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Abstract ─ In this paper, a new approach to create 

frequency band rejection is applied to a wideband H-

shaped dielectric resonator antenna (DRA). In order to 

create a notch characteristic in the operating band of the 

𝑇𝐸1𝛿1
𝑦

 and 𝑇𝐸2𝛿1
𝑦

 modes, and guided by their theoretical 

and simulated electric field distributions, a narrow 

conductive strip is incorporated around the mid-section 

of the H-shaped DRA. The orientation of the notching 

strip is determined based on the electric field distribution 

of the selected modes for the frequency rejection. 

Furthermore, the selected feeding method improves the 

radiation patterns for this DRA shape compared to its 

previous designs. The new design offers an operating 

frequency range that extends from 4.15 to 9.8 GHz, 

allowing 81% of fractional bandwidth. The first notch  

is created at 6.5 GHz, while the second one is at 8  

GHz. Average radiation efficiency of 95% across the 

frequency of interest is achieved with overall dimensions 

of 40×30×11.4 mm3. The proposed design is simulated 

using Ansys HFSS and validated by measurement.  
 

Index Terms ─ Dielectric Resonator Antenna (DRA), 

H-shaped antenna, modes distribution, notch rejection. 
 

I. INTRODUCTION 
During the last few decades a great attention has 

been paid to the DRAs due to their capabilities to provide 

wide bandwidth, high gain, and high radiation efficiency 

compared to other types of antennas. Many shapes and 

feeding methods of DRAs were introduced for various 

applications such as 5G, WiMAX, radar, etc. [1]. 

Different feeding mechanisms to excite the DRA were 

also used such as microstrip transmission lines, coaxial 

probe and slot aperture [2]. The coaxial feeding method 

is the most commonly used method due to its matching 

flexibility by changing the probe position and height [3]. 

Various shapes of the DRA were presented (P, Z and T), 

where some of them were fed by microstrip line feeder, 

while others were fed by a probe [4-9]. In the last few 

years, many designs of the DRA showed that the single 

element DRA could achieve a bandwidth up to 120% [10- 

13]. This extremely wide band covers many applications 

where in some cases the interference becomes the main 

obstacle and needs to be suppressed. To overcome this 

problem, many designs suggested different methods to 

create notches in the operating band of wide band DRAs. 

In [10], an inverted conical shaped DRA fed directly by 

a circular ring patch antenna was presented. A notch 

rejection was created and shifted by changing the 

dimensions of the patch resonator. Also, several wide 

band DRA designs fed by a microstrip line feeder with 

notch characteristics were reported [11, 12]. For these 

designs, several modifications in the feeder or ground 

plane were done to create a stop band filtering in the 

operating bandwidth of the design. On the other hand, 

the DRA position was rotated with respect to the 

microstrip line feeder to create the notch characteristics 

[13]. In addition, a cross slot aperture was formed in a 

circular patch antenna placed directly underneath the 

DRA at the same side of the substrate. Two different 

etches in the microstrip patch antenna were conducted to 

create two frequency rejection bands [14]. These designs 

covered wide bandwidth up to 120%. Also, the DRA size 

is very small compared to the lower operating band in 

these designs. In such a hybrid method, the broadband 

response comes from both the microstrip feeder and 

DRA. Accordingly, such designs created the rejection 

band in the microstrip line feeder operating band while 

the DRA modes were not affected. On the other hand, 

UWB DRA was proposed with frequency rejection and 

fed using metallic strip with a probe on the side of the 

DRA with the presence of a shorting pin drilled inside 

the DRA [15]. A slot was created in the feeding vertical 

strip to create a notch in the operating band of the 

antenna. In this paper, a wide band H-shaped DRA with 

enhanced radiation pattern is presented. In order to  

create the notch frequency for the first two modes in the 

operating band, a narrow strip will be used to suppress 

part of the operating mode by wrapping it around the 

DRA in different directions. The antenna performance  

is discussed before and after applying the notching 

technique on this design. 
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II. ANTENNA DESIGN AND 

CONFIGURATION 
The proposed H-shaped DRA is shown in Fig. 1. 

The excitation is realized with a U-shaped feeder which 

is directly connected to a coaxial probe. At the opposite 

side, another identical strip is placed and shorted to the 

ground. This feeding mechanism will be useful to create 

the TE1𝜹1 and TE2𝜹1 modes as the first two operating 

modes [16]. 

