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Abstract – In this paper, we propose a novel deep convo-
lutional neural network (CNN) based qualitative learning
method for solving the inverse scattering problem, which
is notoriously difficult due to its highly nonlinearity and
ill-posedness. The trained deep CNN accurately approxi-
mates the nonlinear mapping from the noisy far-field pat-
tern (from measurements) to a disk that fits the location
and size of the unknown scatterer. The used training data
is derived from the simulated noisy-free far-field patterns
of a large number of disks with different randomly gener-
ated centers and radii within the domain of interest. The
reconstructed fitting disk is also very useful as a good
initial guess for other established nonlinear optimization
algorithms. Numerical results are presented to illustrate
the promising reconstruction accuracy and efficiency of
our proposed qualitative deep learning method.

Index Terms –convolutional neural network, deep learn-
ing, inverse acoustic scattering, qualitative method.

I. INTRODUCTION
Inverse scattering problems [1] arise in many fields

of science and engineering, such as radar and sonar,
biomedical imaging, and non-destructive testing. In the
last few decades, many numerical algorithms have been
developed for solving such nonlinear and ill-posed in-
verse problems, see, e.g., [2,3]. In this paper, we propose
a new deep learning based qualitative method.

Existing algorithms can be roughly categorized into
two groups: (i) nonlinear optimization methods, and (ii)
qualitative methods. The nonlinear optimization meth-
ods [4, 5] often need to solve a direct (forward) scatter-
ing problem at each iteration. Although such methods re-
quire less amount of data, they indeed require a priori
knowledge of the boundary conditions of the unknown
scatterer (e.g, sound-soft or not), which may not be avail-
able. Furthermore, if the initial guess is far away from the
true solution, the optimization iterations may converge
to a local minimum, leading to an inaccurate reconstruc-
tion of the true scatterer. On the other hand, the qualita-
tive methods [6–9], including the linear sampling method

(LSM) [6], the factorization method (FM) [10], and the
direct sampling method (DSM) [3], have the advantage
of not requiring much a priori information about the un-
known scatterer. In addition, such qualitative methods
were shown to be computationally faster than the nonlin-
ear optimization methods and are highly parallelizable.
However, it is well-known that both LSM and FM suf-
fer from the severely ill-conditioned discretized far-field
operator, which requires a costly Tikhonov regulariza-
tion in order to achieve a robust approximation accuracy
in the presence of noise in measured far-field data. To
reduce the computational cost, an adaptive quadrature-
based factorization method (AFM) was recently devel-
oped in [11, 12], which dramatically speeds up the stan-
dard FM while gives comparable reconstructions. Nev-
ertheless, an effective implementation of the Tikhonov
regularization relies on the knowledge of the unknown
noise level. The recently developed DSM [3] and direct
factorization method (DFM) [13] were shown to be capa-
ble of achieving similar reconstruction accuracy, without
resorting to any such Tikhonov regularization processes.
Therefore, such regularization-free DSM and DFM are
more suitable to the real world applications.

All the above-discussed qualitative methods strive
to reconstruct the accurate location and precise shape of
the unknown scatterer, which sometimes may be unnec-
essary for some practical applications. In such situations,
we merely need to find a rough estimation of the scat-
terer’s location and size (support), which hopefully can
be achieved with lower computational cost or even less
amount of data. For example, the approach in [14] only
approximately recovers a convex hull of obstacles by us-
ing limited aperture data. The range test method in [15]
obtains a convex support of the scatterer as the inter-
section of many convex test domains. More recently, an
interesting extended sampling method (ESM) was pro-
posed in [16] and further improved in [17], where a fitting
disk was identified to estimate the support (location and
size) of the scatterer. In other words, the precise shape of
unknown scatterer is not of primal interest anymore, but
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its size (or support) is the reconstruction target.
In this paper, we propose a deep learning based qual-

