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Abstract—We propose an efficient Bayesian parameter inver-
sion technique that utilizes the implicit particle filter to char-
acterize the posterior distribution, and a multi-scale surrogate
modeling method called the proper orthogonal decomposition
mapping method to provide high-fidelity solutions to the forward
model by conducting only low-fidelity simulations. The proposed
method is applied to the nonlinear Burgers equation, widely
used to model electromagnetic waves, with stochastic viscosity
and periodic solutions. We consider solving the equation with
a coarsely-discretized finite difference scheme, of which the
solutions are used as the low-fidelity solutions, and a Fourier
spectral collocation method, which can provide high-fidelity
solutions. The results demonstrate that the computational cost
of characterizing the posterior distribution of viscosity is greatly
reduced by utilizing the low-fidelity simulations, while the loss
of accuracy is unnoticeable.

Index Terms—Bayesian parameter inversion, implicit particle
filters, proper orthogonal decomposition mapping method, multi-
fidelity modeling, surrogate modeling.

I. INTRODUCTION

Bayesian parameter inversion (BPI) techniques are desirable
for estimating model parameters, since they consider the
uncertainty associated with the inversion in the form of a pos-
terior distribution. However, BPI is computationally expensive
because it involves a number of forward model simulations to
sample the posterior distribution. If it is expensive to obtain
the solutions to the forward model, such as the fine-resolution
solutions to a physical model, the BPI can become intractable.

As a widely used BPI technique, the Markov Chain Monte
Carlo (MCMC) method is robust for estimating posterior
information; however, the efficiency of MCMC can be low due
to its acceptance-rejection nature. The particle filtering (PF)
method, as an alternative to MCMC, has many advantages,
such as being “embarrassingly parallel” and applicable to high
dimensional systems. Recently, a particular PF method, the
implicit particle filter (IPF), was developed in [1] and [2],
which can alleviate or prevent the so-called “weight collapse”
phenomenon. It has been shown, by [3] for instance, that IPF
can outperform state-of-the-art MCMC for some applications.

Surrogate models, also known as reduced order models,
serving as efficient approximations for computationally ex-
pensive models, have been used in BPI, including IPF [3],
to improve efficiency. Surrogate models are constructed in
the training period, and can then be used to approximate
the original models with negligible computational cost. Most

surrogate modeling techniques address the approximation of
the mapping from the model input parameters to a scalar
model output (e.g., [4], [5]), while an efficient method that
can approximate a solution field (see [6] for example) is
more attractive, since the solutions of many problems in
electromagnetics take the form of a field of solutions, such as
the solutions to the three dimensional Maxwell equations. One
particular technique, called the proper orthogonal decomposi-
tion mapping method (PODMM) [7], can approximate a fine-
resolution solution from a coarse-resolution solution, which
is significantly more inexpensive to obtain. The PODMM
technique has been applied to climate models and shown good
accuracy when used to construct surrogates.

In this paper, we consider BPI with IPF for the one-
dimensional Burgers equation with stochastic viscosity. To
further improve the efficiency, we couple PODMM with IPF
by building a multi-scale surrogate mapping to accurately
approximate the solutions to the Burgers equation required by
the IPF. In the following sections, we first show the technical
details of IPF and PODMM, and then present the numerical
results for the stochastic Burgers equation.

II. METHODOLOGY

A. Implicit Particle Filters

Let D be the k-dimensional observations, f be the forward
model and θ be the d-dimensional unknown input parameters.
They are related by:

D = f(θ) + ε, (1)

where ε is some random noise. In Bayesian parameter inver-
sion, we aim to obtain the conditional probability distribution
of the parameters given the observations, p(θ|D), known as
the posterior density. Combining the knowledge of the param-
eters prior to data being available, p(θ), the prior distribution,
and the measure of how likely a set of model output values
are given the parameters p(D|θ), the likelihood function, the
Bayes’ theorem infers the posterior by:

p(θ|D) ∝ p(θ)p(D|θ). (2)

In general, p(θ|D) takes a complex form and therefore cannot
be sampled directly, for instance by the inverse-transform
method or the acceptance-rejection sampling method [8].
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One widely used method that facilitates such sampling is
importance sampling, in the framework of which, we instead
sample from a new, easy-to-sample probability distribution
π(θ), called importance distribution. The resulting N samples
θi, i = 1, . . . , N , are then weighted by:

wi =
p(θi)p(D|θi)

π(θi)
, i = 1, 2, . . . , N (3)

to correct the bias from taking samples from the importance
distribution rather than the original distribution, so that the
samples and the weights collectively characterize the pos-
terior distribution. To achieve this, a resampling procedure
[9] is used to eliminate samples with small weights and
obtain a set of samples that discretely represents the posterior
distribution of θ. Unlike MCMC, represented by the well-
known Metropolis-Hastings algorithm and Gibbs sampling,
the samples in importance sampling are independent and thus
can be embarrassingly parallel. Nonetheless, the importance
function must be chosen carefully, or else the sampling can be
inefficient due to the appearance of a large portion of samples
having weights that are small enough to be negligible.