 

 
(a) 

  
 (b)  (c) 

 

Fig. 1. The proposed H-shaped DRA: (a) 3D view with 

fabricated prototype, (b) yz-plane, and (c) xy-plane. 

 

Among the different DRA shapes, the H-shape has 

the advantage of providing a symmetric geometry from 

the three principal axes. However, the radiation pattern 

of this shape has two problems. The cross polarization 

level is very high and the symmetry of the radiation 

pattern is poor at the perpendicular plane to the feeder. 

To address these issues, the proposed design is fed by 

two identical U-shaped strips. One for feeding the DRA 

while the other one is attached to the opposite side of  

the DRA and connected to the ground plane using via. 

This feeding method creates electric fields that allow  

the higher order modes to be more uniform and resulting 

in lower cross polarization level. In order for a better 

understanding of the second strip effects on the design, 

the electric field vector plots for the DRA with and 

without the second U-shaped strip are compared in Fig. 

2. It could be seen that the electric field vectors at the 

mid-section show more uniform distribution in the DRA 

with the second U-strip at the 9 GHz. Also, the electric 

field shows better symmetry in its intensity at both sides 

of the design. 

 

 
 

 
(a)  (b) 

 

Fig. 2. Vector plot of the electric field at the xy-plane at 

9 GHz. (a) DRA without the second U-shaped strip, and 

(b) DRA with the second U-shaped strip. 

 

The DRA is placed directly at the top of 40×30×1.6 

mm3 FR-4 substrate with relative permittivity and 

dielectric loss tangent of (𝜖𝑟 =4.4) and (tanδ=0.02), 

respectively. The ground plane is at the lower side of the 

substrate. For the DRA, Rogers RO 3010 material with a 

relative permittivity of 10.2 and dielectric loss tangent of 

0.0035 is used. The design dimensions are W1=10 mm, 

L1=20 mm, L3=7.85 mm, W4=3.8 mm and h=11.4 mm. 

The feeder dimensions are L2=6 mm, W2=7.9 mm, and 

W3=1 mm. The simulated and measured results of the 

design are shown in Fig. 3. The -10 dB impedance 

bandwidth is achieved from 4.85 to 9.8 GHz, 69% of  

the fractional bandwidth. The simulated peak realized 

gain is between 4.0 to 7.0 dBi. The measurement shows 

good agreement with the simulation. However, the  

slight difference between the measured and simulated 

performance is expected as there are many different 

substrate layers glued to fabricate the design.  
 

 
 

Fig. 3. Reflection coefficient and peak realized gain of 

the H-shaped DRA. 

 

The radiation patterns of this design are illustrated 

in Fig. 4. The cross-polarization level is around -20 dB 

at the yz-plane, while it is less than -50 dB at the xz-plane  
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which is not shown in the scale. It is also notable that 

even at the end of the band, the cross polarization level 

remains low. The radiation pattern at the yz-plane shows 

highly symmetric pattern, while it is less symmetric at 

the xz-plane. However, compared to the previously 

reported H-shaped DRA, this design has better radiation 

patterns in terms of cross polarization level and symmetry 

[17, 18]. The front to back ratio (F/B) is around 10 dB. 
 

yz-plane xz-plane 

  
(a) 5 GHz 

  
(b) 6 GHz 

  
(c) 9 GHz 

 
 

Fig.4. Radiation patterns of the H-shaped DRA at 

different frequencies. 
 

For the operating modes in the DRA design, it could 

be seen at Fig. 3 that the first resonance is at 5.5 GHz, 

which is corresponds to the DRA dominant TE1𝜹1 mode. 

This mode has a uniform electric field distribution 

through the DRA geometry. For the second resonance  

at 7.6 GHz, it appears that the TE2𝜹1 mode starts to 

propagate [19]. The TE2𝜹1 mode has sinusoidal shape for 

the electric field vectors with a minimum electric field at 

the center of the DRA. This mode exists in this design as 

the DRA is placed on the substrate directly, while it will 

not propagate if it is placed on the ground plane [20]. The 

simulated electric field vector for the first and second  

resonances are plotted at the xz-plane in Fig. 5. It could 

be seen that the electric field distributions align well with 

the theory of these modes. 

 

 

 

 (a) f=5.5 GHz 

 
 (b) f=7.6 GHz 

 

Fig. 5. Electric field vectors plot at the xz-plane at 

different frequencies. 