itative method for solving the inverse scattering prob-
lems. Nowadays, most deep learning methods are based
on the artificial neural networks, which are effective
models for approximating certain functions. There are
many types of neural networks (NNs), including the feed-
forward and recurrent NN. The feedforward NN is a net-
work from the input layer to the output layer without
any loops. Some widely used NNs, including the mul-
tilayer perceptron [18], the autoencoder [19], the convo-
lutional NN [20] and the U-Net [21], belong to the cat-
egory of feedforward NNs. The recurrent NNs, by con-
trast, can pass data forward and backward. For example,
long short-term memory (LSTM) [22] is a type of re-
current NN. Since the pioneering work by Krizhevsky,
Sutskever and Hinton [23], deep learning methods have
been applied in various fields, including image recog-
nition, medical imaging and language translation. Re-
cently, deep learning approaches [24] have also been
used to solve the inverse scattering problems. In particu-
lar, the authors in [25] proposed an U-net convolutional
neural network to reconstruct the permittivities of dielec-
tric scatters from the scattering data. In [26], the authors
developed a convolutional neural network for the far-
field subwavelength imaging. In [27], the authors pro-
posed the so-called SwitchNet to reconstruct the scatterer
field which is a mixture of Gaussians. Different from
the aforementioned work, our present paper focuses on
developing a qualitative method to approximate the lo-
cation and size of the scatterer as a fitting disk, rather
than its exact shape. Therefore, the training process of
our proposed CNN is more efficient and the prediction is
also robust with respect to noise. Moreover, our designed
CNN utilizes three dropout layers which effectively pre-
vent overfitting phenomena.

The remaining of the paper is organized as follows.
In section II, we briefly review the standard inverse ob-
stacle scattering problem. In section III, we describe our
proposed deep convolutional neural network (CNN) for
the inverse scattering problems. In section IV, we show
some numerical results to demonstrate the performance
of our proposed method. Finally, some concluding re-
marks are given in section V.

II. THE INVERSE OBSTACLE SCATTERING
PROBLEM

Following [1], we briefly describe the standard in-
verse obstacle scattering problem. Let D ⊂ R2 be a
bounded impenetrable sound-soft obstacle with a C2

boundary ∂D. Let θ be an incident direction on the unit
circle S and κ > 0 be the wave number (with wavelength
λ = 2π/κmeters). Given a time-harmonic incident plane
wave fieldui(x) = eiκx·θ, its propagation in the presence
of the obstacle D, which is situated in a homogeneous

medium, will lead to a scattered wave field us. Then the
obtained total field u = ui + us is the solution to the
following scalar exterior Helmholtz equation:

∆u(x) + κ2u(x) = 0, x ∈ R2\D (1)
subject to the Dirichlet boundary condition (sound-soft)

u = 0, on ∂D (2)
and the Sommerfeld radiation condition (here |x| denotes
the distance between x and the origin):

lim|x|→∞ |x|
1
2

(
∂us

∂|x| − iκus
)
= 0. (3)

The above direct scattering problem (1-3) admits a
unique solution u ∈ C2(R2\D)

∩
C1(R2\D). More-

over, the scattered field us has the asymptotic behavior:

us(x) =
eiκ|x|

|x|1/2
u∞(x̂, θ) +O(|x|−3/2

)

(as |x| → ∞) uniformly in all directions, where x̂ =
x/|x| is the observation direction on the unit circle S and
u∞ is called the far-field pattern. Obviously, the measur-
able far-field pattern u∞ : S × S → C depends nonlin-
early on the obstacle’s shape ∂D that is to be determined.

The standard inverse obstacle scattering problem is
to recover the obstacle’s shape ∂D from the measured
noisy far-field pattern data u∞(x̂, θ) with a fixed κ > 0
for all incident directions θ ∈ Γs and observation direc-
tions x̂ ∈ Γm. In this paper, we assume full aperture data
i.e. Γs = [0, 2π] and Γm = [0, 2π].

