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Abstract ─ The degree adaptive stochastic response 

surface method is applied to analyze statistically the 

crosstalk in multiconductor transmission lines (MTLs). 

The coefficient of polynomial chaos expansion (PCE)    

is obtained based on the least angle regression. The 

truncation degree of PCE is iterated using the degree 

adaptive truncation algorithm, and the optimal proxy 

model of the crosstalk of the original MTLs that satisfies 

the actual error requirements is calculated. The statistical 

properties of crosstalk in MTLs (such as mean, standard 

deviation, skewness, kurtosis, and probability density 

distribution) are obtained. The failure probability of the 

electromagnetic compatibility in the MTLs system is 

considered. The global sensitivity indices of crosstalk-

related factors are analyzed. Finally, the proposed method 

is proved to be effective compared with the conventional 

Monte Carlo method. The uncertainty quantification of 

crosstalk in MTLs can be calculated efficiently and 

accurately. 

 

Index Terms ─ Crosstalk, degree adaptive, multi-

conductor transmission lines (MTLs), statistical property, 

stochastic response surface method. 

 

I. INTRODUCTION 
Crosstalk in multiconductor transmission lines 

(MTLs) is one of the main electromagnetic compatibility 

(EMC) problems in various electronic and electrical 

systems and devices. When predicting the crosstalk of 

systems or devices under actual conditions, the geometric 

parameters of MTLs and electrical parameters of load 

components related to crosstalk will be uncertain 

because of objective factors. This uncertainty increases 

considerably the difficulty of crosstalk prediction and 

causes the performance of crosstalk cancelling algorithms 

with certain parameters [1]–[2] to decrease. Therefore, 

to ensure EMC performance of a system or equipment, 

studying the statistical property of crosstalk in MTLs      

is very important. This problem has been explored 

extensively and some results have been obtained. The 

conventional Monte Carlo (MC) method can be used to 

analyze crosstalk models statistically with random input 

variables [3]–[5]. Although results obtained under a large 

number of samples are more accurate, MC is difficult to 

apply when using the crosstalk of large-scale systems or 

equipment because of its large consumption of computing 

resources and inefficiency. Therefore, classical reliability 

methods, such as first order reliability method, second 

order reliability method, stratified sampling, and 

importance sampling [6]–[7], and numerical integration 

methods, such as full factor numerical integration and 

coefficient grid numerical integration [8], have been 

proposed to analyze the uncertainty of crosstalk. Several 

other stochastic methods [9]–[11], have been applied for 

this analysis. The computational efficiency has been 

improved considerably compared with the MC method, 

but the statistical moments, EMC failure probability, and 

sensitivity analysis of crosstalk statistics have not been 

studied fully. 

The polynomial chaos expansion (PCE) has been 

used widely in analyzing the uncertainty of the crosstalk 

in MTLs. The PCE has a solid mathematical foundation 

and can obtain a “cheap” proxy model of the original 

output response [12]. With this proxy model, the 

statistical moments of the crosstalk in MTLs, the failure 

probability of EMC, and the calculation of sensitivity 

analysis can be determined [13–15]. However, existing 

related studies only predict and verify the case where  

the model expansion degree is fixed within the full 
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frequency range of the simulation. The relationships 

among the model complexity, deployment degree, and 

calculation accuracy have not been discussed in depth. 

This paper will report an in-depth study on this problem. 

Dr. Isukapalli of the New Jersey State University 

first proposed the stochastic response surface method 

(SRSM) [16], which belongs to the non-intrusive 

polynomial chaos method. The SRSM is highly similar   

to the deterministic response surface method. The 

difference between these methods is that the response 

surface of SRSM is constructed in the stochastic 

probability space. PCE coefficients are obtained based 

on linear regression and can be used to solve engineering 

uncertainty. Blatman et al. [17] proposed an adaptive 

PCE method based on linear regression to minimize the 

number of evaluations of the complex models. This 

method belongs to SRSM, but the degree of the model   

is obtained by the degree adaptive algorithm, and the 

least angle regression (LAR) algorithm is used when the 

model depends on numerous parameters to enable a 

better solution for the high-degree uncertainty [18]. This 

method has been applied successfully in many fields 

[19]–[20]. In this paper, the degree adaptive stochastic 

response surface (DA-SRSM) is proposed and used for 

the first time to solve the high-degree problem caused by 

the high complexity of the model of the uncertainty of 

crosstalk in MTLs. The proposed method provides an 

effective scheme for the uncertainty analysis of complex 

stochastic crosstalk model. 