IPFs are based on importance sampling, where an impor-
tance distribution is constructed by computing the maximizer
of the posterior p(θ|D), i.e., the maximum a posteriori (MAP)
of the parameters θ given the data D, which can be found by
minimizing the objective function:

F (θ) = − log (p(θ)p(D|θ)),

where p(θ) and p(D|θ) are the prior distribution and the
likelihood function, respectively. The idea is to construct a
importance distribution so that it has large values where the
posterior is large. Once the minimization problem is solved,
one generates samples in the neighborhood of the minimizer
µ = arg minF as follows. A sequence of reference variables
{ξi}Ni=1 are first sampled from a reference probability distri-
bution g(ξ), and subsequently each target posterior sample θi
is obtained by solving,

F (θi)− φ = G(ξi)− γ, (4)

where φ = minθF , G(ξ) = − log (g(ξ)) and γ = minξG.
The sample weights are:

wi = J(θi), (5)

where J is the Jacobian of the bijective map ξ → θ [2]. Note
that the sequence of samples θi obtained by solving Eq. (4)
are in the neighborhood of the MAP µ, since the right-hand
side is small if ξi’s are sampled close to the minimizer of G.
Thus, Eq. (4) maps a likely ξ to a likely θ.

However, solving the mapping Eq. (4) is nontrivial, noting
that it is in general nonlinear. One strategy, named “linear
maps”, is inspired by the approximation of F by its second-
order Taylor expansion around the MAP µ:

F0(θ) = φ+
1

2
(θ − µ)TH(θ − µ), (6)

where H is the Hessian matrix at µ. For an uncorrelated
standard Gaussian reference variable, Eq. (4) is transformed
to:

F (θi)− φ =
1

2
ξTi ξi. (7)

Substituting F (θi) in Eq. (7) with F0(θi), the mapping now
takes the simple form:

θi = µ+ L−T ξi, (8)

where L is a lower triangular matrix obtained from the
Cholesky decomposition of H . Accounting for the error of
approximating the objective function F by F0, the weights of
the samples are computed as:

wi ∝ exp (F0(θi)− F (θi)). (9)

The posteriors are then represented by the ensemble of
weighted samples {(θi, wi)}Ni=1.

B. Proper Orthogonal Decomposition Mapping Method

PODMM maps g = [g1, . . . , gNg ]T , the coarse-resolution
solutions, to fine-resolution solutions f = [f1, . . . , fNf

]T ,
where Ng and Nf are the respective degrees of freedom. Sup-
pose N coarse- and fine-resolution solutions, {g1, . . . , gN}
and {f1, . . . ,fN} are available for the training process. We
first form the data matrix W PODMM given by:

W PODMM =

[
f1 − f̄ . . . fN − f̄
g1 − ḡ . . . gN − ḡ

]
,

where f̄ and ḡ are the averages of {f i}
N
i=1 and {gi}

N
i=1

respectively. We then determine M right singular vectors,
V = {v1, . . . ,vM} corresponding to the M largest singular
values for W PODMM. The proper orthogonal decomposition
(POD) bases are ξi = W PODMMvi, i = 1, . . . ,M . Split ξi
into,

ξi =

[
ξfi
ξgi

]
.

Fig. 1. Analytic, FD and FSC solutions for Burgers equation with ν = 0.2.
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For any given coarse-resolution g /∈ {g1, . . . , gN}, we can
predict the corresponding fine-resolution f by,

f = f̄ +
M∑
i=1

γiξ
f
i .

Here γ = {γ1, . . . , γm} is the solution to the least-squares
problem,

arg min
γ

∥∥∥∥∥g − ḡ −
M∑
i=1

γiξ
g
i

∥∥∥∥∥
2

,

where

‖h‖2 =

(
1

Nh

Nh∑
i=1

h2i

)1/2

,

is the root mean square for a given vector h with degree of
freedom Nh.

III. RESULTS AND DISCUSSION

To illustrate the proposed method, we consider the one-
dimensional Burgers equation,

∂u

∂t
+

1

2

∂u2

∂x
− ν ∂

2u

∂x2
= 0,

where the viscosity ν is a random variable. We consider a
periodic solution with an infinite number of N -wave solutions.
The analytical periodic solution we use is:

u = −2ν
φx
φ

φ(x, t) =
1

4πνt

∞∑
n=−∞

exp−(x− 2πn)2/4νt.

The coarse-resolution solutions are obtained from a second-
order finite difference (FD) spatial discretization on a grid of
16 points, while the fine-resolution solutions are computed
by a Fourier spectral collocation (FSC) method [10] with 64
spatial collocation points. The Runge-Kutta method is used for
the temporal discretization in both cases.