More precisely, we essentially need to invert the fol-
lowing nonlinear abstract operator equation:

F(∂D) = u∞(x̂, θ), x̂, θ ∈ S,
where the forward operator F maps the boundary of the
obstacle D to the corresponding far-field pattern for all
pairs of directions (x̂, θ). This abstract operator equa-
tion turns out to be highly nonlinear and severely ill-
posed, and it has been solved byNewton’smethod [4,28],
with the Fréchet derivative of F being inverted using
Tikhonov regularization at each iteration. Such a locally
convergent nonlinear iterative method is costly in practi-
cal computations and its effectiveness highly depends on
the initial guess, i.e., the a priori information, which may
lead to incorrect approximations.

The main difficulty in the accurate reconstruction
of ∂D lies in the nonlinearity and ill-posedness of F ,
although ∂D is indeed uniquely determined by u∞ on
the unit disk. The inverse map F−1 from u∞ to ∂D
is not easy to compute numerically, but it may be eas-
ier to approximate if we simply estimate ∂D by a disk
B(z; r) with center z = (x, y) ∈ [a, b] × [c, d] and ra-
dius r ∈ [rmin, rmax]. Inspired by several recent works
[25–27, 29–33] in this direction, we propose to qualita-
tively approximate F−1 by a convolutional neural net-
work (CNN), denoted by G, based on the simulated train-
ing data of randomly generated disks within a prescribed
domain containingD. The trained CNN G approximately
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maps the noisy far-field pattern data to a fitting disk (in-
cluding its center location (x, y) and radius r), which is
poised to estimate the support of the underlying unknown
scatterer. The availability of a large amount of simulated
training data is crucial to optimize such a robust qualita-
tive CNN, so that it achieves a satisfactory approxima-
tion accuracy. Theoretically, one can also use any other
shapes (e.g., ellipse) of interest to simulate the training
data, but it will become computationally more expensive
due to more degrees of freedom in parameterizing the tar-
geting irregular shapes. The disk shape is the simplest
since its far-field pattern is invariant with respect to rota-
tion, and only 3 parameters (x, y, r) are sufficient to iden-
tify a disk.

III. A DEEP CONVOLUTIONAL NEURAL
NETWORK

In this section, we introduce our deep convolutional
neural network (CNN) for qualitatively solving the above
inverse obstacle scattering problems. Generally speak-
ing, a CNN can be regarded as the composition of a se-
quence of functions, with each function representing a
layer that takes the output of the previous layer and com-
putes the input for the next layer. For the classification
tasks, for example in [34], the architecture of a CNN
generally consists of convolutional layers, pooling lay-
ers, activation layers, dropout layers and a loss layer. For
the tasks of regression, however, sometimes the pooling
layer is not necessary in the CNN architecture [35].

In this work, we construct and train a deep convolu-
tional neural network using the disk-shape scatterers and
the corresponding far-field data matrices. All lengths are
measured in meters (m). We first generate 5000 circles
with their x- and y-coordinates randomly distributed be-
tween a = c = 0.5 and b = d = 10, and their radii are
randomly distributed in [rmin = 0.5, rmax = 5]. For each
circular obstacle, we further simulate the corresponding
noisy far-field data matrix of size 32 × 32, representing
32 incident and observation directions. Since each far-
field data matrix is a 32-by-32 complex matrix, it can be
treated as a 32 × 32 × 2 tensor, which is then used as
the input of our CNN. The output of the CNN is a 3-by-
1 vector representing the x- and y-coordinates as well as
the radius of the corresponding circular obstacle. Next,
we use the dataset (far-field data matrices) for the input
of the deep CNN of size 32 × 32 × 2 × 5000, and their
corresponding labels (ground truth centers and radii) of
size 3 × 1 × 5000 to train and test our designed CNN.
It is worthwhile to emphasize that a much larger size of
dataset can be easily simulated if a higher accuracy is pur-
sued, which however takes longer training time. We re-
mark that the architecture of our proposed convolutional
neural network is quite different from those networks de-
veloped in [25–27,30–33]. One special feature of our de-
signed network architecture is that there are three dropout

layers. Numerical simulations show that the networkwith
these dropout layers leads to much better results than the
network without dropout layers. This can prevent overfit-
ting efficaciously so that the prediction are very accurate
for both the training and test dataset. Our proposed CNN
mainly serves as a proof of concept to demonstrate the
feasibility of such a qualitative deep learning approach,
which we believe has a lot more room for improvement
in terms of different network architecture and better re-
construction accuracy.