In this work, DA-SRSM is applied to analyze the 

uncertainty of crosstalk in MTLs. The statistical moment 

information can be directly calculated from the PCE 

coefficients, whereas the EMC failure probability of the 

system is calculated by using the PCE model obtained. 

Combined with the global sensitivity analysis via the 

Sobol method, the degree of influence of each random 

input variable on the crosstalk variation is obtained. In 

Part II, the analysis method of engineering uncertainty 

based on the DA-SRSM method is introduced and the 

three-conductor transmission lines model established in 

Part III is explored. In Part IV, the simulation results of 

the proposed method are compared with the MC method 

to verify the accuracy and validity of the proposed 

method. In Part V, relevant conclusions of this paper are 

provided. 

 

II. DEGREE ADAPTIVE STOCHASTIC 

RESPONSE SURFACE METHOD 

A. SRSM based on LAR 

SRSM, as a non-intrusive approach, considers the 

complex response function as a black box when 

analyzing the engineering uncertainty problems and 

focuses only on the mapping relationship between the 

input and output. This method solves the PCE coefficient 

based on linear regression. By approximating the output 

of the stochastic system with the PCE model, the SRSM 

provides an efficient method for uncertainty propagation 

[21]. The LAR method is selected for linear regression. 

The flow chart of SRSM is shown in Fig. 1. 

 

System input and output

Building the PCE model of 

the output

Select sample point

Calculate the function 

response value at the 

sample point

LAR method to get PCE 

coefficient

Calculate the probability 

characteristics of the 

output

 
 

Fig. 1. SRSM flowchart. 

 

First, a stochastic response surface is constructed. 

The output Y(θ)
 
of the original model is represented as a 

general polynomial chaos model [22]: 

 

( ) ( )( )

( ) ( )( )

( ) ( ) ( )( )

( )

1 1

1

1

1 2 1 2

1 2

1 2

1 2 3 1 2 3

1 2 3

0 0 1

1

2

1 1

3

1 1 1

0

    ,

 , ,

ˆ    .

i i

i

i

i i i i

i i

i i

i i i i i i

i i i

i i

i

Y θ b I b I ξ θ

b I ξ θ ξ θ

b I ξ θ ξ θ ξ θ

b ξ



=



= =



= = =



=

= +

+

+ +

= 









 (1) 

In (1), ( )1
, ,

nn i iI ξ ξ represents a mixed orthogonal 

polynomial of n degree. This equation is a function of 

multi-dimensional standard random variables
1
, , .

ni iξ ξ 
 

i
b̂  and Φi represents the PCE coefficients and orthogonal 

polynomials to be solved, which correspond to 
1 2 pi i ib and 

( )1
, ,

nn i iI ξ ξ in (1). Combined with the actual problem 

for the calculation accuracy requirements, the PCE model 

in (1) is usually truncated to a certain degree p. The 

corresponding p-degree PCE approximation model is 

expressed as follows: 
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The number Q of the PCE coefficients 
i

b̂  of the p-th 

degree truncation increases with the degree p and the 

dimension d of the random variable ξ. The Q value is as 

follows: 
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.
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=

 

(3) 

In (2), ( )i ξ  is the product of the one-dimensional 

orthogonal polynomial basis function corresponding to 

each dimension of the random variable 1, , ,dξ ξ  which 

satisfies the orthogonal relationship as follows: 
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             ,
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ξ δ

  =  

= 


, (4) 

where ij
δ  is the Kronecker function, ( )W ξ  is the weight 

function, and the Askey scheme [23]–[24] provides the 

orthogonal polynomial basis functions corresponding to 

the random variables of different distribution types. 

After the SRSM model is constructed, the sample 

points are selected by Latin Hypercube Sampling, which 

makes the sample exhibit simultaneously good spatial   

and projection uniformity [25]. Refer to [26], satisfactory 

results can be obtained by selecting sample size of       

twice the PCE coefficient, and the PCE coefficient 
i

b̂  is 

estimated by the LAR method, which was proposed by 

Efron et al. [27] in 2004. The algorithm path is shown in 

Fig. 2. 

Step 1: The initial value of all PCE coefficients 
i

b̂  is 

set to 0. The correlation r between the regression variable 

( )xi  and the current residual ei is calculated. The input 

variable Xi with the highest correlation is obtained: 

 ( ),

( )

ov( x )
.

