 
but have a neglible impact. 

B. Zernike Polynomials and Spherical Harmonics 
It is possible to create patterns with multiple beams using 

complex orthogonal phase variations. A nominal example in 
UV-space is provided in Fig. 4. 

Distributed orthogonality of this behavior is applied to the 
plane wave expansion of   and angular (, ) spaces of Fig.  
5 and Fig. 6, respectively. Fig. 5 demonstrates  -spaces with 
rotationally symmetric attributes, whereas Fig. 6 demonstrates 
the self-adjoint properties of spherically distributed arrays 
(SDA). For example, a spherical wave converges to a plane 
wave as the modal order increases while the point source 
converges to a spherical wave. 
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Fig. 4. Multiple beam patterns and distributed orthogonality. 

The Legendre polynomials, which are orthogonal to the L2 

inner product on the interval -1≤x≤1, are the eigenfunctions of 
the Hermitian differential operator. They arise naturally in 
multipole expansions analogous to the monopole, dipole and 
higher moments of the spherical harmonic solutions, yielding 
the beampattern characteristics in Fig. 7. Furthermore, 
achievable pattern behavior is verified from HFSS simulations 
using 32 monopole element radiators steered at the meridian 
elevation angle in a normalized spherical aperture, A/=2.78 
for select orbital distributions. 
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Fig. 5. Plane wave expansion in UV – space. 

The three-dimensional Zernike polynomials are likewise 
composed of angular solutions of an orthogonal sequence 
defined on the unit sphere. In two-dimensional space, Zernike 
polynomials are commonly used in optics to describe 
aberrations of the cornea or lens from the nominal spherical 
shape (resulting in refraction errors). Examples include a 
circularly distributed array (CDA) as illustrated in Fig. 7.  

Closed form solutions of the patterns are provided in [9]. 
Lastly, they can represent properties of an image with no 
overlap of information between their moments as illustrated by 
Fig. 8. A final illustration of the beampatterns generated from 
the atomic like orbitals is shown in Fig. 9 as these distributions 
apply to the spherical zone of probability describing an 
electron's location.  

  

Fig. 6. Comparison of the modal summation of (25) applied to 
a point source in angular space, top and SDA, bottom. 

 

V. CONCLUSION 
The decomposition of (21) can be used to obtain the 

individual moments of the field at a given distance away  
from the source. These solutions formulate a series of basis 
functions for determining the array factor such that: 

1. Monopole moments in the Fraunhofer region (R>2D2/λ); 
2. Monopole + Dipole moments in the Fresnel region 

with the first two spherical Hankel functions; 
3. Monopole + Dipole + Quadrupole + Higher order 

modes in the near reactive field region; 
and for a spherically distributed antenna array we reduce the 
number of basis functions of the pyramid of Fig. 8 and apply 
the spherical addition theorem (n as the nth element) by: 
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Fig. 7. Spherical harmonic distributions Ymn, top-left; modal beampatterns bottom-left; simulated patterns Y00, Y01, Y02, and Y03, 
center; Zernike distributions and modal beampatterns right. 
 

 

 
 
Fig. 8. Characteristic modes of the Zernike and spherical harmonic polynomials; topographical – top. Atomic orbital relationship 
of the superposition of spherical waves to a plane wave (bottom left). Zernike descending characteristic functions (bottom 
middle), characteristic function superposition (bottom right). 
 

 
Fig. 9. Atomic like orbital beampatterns. 
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