The architecture of our deep convolutional neural
network is depicted in Fig. 1, where the detailed configu-
ration of each layer is summarized in Table 1. The output
of the current layer is of the same size as the input of the
next layer. The first layer of the network is a convolu-
tional layer with 30 filters of size 5 × 5, stride size of
2 × 2, and the same size padding. The first layer is fol-
lowed by a rectified linear unit (ReLU) layer. The third
layer is a dropout layer which randomly selects the in-
put neurons to zero according to 10% probability. Such
a layer is used to prevent overfitting efficiently [23, 36].
The fourth to the sixth layers are the convolutional layer,
ReLU layer and the dropout layer, respectively. The sev-
enth to the ninth layers are arranged in the same pattern.
The fourth layer, i.e., the convolutional layer, has 60 fil-
ters of size 3× 3, with stride size of 3× 3 and the same
size padding. Another convolutional layer, i.e., the sev-
enth layer, has 180 filters of size 3× 3 with stride size of
2×2 and the same size padding. The sixth and ninth lay-
ers are both dropout layers which set the input neurons
to zero according to 10% probability. The tenth layer is a
fully connected layer which combines all the information
from previous layers and predicts the radius and coordi-
nates of the fitting disk. The output of this layer will be
further used to compute the mean-square error between
the predicted and the ground truth labels (3× 1 vectors).

Mathematically, if we reshape each layer of neurons
as a column vector, then our convolutional neural net-
work G can be represented by a nonlinear mapping:
G(v) := A4 ReLU(A3 ReLU(A2 ReLU(A1v))) + g,

where v is a 2048-by-1 vector representing the input far-
field data,A1, A2 andA3 are the sparse Toeplitz matrices
due to the convolution operators, ReLU is the element-
wise Rectified Linear Unit function,A4 is a dense weight
matrix and g is a bias vector. Both A4 and g are from
the last fully connected layer. The output G(v) is a 3× 1
vector. Given m pairs of training data (vi, wi) for i =
1, 2, . . . ,m, where vi is the far-field data and wi is the
corresponding ground truth label, the training process is
to minimize the total mean-square error, i.e.,

min
Ak,g

1

m

m∑
i=1

∥G(vi)− wi∥22. (4)

In our simulations, about half million parameters (includ-
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Fig. 1. Our proposed network architecture G. The input image is of size 32 × 32 × 2. There are three convolutional
layers, three activation layers, three dropout layers, and one fully connected layer.

Table 1: Detail layers of our proposed deep convolutional neural network architecture G
Layer Type Filter # Filter Size Stride Size Input Size Output Size
1 Conv 30 5× 5 2× 2 32× 32× 2 32× 32× 30
2 ReLU - - - 32× 32× 30 32× 32× 30
3 Dropout - - - 32× 32× 30 32× 32× 30
4 Conv 60 3× 3 2× 2 32× 32× 30 32× 32× 60
5 ReLU - - - 32× 32× 60 32× 32× 60
6 Dropout - - - 32× 32× 60 32× 32× 60
7 Conv 180 3× 3 2× 2 32× 32× 60 32× 32× 180
8 ReLU - - - 32× 32× 180 32× 32× 180
9 Dropout - - - 32× 32× 180 32× 32× 180
10 Fully Connected- - - 32× 32× 180 3× 1

ing Ak(k = 1, 2, 3, 4) and g) of the CNN can be up-
dated iteratively by the stochastic gradient descent (SGD)
method (implemented in MATLABDeep Learning Tool-
box). Figure 2 shows the typical convergence history.