[ x ] [ ]

i i

i i

C e
r

Var Var e


=



 (5) 

Step 2: Perform a least squares approximation on        

Y along the Xi direction until the next variable xj      

appears, and the residuals e of 1
ˆ xi ib  and Y have the same 

correlation with xi and xj as follows: 

 
i jx e x er r= ,  (6) 

then, the third variable along the angle bisector Xi and Xj 

is found. 

Step 3: By analogy, until the current residual is less 

than a given threshold, the iteration is terminated, and the 

final PCE coefficient 
jb̂  is obtained. 

After 
jb̂  is obtained, the PCE model of the original 

output response is used to analyze the subsequent 

uncertainties. Compared with the ordinary least squares, 

the PCE coefficients are obtained by the LAR algorithm 

when calculating high-degree problems as follows: 

 
b bdim dim .

j i

   (7) 

The automatic screening of regression variables is realized 

and the sparse PCE model is obtained, which is more 

efficient in solving high-degree problems. 

 

Xi

Xj

Y

bi1Xi Xi

Xj

 
 

Fig. 2. LAR algorithm path. 

 

After the PCE coefficient 
jb̂ is obtained, the first 

four statistical moments of the output response can be 

calculated. The expressions of mean μ, standard deviation 

σ, skewness δ, and kurtosis   are calculated as follows: 
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(8) 

 

B. Degree adaptive truncation algorithm 

The accuracy of the model determines directly the 

accuracy of the uncertainty analysis of the output 

response. In most cases, the higher the degree, the better 

the precision of the PCE model. The lower-degree model 

sometimes cannot fit the original output response well   

but a too high degree will lead to a waste of computing 

resources. Hence, to reduce the computational complexity 

and improve computational efficiency whereas satisfying 

the computational accuracy, the degree adaptive truncation 

algorithm [28]–[29] is used to construct the PCE model as 

follows: 

Step 1: An initial truncation degree p0 is set such that 

p=p0; 

Step 2: The coefficient of the p-degree PCE model 

and the leave-one-out (LOO) cross-validation error term 

eLOO are calculated as follows: 
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where Yi
PC is the ith PCE metamodel of the original output 

affecting Yi, and hi is the ith component of the vector h as 

follows: 

 ( )x ,iA =   (10) 

 T 1 Th diag(A(A A) A ).−=  (11) 

Step 3: eLOO is compared with the threshold error eT. 

If e eLOO T  or the number of defined iterations Nmax is 

reached, the iteration is stopped. Otherwise, p=p+1 and 

step 2 is repeated. 

Over-fitting can occur easily when the complexity of 

the PCE model is too high and the sample size is too small. 

LOO only leaves one sample as the verification set at a 

time, and the rest as the training set. The full use of sample 

data and numerous synthesis of error results can avoid 

over-fitting as much as possible. However, this training    

is time-consuming. In order to minimize the amount of 

calculation whereas ensuring the calculation accuracy    

and high computational efficiency, the earliest stopping 

strategy is adopted. The maximum number of iterations 

Nmax is set. Whether eLOO satisfies the given error criterion 

eS is verified when at least two iterations eLOO do not 

decrease or the number of iterations reaches Nmax. If this 

criterion is satisfied, p is accepted. Otherwise, p=p+1 and 

step 2 is repeated. 

Thus, the optimal selection of the degree of the full-

range PCE model under the required accuracy can be 

quickly realized. The complex output response can be 

quickly and accurately fitted. 

 

C. Failure probability calculation of EMC 

performance via DA-SRSM 

Usually, there are certain safety thresholds yT             

for electronic and electrical systems that have EMC 

problems. When the input of the system is random, the 

output response has a small probability of exceeding         

yT. When the failure probability exceeds the minimum 

standard in practical application, the designed electronic 

and electrical systems should be rectified. DA-SRSM can 

easily calculate the failure probability. To describe an 

uncertain system, a limit state function is defined as 

follows: 

 ( ) ( )Tg X y Y X= − , (12) 

where Y(X) represents the output response of the system 

and yT represents the security threshold of the system, 

which is generally given by numerous experimental data 

or empirical values. Figure 3 shows the limit state of a 

two-dimensional problem, and the failure probability is as 

follows: 

 ( ( ) 0)fP P g X=  . (13) 

g(X) is used directly as the original output response   

of the PCE model, and the corresponding PCE model         

is calculated by the DA-SRSM algorithm. The failure 

probability Pf  of the system EMC performance is obtained 

by (12) combined with the PCE model. 
 

