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Abstract – We recently developed a surface inte-
gral equation method where the electric field and
its normal derivative are chosen as the bound-
ary unknowns. After reviewing this formulation,
we present preliminary numerical calculations that
show good agreement with the known results. These
calculations are encouraging and invite the further
development of the numerical solution.

Index Terms – Boundary element method, elec-
tromagnetic scattering, surface integral equations.

I. INTRODUCTION
We have recently formulated a frequency do-

main surface integral equation method [1] that is ap-
plicable to penetrable closed surface scatterers. The
method has several unique applications and advan-
tages over the standard Stratton–Chu formulation
as discussed in [1]. In our formulation, we choose
the electric field (E-field) and its normal deriva-
tive as the boundary unknowns. This choice leads
to 12 scalar unknowns on the surface of the scat-
terer; for each homogeneous region we have three
scalar unknowns associated with the E-field and
three scalar unknowns associated with its normal
derivative. Similar to a typical surface integral equa-
tion formulation, our formulation is also based on
the Green’s theorem (Green’s second identity). This
formulation leads to six scalar equations, and thus
it must be supplemented with six additional con-
straints in order to have the same number of equa-
tions as unknowns. Three of these constraints come
from the well-known continuity condition of the E-
field across an interface and the other three come
from the recently derived continuity condition for
the normal derivative of the E-field [1–3].

In this paper, we numerically solve the above
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discussed equations for several scatterers and com-
pare our results to the results obtained via other
methods. We also comment on the choice of the ba-
sis functions in the Galerkin’s method and its effects
on numerical convergence.

II. FORMULATION REVIEW
Consider a scatterer with permittivity

2
ε and per-

meability
2
µ. The space surrounding the scatterer is

assumed to be lossless with permittivity
1
ε and per-

meability
1
µ, i.e., {1ε, 1

µ} ∈ R. If we apply the Green’s
second identity to the scatterer and the surrounding
space, then, after setting the observation point on
the surface of the scatterer, we obtain:
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where
inc

E is the incident E-field, −
∫

denotes the
Cauchy principal value integral, Σ denotes the sur-
face of the scatterer, ∂

∂N denotes the normal deriva-

tive, G is the free-space Green’s function, and S̃ is
the observation point on Σ. In (1), the overset digit
indicates if the quantity is associated with the scat-

terer or the surrounding space, e.g.,
2

E is the E-field
just inside the scatterer. In the Gaussian unit sys-
tem, the continuity condition for the E-field across
an interface can be written as [1]:

2

E =
r
ε−1

(
N ·

1

E
)
N +

(
Sα ·

1

E
)
Sα, (2a)

and the continuity condition for its normal deriva-
tive as [1]:
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where
r
µ =

2
µ/

1
µ,

r
ε =

2
ε/

1
ε, N is the unit-normal point-

ing out of the scatterer, Sα is the surface covari-
ant basis [4], and ∇α is the contravariant surface
derivative [4]. Notice that (2) is written in the Ein-
stein summation convention where the Greek indices
range from 1 to 2. Substituting (2) into (1b) and us-
ing Gauss’s theorem in two dimensions yields [1]:
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where
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Equations (3) and (1a) form a set of six scalar inte-

gral equations with six scalar unknowns, namely,
1

E

and ∂
∂N

1

E. This is the set of the integral equations
that we numerically solve in the next section.

III. NUMERICAL CALCULATIONS
We discretize the scatterers with flat triangular

elements and construct a basis for the E-field and its
normal derivative. We use piecewise constant basis
functions for each component associated with the
triangular surfaces. Thus, the number of unknowns
is six times the number of the triangular elements.
Furthermore, we use Galerkin’s method to discretize
the equations. In other words, the test and basis
functions are identical. It is worth noting that the
basis functions do not enforce any continuity condi-
tions for the E-field or its normal derivative along
the surface. Hence, it is clear that we cannot obtain
an optimal convergence rate. Moreover, we antic-
ipate that the sharp wedges may also cause some
difficulties. Finding a better set of basis functions is
an interesting question for future research.

The integral equation set given by (3) and (1a)
contains singular integrals. The gradient of the
Green’s function has the strongest singularity, and
we decompose it into the normal and surface deriva-
tive parts. With the help of integration by parts,
the latter one reduces to an integral over a triangu-
lar surface and a closed integral over the triangle’s
edges. We evaluate these integrals using the stan-
dard singularity extraction technique [5] in which
the singular part is calculated analytically and the
remaining part is calculated numerically. We solve
the resulting system of equations for the boundary
unknowns iteratively with the generalized minimal
residual GMRES method with the tolerance of 10−5.