IV. NUMERICAL RESULTS
In this section, we provide several 2D inverse acous-

tic scattering examples from impenetrable and sound-soft
obstacles to demonstrate the effectiveness of our pro-
posed deep learning method. All simulations are imple-
mented in MATLAB 2019a on a Dell Laptop with In-
tel(R) Core(TM) i7-7700HQ CPU@2.80GHz and 32GB
RAM. The CPU time (in seconds) is estimated using
timing functions tic/toc. To simulate the measurement
noise, we added random noise to the simulated far-field
data F ∈ CN×N according to:

F δ = F + δ∥F∥ S1 + S2i

∥S1 + S2i∥
,

where S1 and S2 are twoN×N randommatrices (with a
standard normal distribution) generated by theMATLAB
function randn(N,N). Here the value of δ represents the
level of noise based on relative error and the noise-free
situation corresponds to the case with δ = 0%.

In our simulated training data, we choose the wave
number κ = 5, the total number of incident and observa-
tion directions N = 32, and the noise level δ = 0%. As
we have mentioned in the previous section, we first gen-
erate 5000 random circles of random radius between 0.5
and 5, and random x- and y-coordinates between 0.5 and
10. We then use these circles as the training scatterers,
and generate the far-field data for each circle via the Nys-
tröm method [1]. We mention that numerical discretiza-

tion errors are much smaller than the added noise. Our
training dataset consists of m = 4000 far-field data ma-
trices of size 32× 32× 2, and 4000 corresponding labels
of size 3 × 1. The remaining 1000 pairs are used as test
dataset. We train our convolutional neural network using
the training dataset and the SGD method with learning
rate 0.01 and 1000 epochs. We use mini-batches of size
128 to speed up the computation time in each iteration.
The training history of our convolutional neural network
can be seen in Fig. 2. The blue curve is the base 10 loga-
rithm of themini-batch training loss, and the red curve the
logarithm of the testing loss. Figure 2 indicates the con-
vergence of the stochastic gradient descent method in the
training procedure. We remark that different networks or
learning rates may lead to different convergence rate.

0 200 400 600 800 1000
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-1

0

1

2

lo
g

1
0
(L

o
s
s
)

Training

Test

Fig. 2. Training history of our convolutional neural net-
work. Horizontal axis: epoch number; vertical axis: log-
arithm (base 10) of the mini-batch loss.
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Table 2: Mean square errors for the inverse scattering
problem of circular scatterers with various random noise
levels δ in the far-field data
Noise Level δ Mean Square Error
0% 0.17249
10% 0.20229
20% 0.41218
30% 0.66666
40% 1.02110
50% 1.33220

Our results also show that the mean square errors of
the training dataset and the test dataset are 0.13648 and
0.17249, respectively. Such convergence results indicate
that our deep convolutional neural network model can
generalize well from our training dataset to the unseen
test dataset. A larger dataset would lead to better accu-
racy and it is also possible to use noisy far-field data as
training dataset for better robustness.

We then investigate the performance of our deep
neural network in reconstruction given far-field data with
various noise levels. In Table 2, we present the mean
square errors for the inverse scattering problem of 6000
circular scatterers (1000 scatterers for each test), with
random noise levels δ = 0%, 10%, 20%, 30%, 40% and
50% in the far-field data. The mean square errors are
computed based on the prediction of our trained net-
work, including the predicted radii, x- and y-coordinates
of the centers. We observe that the mean square errors
for δ = 0% and 10% are quite similar. As the noise level
goes up to 20%, the mean square error becomes twice as
much as the error when δ = 10% is used, but the roughly
linear growth of error is still acceptable. When δ = 50%,
the mean square error increases more dramatically due to
the large amount of noise. Since we use circular objects
with random locations and sizes, it is meaningful to check
the relative errors of the predicted results. More specifi-
cally, (1) for δ = 0%, we find that 938 out of 1000 testing
scatterers have the relative error of radius less than 0.1;
911 out of 1000 testing scatters have the relative error of
the x-coordinate of the center less than 0.1; 937 out of
1000 testing scatterers have the relative error of the y-
coordinate of the center less than 0.1. (2) For the dataset
with 10% relative noise, 931 out of 1000 testing scatter-
ers have the relative error of radius less than 0.1; 885 out
of 1000 testing scatters have the relative error of the x-
coordinate of the center less than 0.1; 890 out of 1000
testing scatterers have the relative error of y-coordinate
of the center less than 0.1. (3) For δ = 20%, the numbers
of testing scatterers that have relative error of radius, x-
and y-coordinates to be less than 0.1 are 915, 718 and 745
out of 1000, respectively. These statistics indicate that
our trained CNN can solve the inverse scattering prob-
lems of a circular object accurately in a high probability.
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0
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(c) (d)