X1

X2

Limit state

g(X)=0
Failure domain

g(X)<0

Security domain

g(X)>0

 
 

Fig. 3. Limit state concept. 

 

D. Sensitivity analysis of Sobol via PCE 

Another advantage of the proposed method is the 

feasibility of its combination with the Sobol method for 

global sensitivity analysis. The DA-SRSM is also more 

efficient than the conventional MC method for global 

sensitivity analysis. Sensitivity indices measure the 

influence of input variables on output response, including 

the first-order sensitivity and total sensitivity indices. 

Relevant parameters can be designed based on the 

sensitivity data to improve the EMC performance of the 

system. 

Equation (2) is expanded into the Sobol 

decomposition form as follows: 
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where 
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Calculated and sorted, 

 ( ) ( )1

, ,1

, , .
s

i is

α α i i

α I

Y ξ b ξ ξ



= 
 

(16)

 
At the same time, the variance is obtained on both 

sides of (14) as follows: 
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Combined with the orthogonal relationship of (4), 
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Thus, the Sobol first-order sensitivity index is as 

follows: 

 1

1

, ,

, , 1,1 ; 1, , .s

s
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(19)

 

This equation represents the contribution of a single input 

to the output response variance.  

The total sensitivity of Sobol is as follows: 

 
, , 1,2, , ,T

i i j k i n

j i

S S S S



= + + +  (20)
 

which is the sum of the first-order sensitivity index          

of each input variable and the sensitivity indices of 

interaction between variables. Compared with the first-

order sensitivity, this index also contains the influence of 

interaction among variables. 

 

III. MULTICONDUCTOR TRANSMISSION 

LINES MODEL 
The three-conductor transmission lines model with 

the infinite ground plane (IGP) as the reference conductor 

shown in Fig. 4 is used as the analysis object. It is the most 

general structure of MTLs and can be extended to any 

application scenario. The MTLs satisfies the assumption 

of uniformity, no conductor loss, and no surrounding 

dielectric loss. The cross-section of the transmission line 

is set as a small size, i.e., an electrically short transmission 

line. Only one transverse electromagnetic wave 

propagation mode is approximated on the transmission 

lines. 

 

RS RL

Rn Rf

IGP

Vs

r2L2

r1

L1

h1

h2

d

V

 
 

Fig. 4. Three-conductor transmission lines model. 

 

The unit length inductance matrix and capacitance 

matrix of the three-conductor transmission lines can be  

obtained by the mirror analysis [30]. Then, the two-port 

transmission lines is described by the chain parameter 

matrix, and the current and voltage relationship at the 

port are characterized as follows: 

 11 12

21 22

ˆ ˆˆ ˆ ˆ( ) (0) (0)
,

ˆ ˆ ˆ ˆ ˆ( ) (0) (0)

V V V

I I I

 


 

      
= =       

            

 (21) 

where V(l), I(l), V(0), and I(0) are the far-end crosstalk 

voltage, the far-end crosstalk current, the near-end 

crosstalk voltage, and the near-end crosstalk current, 

respectively, and ψ is the chain parameter matrix. For     

the transmission lines structure in Fig. 4, the generalized 

Thevenin theorem can be used to obtain the following: 

 ˆ ˆ ˆ ˆ(0) (0)S SV V Z I= − , (22) 

 ˆ ˆ ˆ( ) ( )LV Z I= , (23) 

where ˆ
SZ  and ˆ

LZ  represent the near-end impedance 

matrix and far-end impedance matrix respectively and ˆ
SV

 
represents the source voltage. Equations (22) and (23) are 

substituted in (21) to obtain the following: 

 
1

12 11 22 21

21 11

ˆ ˆ ˆ ˆ(0) ( * * * * )

ˆ ˆ          *( * )* ,

S L S

L S

I Z Z ZL Z

Z V

   

 

−= − − +

−

 (24) 

 21 22 21
ˆ ˆ ˆ( ) * ( * )* (0).S SI V Z I  = + −  (25) 

Equations (24) and (25) are substituted in (23) to 

obtain the far-end crosstalk voltage, and the correlation 

calculation of the chain parameter matrix is found in Ref. 

[31]. 