Fig. 1 shows the analytical, FD, and FSC solutions at t = π
8

to the Burgers equation corresponding to ν = 0.2. It can be

Fig. 2. Eigenvalues (left y axis) and the noncaptured fraction of the variability
(right y axis) of the training data.

Fig. 3. Analytic, FD and PODMM predicted FSC solutions for Burgers
equation with ν = 0.304.

seen that the FD solution oscillates around the shock, while
the FSC solution can resolve the transition zone successfully.

To test the performance of PODMM surrogate model in IPF,
we consider a synthetic test case, where the FSC solution cor-
responding to ν = 0.2 is perturbed by a Gaussian noise with
mean 0 and 10% of the solution as the standard deviation. The
prior distribution for the viscosity is also taken as Gaussian:
N (0.4, 0.22). The coarse-resolution solutions g’s are the FD
solutions and the fine-resolution solutions f ’s are the FSC
solutions. A set of 64 training data gi,f i, i = 1, . . . , 64 is
generated to construct the PODMM surrogate.

Fig. 2 exhibits the fast decay of the eigenvalues of the train-
ing data matrix W PODMM. For the eighth largest eigenvalue,
the magnitude already drops below 10−13. Also plotted is the
noncaptured fraction of the variance, which is the variance
not explained by using only a smaller number of eigenvalues.
The noncaptured fraction also decreases very quickly. Note the
noncaptured fraction can be used to determine the number of
eigenvalues to be used in PODMM by prescribing a threshold
value. The number will be the smallest number such that the
noncaptured fraction of the total variance is smaller than the
threshold. Here we will use only 8 eigenvalues, as they can
capture a large enough portion of the total variance.

Fig. 3 displays the analytical, FD and PODMM predicted
FSC solutions at t = π

8 to the Burgers equation corresponding
to ν = 0.304. Note that only the FD solution is computed,
which is computationally inexpensive, to obtain the PODMM
solution. It is demonstrated that although the FD solution does
not resolve the transition zone of the shock, the PODMM-
predicted FSC fine-resolution solution is in good agreement
with the analytical solution. Therefore PODMM can serve as
a reliable surrogate in the process of the following IPF for the
characterization of the posterior distribution.

We now show the performance of PODMM in IPF. The
linear map is used so that one PODMM predicted solution is
needed to obtain one posterior sample. To measure the quality
of the samples, we estimate the effective sample size by:

Neff =
1∑N

i=1(wi)2
.
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Fig. 4. Prior density and posterior densities estimated by IPF using PODMM
and FSC.

The larger the estimated effective sample size is, the less
severely the sample quality degenerates. In the ideal case
where the weights are uniformly 1/N , Neff = N , which means
all the samples are effective, while in the worst scenario where
only one sample is weighted nonzero, Neff = 1. In our case,
the ratio of the effect sample size to the total sample size is
0.993, meaning 99.3% of the samples are effective and the
IPF is very effective in alleviating sample degeneration.

The posterior distributions of ν generated by the FSC and
PODMM-predicted FSC solutions in IPF are shown in Fig.
4. It can be seen that the posterior densities estimated from
the samples for the two solutions are nearly indistinguishable
(middle and right), indicating PODMM is capable of accu-
rately characterizing the posterior density in IPF. Also shown
is the prior normal distribution (left), which is significantly
different from the posteriors. Note that the range of the poste-
rior is also smaller compared to that of the prior distribution.
To confirm it, the statistical moments of these distributions are
given in Table I.

As a result, we have achieved high accuracy in estimating
the posterior using the PODMM surrogate model, while saving
significant computational time. The computational cost of the
fine-resolution FSC solution in our example is about 10 times
that of the FD solution, while the cost of PODMM prediction
is negligible.

TABLE I
STATISTICAL MOMENTS OF THE PRIOR AND POSTERIOR DENSITIES

Mean Variance Skewness Kurtosis
Prior 0.4 0.04 0.0 0.0

PODMM posterior 0.2517 9.5645E-4 0.1168 2.8127
FSC posterior 0.2517 9.5645E-4 0.1168 2.8127

IV. CONCLUSIONS

In this work, we implemented an efficient Bayesian pa-
rameter inversion technique, the implicit particle filtering, to
determine the stochastic viscosity of the Burgers equation.
The proportion of the effective sample size from implicit
particle filtering can be significantly higher than that from
a traditional particle filtering method. We also demonstrated
a multi-fidelity modeling technique, the proper orthogonal
decomposition mapping method, can construct fine-resolution
model solutions from computationally inexpensive coarse-
resolution solutions. The resulting surrogate model serves as
an efficient and accurate model that can lead to posterior
distribution distinguishable from that obtained using the high-
fidelity model.
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