0 500 1000
-1.5

-1

-0.5

0

0.5

(e) (f)

Fig. 3. The distribution of the prediction errors of the
radii (left column) and the histogram of the relative er-
rors (right column) with 3000 random far-field data un-
der various noise levels: δ = 0% (top row), 10% (middle
row) and 20% (bottom row).

Moreover, among all three predicted parameters, the
predicted radius is usually more accurate than the other
parameters. This is due to the fact that the maximum of
radii is smaller than that of x- and y-coordinates of the
centers. In Fig. 3, we present the distribution of the pre-
diction errors of the radii (in the left column) and the his-
togram of the relative errors (in the right column), where
randomly perturbed far-field data with various noise lev-
els are used. The prediction errors are roughly propor-
tional to the added noise magnitude. We observe that the
distributions of the relative errors in radius for δ = 0%
and 10% are quite similar, which means that our trained
network is not sensitive to a small noise level.

Next, we investigate the performance of the pro-
posed deep learning method for reconstructing randomly
located scatterers with various shapes. In Figs. 4-6, we
show the reconstructed fitting disks for obstacles in the
shape of a circle, ellipse, rectangle, kite, peanut and trian-
gle with δ = 0%, 20% and 40%, respectively. The center
of mass for each object mostly lies in the reconstructed
disk, although we do observe slightly increasing discrep-
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ancy as the noise level becomes larger. For δ = 0% and
20%, it is easy to see that the circular and triangular ob-
jects lead to the most accurate results. The reconstructed
results for the obstacles in the shape of ellipse, kite and
peanut for δ = 0 and 20% are comparable. However, the
reconstructed result for an object in the shape of a rect-
angle is worse when δ = 20%. For far-field data with
δ = 40%, our trained network can still capture the un-
known objects well except for the rectangular one.

0 5 10
0

5

10

Disk

Circle

0 5 10
0

5

10

Disk

Ellipse

0 5 10
0

5

10
Disk

Rectangle

0 5 10
0

5

10

Disk

Kite

0 5 10
0

5

10
Disk

Peanut

0 5 10
0

5

10

Disk

Triangle

Fig. 4. The reconstructed fitting disks for randomly lo-
cated different testing scatterers (noise level δ = 0%).
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Fig. 5. The reconstructed fitting disks for randomly lo-
cated different testing scatterers (noise level δ = 20%).
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Fig. 6. The reconstructed fitting disks for randomly lo-
cated different testing scatterers (noise level δ = 40%).

Figure 7 shows the reconstruction results for scatter-

ers of various sizes. While most of the predicted disks are
accurate, the rectangular-shape object was overestimated
again. In particular, the radius of small scatterers (ellipse
and peanut) is about 0.1, which is smaller than the mini-
mal radius 0.5 used in the training dataset.

0 5 10 15
0

5

10

15
Disk

Circle

0 5 10 15
0

5

10

15
Disk

Ellipse

0 5 10 15
0

5

10

15
Disk

Rectangle

0 5 10 15
0

5

10

15
Disk

Kite

0 5 10 15
0

5

10

15
Disk

Peanut

0 5 10 15
0

5

10

15
Disk

Triangle

Fig. 7. The reconstructed fitting disks for randomly lo-
cated scatterers of various sizes (noise level δ = 0%).
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Fig. 8. The reconstructed fitting disks by EDFM [17] for
randomly located scatterers (noise level δ = 40%). The
EDFM is based on one incident direction at π/2 and 32
observation directions with a 500× 500 sampling mesh.