 

IV. NUMERICAL VERIFICATION AND 

DISCUSSION 
The uncertainties of the crosstalk in the MTLs        

with random input parameters are analyzed using the 

transmission lines structure shown in Fig. 4. Assuming 

that the lengths of the two wires are equal L=L1=L2 and 

satisfy the uniform distribution [5.5 m, 6 m], the same 

radius r=r1=r2 obeys the normal distribution [0.7 mm, (0.1 

mm)2]. The equivalent height to ground h=h1=h2 obeys  

the uniform distribution [15 mm, 25 mm] and equivalent 

terminal impedance R=RL=Rf obeys the uniform 

distribution [45 Ω, 55 Ω]. The two wires are parallel and 

spacing d obeys the uniform distribution [5 mm, 10 mm]. 

The other parameters are set as constant: source voltage 

VS=1 V, and source resistance RS=Rn=50 Ω. The PCE 

model of the far-end crosstalk voltage in the frequency 

range of [1MHz, 100MHz] is established by using the 

equations in III and DA-SRSM. 

Given the complex calculation of solving the 

crosstalk through the transmission lines equation, a high 

iteration degree upper limit pmax=20 is set. To ensure 

accuracy of the model, an error standard eS=0.001 is set. 

Figure 5 shows the adaptive degree of each frequency 

band and the experimental error meets the requirements. 
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Fig. 5. Adaptive degree. 
 

The adaptive degree varies at different frequencies. 

The adaptive degree is higher in [26 MHz, 27 MHz], [51 

MHz, 54 MHz], and [76 MHz, 81 MHz], which indicates 

that the fitting model is more complex. The degree of other 

frequencies is relatively low, so the fitting model is 

simpler. 

To verify the accuracy of the proposed model in the 

uncertainty analysis of crosstalk in MTLs, the first four 

statistical moments of the far-end crosstalk voltage V      

are calculated and compared with the results obtained by 

10000-time MC methods as shown in Figs. 6 (a)–(d). 
 

 
 (a) 

 
   (b) 

 
 (c) 

 
   (d) 

 

Fig. 6. Comparison of the results of the first four 

statistical moment of the far-end crosstalk voltage in the 

MTLs via DA-SRSM and the 10000-time MC method. 
 

The first four statistical moments calculated by the 

proposed method have good consistency with the results 

calculated by 10000-time MC methods, which verifies the 

validity and accuracy of the proposed method. Figures 7 

(a) and (b) further show the analysis of the error at the two 

frequency points of 40 MHz (p=6) and 80 MHz (p=20). 

The model error is the smallest at 6 degree and increases 

beyond 6 degree at 40 MHz. The model error decreases    

at 80 MHz, during which the p=20 model error is the 

smallest. The model meets the error standard at p=20. The 

accuracy and efficiency of the proposed method in full-

band modeling are verified when the problem of crosstalk 

uncertainty of the complex MTLs is solved. The 

calculation times of the DA-SRSM and MC methods are 

shown in Table 1. 

 

Table 1: Comparison of calculation times between DA-

SRSM and MC methods 

Calculation Method Calculating Time (s) 

DA-SRSM 537.3 

MC 15012.4 
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(a)                                        (b) 

 

Fig. 7. Model errors with iterative order at 40 MHz and 

80 MHz via DA-SRSM. 

 

Table 1 shows that to ensure accuracy of the        

model, the DA-SRSM greatly improves the computational 

efficiency compared with the MC method. The computer 

available for storage in this paper is 7.89 GB, the CPU 

clocked at 2.5 GHz, and no parallel operation is performed. 

Next, the DA-SRSM is used to predict the failure 

probability of the EMC performance because of the 

crosstalk of the three-conductor transmission lines system 

shown in Fig. 4. The failure thresholds of the system in   

the [1 MHz, 10 MHz] and [75 MHz, 85 MHz] frequency 

intervals are all 0.12 V. Beyond the crosstalk voltage, the 

EMC performance of the system will be invalid. As shown 

in the red area in Fig. 5, the two sections represent the   

low-degree and high-degree models. The probability of 

the EMC performance failure of the MTLs system is 

calculated by DA-SRSM and compared with the 10000-

time MC methods (Table 2). 

 

Table 2: Comparison of EMC performance failure 

probability and calculated sample number in frequency 

ranges of [1 MHz, 10 MHz] and [75 MHz, 85 MHz] 

Frequency Method 
Failure 

Probability 

Number of 

Samples 

[1MHz, 

10 MHz] 

DA-SRSM 0.0790 160 

MC 0.0806 10000 

[75MHz, 

85 MHz] 

DA-SRSM 0.0540 210 

MC 0.0586 10000 

 
Table 2 shows the failure probability obtained by 

DA-SRSM under the small sample calculation. The result 

is close to that obtained by the large sample calculation    

of the MC method. Compared with the MC method,      

DA-SRSM can considerably improve the calculation 

efficiency in two frequency intervals with certain 

calculation accuracy. 