 

III. FREQUENCY BAND REJECTION 
In this section, a new method to create frequency 

rejection band for the first two operating modes for the 

DRA in general will be presented. Unlike previous 

literature where several modifications in the microstrip 

line feeder were made to create a stop band filtering in 

the bandwidth of the design, this design will create the 

frequency rejection in the operating modes of the DRA 

using open-circuited conductive strips. As shown in Fig. 

6 (a), the TE1𝜹1 mode has uniform distribution across the 

xz-plane. This mode extends from the beginning of the 

operating band reaching just before the second mode that 

starts to propagate slightly before 7.6 GHz. In order to 

create the notch effectively in its operating band, it is 

essential to look at the electric field intensity of the DRA 

near the frequency where the notch needs to be created. 

It could be clearly seen that the electric field is minimum 

at the mid-section parallel to the x-axis. Therefore, a 

narrow conductive strip with 1 mm width is employed in 

parallel to the long sides of the H-shaped DRA to create 

the notch at the middle of the dominant mode. The strip 

is wrapped around the DRA and reaches to the substrate, 

as shown in Fig. 6 (b). The VSWR for this design is 

plotted in Fig. 7. Through the band from 4.5 to 9.8 GHz, 

the VSWR value is under 2 except at the middle of the 

operating band of the first mode, where the VSWR value 

increases. The center of the rejection band is controlled 

by adjusting the value of the DRA height (h). As 

expected, larger size of the DRA, (i.e., higher h), will 

shift the notch center to the lower frequency band [21].  
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 (a)  (b) 

 

Fig. 6. Notch rejection at the first mode at 6.5 GHz: (a) 

electric field magnitude at xy-plane, and (b) conducting 

strip applied at the mid-section of the DRA. 

 

 
 

Fig. 7. VSWR curves for the first notch design with 

different values of (h). 

 

On the other hand, for the TE2𝜹1 mode, the electric 

field magnitude has a null at the mid-section parallel to 

the y-axis as shown in Fig. 8 (a). This region where the 

electric field vectors of the two sinusoidal waves are 

cancelling each other in Fig. 5  (b). To create the notch 

within this mode a conductive strip parallel to the y-axis 

is wrapped on the DRA, as shown in Fig. 8(b).  
 

 
 

 

 (a)  (b) 

 

Fig. 8. Notch rejection at the second mode at 8 GHz: (a) 

electric field magnitude at xy-plane, and (b) conducting 

strip for the second notch rejection with fabrication.  
 

Figure 9 shows the VSWR for the band rejection for 

the TE2𝜹1 mode with different values of (h). The overall 

operating band extends from 4.15 to 9.8 GHz, achieving 

81% fractional bandwidth. The comparison between the 

simulated and measured VSWR at h=10.8 mm is plotted 

in Fig. 10 where they are in good agreement with slight 

frequency shift which may be caused by the fabrication 

tolerance. At 8 GHz, where the stop band occurs, the 

peak gain falls to less than -6 dBi and the radiation 

efficiency is less than 30%, while achieving around 95% 

through the band of interest as shown in Fig. 11.  

 

 

 

Fig. 9. VSWR curves for the second notch with different 

values of (h). 
 

 
 

Fig. 10. Measured VSWR for the second notch design 

(h=10.8 mm).  
 

 
 

Fig. 11. Peak gain and efficiency for the second notch 

design (h=10.8 mm).  
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To investigate the effects of adding the notching 

strip on the radiation patterns of the design, the radiation 

patterns after adding the strip is plotted as shown in Fig. 

12. It could be seen that the radiation patterns are still 

almost the same with the strip. 
 

yz-plane xz-plane 

  
(a) 5 GHz 

  
(b) 6 GHz 

  
(c) 9 GHz 

 
 

Fig. 12. Radiation patterns of the H-shaped DRA with 

the second notch rejection at 8 GHz (h=10.8 mm).  
 

IV. CONCLUSIONS 
A new method to create frequency band rejection 

was proposed in this paper. The new method depends  

on the electric field distribution of the operating modes 

to create the notch using a strip around the DRA. The 

first notch was created at the 𝑇𝐸1𝛿1
𝑦

 mode band while  

the second notch was created within the 𝑇𝐸2𝛿1
𝑦

 mode 

frequency region. The design covers a wideband up to 

81% of fractional bandwidth, with 95% radiation 

efficiency and stable gain throughout the operating band. 

Furthermore, the radiation patterns of this design showed 

better characteristics compared to the previous literature 

for the same shape. The presence of the strip has minimal 

effect on the radiation patterns of the design. 
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