DFM (0.60 sec.)

0 5 10
0

2

4

6

8

10
DFM (0.52 sec.)

0 5 10
0

2

4

6

8

10
DFM (0.54 sec.)

0 5 10
0

2

4

6

8

10

Fig. 9. The reconstructed profiles by DFM [13] for the
same scatterers as in Fig. 7 (noise level δ = 40%). The
DFM is based on 32 incident and observation directions
with a 500× 500 sampling mesh.

High computational efficiency is another remarkable
advantage of our deep learning method, which of course
relies on the expensive offline training that can be speed
up by CPU/GPU parallel computing. Different from the
extended sampling method [16] and the extended direct
factorization method (EDFM) [17], where the radius is
obtained with much more extra efforts after the center is
chosen from a sampling process over the search domain,
our deep learning method computes the radius and center
simultaneously without any sampling procedure. With a
pre-trained network, our deep learning method takes only
about 2 milliseconds to estimate a fitting disk (using the
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predict function provided by MATLAB).
As a comparison, Fig. 8 shows the corresponding

results computed by the EDFM [17], where a similar
fitting disk was estimated but with significantly higher
CPU time. However, the EDFM can handle limited aper-
ture data, which was not addressed in our deep learning
model. In addition, Fig. 9 plots the constructed profiles by
the highly efficient and vectorized DFM [13], where the
same scatterers’ shapes are qualitatively identified with
more CPU time as well. Note the DFM gives much more
detailed shape information that may not be necessary. In
both EDFM and DFM, it would take much longer CPU
time if using a finer sampling mesh in a larger domain.

Overall speaking, the trained CNN based solely on
the circular-shape scatterers can handle the far-field data
of the general shaped objects with various noise levels
very well, where the non-circular shaped scatterers were
never seen by the trained CNN. A possible explanation of
the less satisfactory accuracy in reconstructing the rect-
angle scatterer is that its far-field pattern is vastly dif-
ferent from that of any nearby circular-shape scatterer,
as illustrated in Fig. 10. Note that the far-field pattern of
the kite is more similar to that of the circle, thus it leads
to better reconstruction results. We would expect much
improved reconstruction accuracy if the anticipated non-
circular shapes were used in generating the training data-
set. This is usually the case when tailored to a specific
application where only certain shapes are of interest.

Fig. 10. The jet colormap of noise-free far-field data F
of three different scatterers: Circle , Rectangle, and Kite.

V. CONCLUSION
In this paper, we propose a qualitative deep learn-

ing method for solving the inverse obstacle scattering
problem. After constructing and training the deep con-
volutional neural network using the randomly generated
disk-shape scatterers and the corresponding far-field data
matrices, we can obtain a convolutional neural network
which reliably maps the noisy far-field data to the center
location and radius of the fitting disk that approximates
the support of the unknown scatterer. The trained CNN

has the advantage of solving the inverse scattering prob-
lem in much faster CPU time than other qualitative meth-
ods in literature. It takes only a few milliseconds (rather
than a few seconds by EDFM and DFM) to estimate an
accurate fitting disk with a PC laptop. Our numerical re-
sults show that our proposed deep CNN requires a small
amount of training data to get very accurate predictions,
and it performs very robust with noisy far-field data. The
generalization of our proposed method on 2D problems
(of finding a disk) to 3D problems (of finding a ball)
is straightforward. It is possible to further improve the
reconstruction accuracy by training the CNN with the
dataset generated from other desired shapes (e.g., ellipse
or airplanes). The application of our developedmethod to
the inverse scattering problemswithmultiple obstacles or
limited aperture data is currently undertaken.
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