To assess the method, we compare the radar
cross-section (RCS) of a sphere in free-space meshed

by 940 flat triangular patches with the Mie series
solution. Figure 1 shows the RCS of a dielectric

sphere with
1

kρ = 1,
2
ε = 4, and

2
µ = 1, where ρ is

the radius of the sphere and Fig. 2 shows the RCS

of a lossy sphere with
1

kρ = 4,
2
ε = −2 + i, and

2
µ = 1. From the figures, we see that our solution
agrees well with the Mie series solution in both the
dielectric case and the lossy case. More specifically,
the L2-norm relative error of the far-field ‖E‖2 in-
tegrated over a solid angle is 4.832× 10−3 for Fig. 1
and 9.360×10−3 for Fig. 2. In general, the accuracy
of the solution depends on the shape, size, electric
permittivity, and discretization of the scatterer. The
current discretization scheme leads to a less accurate
solution with respect the mesh density than the con-
ventional Poggio–Miller–Chan–Harringto–Wu–Tsai
(PMCHWT) formulation discretized with the RWG
functions. This is not surprising because our basis
functions are not the most optimal. This is discussed
in more detail in Section IV.
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Fig. 1. (Color online) Comparison of the dielectric
sphere’s RCS as a function of the scattering angle
θ computed via the surface integral equation (SIE)
method with the Mie series solution.

Next, we investigate the stability of the method
with respect to the element size. Because our for-
mulation contains only weakly singular integrals, we
expect the condition number of the system matrix
to be almost independent of the element size. To
demonstrate this, we discretize a cube with and
without mesh refinement on edges as shown in Fig. 3.
The condition number for the equally triangulated
cube equals 117 and for the refined cube it equals
178. In the case of the PMCHWT formulation, the
corresponding numbers are 1.0× 105 and 1.3× 106,
respectively. Hence, the formulation based on the
field and its normal derivative is much more stable
than the standard surface integral equation formu-
lation without any regularization technique.
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Fig. 2. (Color online) Comparison of the lossy
sphere’s RCS as a function of the scattering angle
θ computed via the surface integral equation (SIE)
method with the Mie series solution.
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Fig. 3. The discretization of a cube with and without
mesh refinements is shown. The condition number
associated with the left-hand side cube is 117 and
the condition number associated with the right-hand
side cube is 178.

Finally, in Fig. 4 we compare the radar cross-
section of a dielectric cube computed via our formu-
lation to the standard PMCHWT formulation with
the RWG basis and testing functions. We see that
the two solutions approach each other with the de-
creasing element size.
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Fig. 4. Scattering by a cube discretized with
432 (top) and 1200 (bottom) triangular elements
computed by the new formulation (dash lines)
and by the standard PMCHWT formulation (solid
lines).

IV. DISCUSSION
We have shown that the discretization scheme

using the piecewise constant functions and
Galerkin’s testing gives a reasonable accuracy
for scattering problems involving large and smooth
scatterers. However, particularly at low frequencies,
the discretization scheme results in low accuracy.
This is because we have not exactly enforced the
zero divergence condition on the boundary surface.
The zero divergence condition can be enforced by
requiring that (4) holds on each surface patch.
Namely, we require that: [1]∫

Πi

N · ∂E
∂N

dS =

∫
Πi

(N ·E)Wα
α dS

−
∫
∂Πi

nα(Sα ·E)dC, (4)
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where Wα
α is the mean curvature tensor, nα is the

tangential surface vector perpendicular to ∂Πi, and
Πi is the support of ith basis function. In the case
of a smooth surface, the last term on the right-
hand side cancels with the adjacent surface patches.
Thus, in this case, the normal components of the
basis functions can be combined such that the di-
vergence of the surface field is exactly zero. In the
case of a non-smooth surface, the last term on the
right-hand side does not cancel with the neighbour-
ing surface patches and therefore must be computed
explicitly. This requires using basis functions span-
ning a proper function space for the tangential field.
Such basis functions are outside the scope of this
paper and were not used in the present work.

V. CONCLUSIONS
We numerically tested a recently formulated sur-

face integral equation method where the electric field
and its normal derivative are chosen as the boundary
unknowns. The preliminary results presented here
are in agreement with the Mie series solution for
both dielectric and lossy spheres. Furthermore, the
method seems to be viable for numerical computa-
tions and may be further improved if we employ ba-
sis functions that enforce the continuity conditions.
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