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Abstract—A Calderón preconditioner for a novel single-source
integral equation, which allows the simulation of high dielectric
contrasts and lossy conductors, is introduced. It is shown that
this preconditioner avoids breakdown when simulating scattering
problems including high permittivities. This is corroborated by
a numerical example of a receiving copper dipole antenna.

I. INTRODUCTION

In recent research, Calderón preconditioners (CPs) were de-
veloped to resolve dense mesh breakdown problems that occur
when solving boundary integral equations (BIEs). This precon-
ditioner is based on the self-regularization effect of the electric
field integral operator (EFIO) [1]. In [2], such a preconditioner
was developed for the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) equation, resolving the dense mesh break-
down of this operator. However, for high dielectric contrasts,
this preconditioner is not able to stabilize the system ma-
trix [3]. Therefore, the accurate simulation of high contrasts
including lossy conductors still remains an active research
topic. In this contribution, a Calderón preconditioner for a
novel single-source equation is introduced that resolves dense
mesh breakdown at high dielectric contrasts. In Section II,
the theoretical framework and spectral analysis of this method
are described. These results are then validated by a numerical
example of a lossy dipole antenna in Section III.

II. THEORY

Assume a homogeneous object (characterized by ε′, µ′ and
k′), embedded in a homogeneous background medium (char-
acterized by ε, µ and k), as shown in Fig. 1 (a). An incident
time-harmonic (ejωt time dependence) electromagnetic field
(Ein,Hin) impinges on this object, generating a scattered field
(Esc,Hsc). Consider next the equivalent situation in Fig. 1 (b),
where the material inside the object is replaced by that of
the external region. Furthermore, a magnetic virtual current m
residing on the boundary of the object is introduced. This
current, which is to be determined, must generate the same
scattered fields as in the original problem. After introduction
of the Poincaré-Steklov operator P , satisfying the property
P(−n̂ × e) = n̂ × h, and by imposing continuity of the
electromagnetic fields on the object boundary Γ, we find the
following single-source matrix equation:[
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Fig. 1. In (a), a homogeneous object Ωin is embedded in a homogeneous
background medium Ωext. Interaction of the incident field (Ein,Hin)
results in a scattered field (Esc,Hsc). In (b), the object is filled with the
medium of Ωext and a surface current density m, generating (Esc,Hsc),
is introduced on Γ.

with T and K the electric and magnetic field integral operator
of Ωext [2], η =

√
µ/ε the impedance of Ωext, and un ×E

the total tangential electric field on the boundary. Next, we
left multiply (1) with the following Calderón preconditioner:[

1 0
0 −η′T ′

]
, (2)

with η′ and T ′ the impedance and the EFIO of Ωint, respec-
tively. This results, after discretization, in:
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·
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]
. (3)

The vectors M and Et in (3) collect the coefficients after
expanding m and −un × E in Rao-Wilton-Glisson (RWG)
functions. Furthermore, T and Hi

t are tested with rotated
RWG basis functions, while K, K ′, Ei

t and the Gramian
matrix G are tested with rotated Buffa-Christiansen (BC) [4]
functions. T ′ is expanded and tested with BC and rotated BC
functions, respectively.
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Fig. 2. Normalized voltage difference between the terminals of a copper
dipole antenna with axis along the z-axis, at a frequency of 100 MHz. The
antenna has a total length of λ/2, a radius of λ/100, a terminal gap of
λ/150 and 2552 mesh elements. The incident wave is given by Ein =
(cos(θ)ux − sin(θ)uz)ejk(sin(θ)x+cos(θ)z) (as depicted in the schematic
inset). The data are compared to the analytical approximation of a perfectly
conducting thin wire antenna.

The convergence time of the iterative solution of (3) depends
on the eigenvalue distribution of the system matrix [5]. It can
be proven [6] that the eigenvalue accumulation points of the
system matrix in (3) are given by:

λ1,± =
1
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j, (4)

and
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1

2
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2

√
µ′

µ
j. (5)

If non-magnetic materials are assumed, one observes that
the accumulation points only tend to zero or infinity when
ε → 0 or ε → −1. Hence, in most practical engineering
situations such as antenna design, which includes modeling of
high dielectric contrast and conductive media, this formulation
is well-conditioned.

III. EXAMPLE

As a numerical validation of the formulation in (3), we
consider a copper dipole antenna at a frequency of 100 MHz
(inset of Fig. 2). The antenna has a total length of λ/2
and a radius of λ/100. The gap between the rods equals
λ/150. In Fig. 2, the simulated voltage difference between
the terminals is shown as a function of the angle of incidence
of the incoming plane wave. This result is validated by the
analytical thin wire approximation. The open-circuit voltage of
the copper dipole shows a root mean square (rms) difference
of 0.3 % compared to this reference solution.

In Fig. 3, the number of iterations until convergence (rms
error < 10−10) and the condition number of the system matrix
are given as a function of the number of unknowns for both
the method proposed in this paper and for the CP-PMCHWT
equation. On the one hand, it can be seen that the number
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Fig. 3. Iterations until convergence (left y-axis) and condition number (right
y-axis) as a function of the number of unknowns for the copper dipole antenna
of Fig. 2 for an incident field Ein = uxejkz , for the proposed method and
for the CP-PMCHWT equation.

of iterations (≈ 50) and the condition number (≈ 300) of the
proposed method remain at a stable low value for an increasing
number of unknowns, validating the claim that dense mesh
breakdown does not occur. The CP-PMCHWT method on the
other hand suffers from ill-conditioning, resulting in longer
convergence times.

IV. CONCLUSION

In this paper, a Calderón preconditioner for a novel single-
source method that resolves the breakdown problem at high
dielectric contrasts is presented. A receiving, copper dipole
antenna is considered. The results demonstrate the practical
applicability of the proposed method to antenna design and
other scattering problems.
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