The two frequency points of 40 MHz and 80 MHz    

of the low-degree and high-degree models are selected 

based on Fig. 5. The probability density function of the  

far-end crosstalk voltage is calculated, and the results are 

compared with those of the 10000-time MC calculations, 

as shown in Figs. 8 (a) and (b). 
 

 
 (a) 

 
 (b) 
 

Fig. 8. Comparison of the far-end crosstalk voltage 

probability density function via DA-SRSM and MC 

method at 40 MHz and 80 MHz frequencies. 
  

Figure 8 shows the probability density values 

obtained by DA-SRSM at both frequency points are 

consistent with those obtained by MC method. Thus, the 

accuracy of the proposed method is verified. The 40 MHz 

frequency has the highest probability density at 0.08 V, 

whereas the 80 MHz frequency has the highest probability 

density at 0.95 V. The probability density values of the 

same far-end crosstalk voltage response vary at different 

frequencies. The probability of failure at a certain 

frequency point can also be calculated by integrating the 

probability density curve. 

The equations in Section II.D are combined to 

calculate the first-order and total sensitivities of each input 

variable at 40 MHz and 80 MHz. The result is compared 

with the results calculated by 10000-time MC, as shown 

in Figs. 9 (a)–(d). 
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 (a) 

 
 (b) 

 
 (c) 

 
 (d) 
 

Fig. 9. Comparison of the first-order and total sensitivity 

indices of the input variables at 40 MHz and 80 MHz via 

DA-SRSM with the results calculated by the MC method. 

 

Figure 9 shows the sensitivity results based on the 

DA-SRSM are consistent with those obtained by the MC 

method, which also verifies the accuracy of the proposed 

method. The first-order and total sensitivities at the      

same frequency point are the same, indicating that the 

interaction between input variables has little effect on the 

output response. At different frequencies, the results of the 

sensitivity indices vary greatly. The first-order and total 

sensitivities of lines spacing d are the highest at 40 MHz, 

which have the greatest effect on the change in the far-end 

crosstalk voltage. At 80 MHz, the first-order and total 

sensitivities of the conductor length L are the highest, 

whereas the sensitivity of d is very small. Thus, the 

influence of input variables on the far-end crosstalk 

voltage varies in the different frequency ranges. 

Comparisons of the above calculation time are shown in 

Table 3. 
 

Table 3: Comparison of the program calculation time 

between DA-SRSM and MC method for calculating 

sensitivity 

Frequency 
Calculation 

Method 

Calculating 

Time (s) 

40MHz 
DA-SRSM 4.3407 

MC 1604.3 

80MHz 
DA-SRSM 26.0113 

MC 1612.4 

 

Table 3 shows that the calculation efficiency of   

Sobol sensitivity obtained by the DA-SRSM method is 

considerably higher than that of the MC method. To obtain 

the effects of the input variables in the [1 MHz, 100 MHz] 

frequency range on the variation of the far-end crosstalk 

voltage, the total sensitivity index at all frequency points 

is calculated (Fig. 10). 

 

 
 

Fig. 10. Total sensitivity index of each input variable in   

[1 MHz, 100 MHz] interval via DA-SRSM. 

 

Figure 10 shows the terminal impedance R, 

conductor height h, and wire radius r have a small effect 

on the output variation. The trend of the conductor spacing 

d and the wire length L is exactly the opposite. At [25 
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MHz, 27 MHz], [50 MHz, 54 MHz], [74 MHz, 83 MHz], 

L has considerable influence, d has a small degree of 

influence, and the other frequency bands is opposite. 

When designing the wiring of an electrical and electronic 

system or equipment where the above MTLs is located, if 

its main working frequency band is in the aforementioned 

three intervals, wire length L should be controlled strictly 

to ensure and the other parameters can be adjusted 

appropriately. 

 

V. CONCLUSION 
The DA-SRSM method is proposed for the 

statistical analysis of crosstalk in MTLs. The terminal 

impedance R, conductor-to-ground height h, conductor 

spacing d, conductor length L, and conductor radius R 

are set as random variables subject to certain distributions. 

The first four statistical moments and probability densities 

of the far-end crosstalk voltage are calculated and the 

model error is analyzed. The validity and accuracy of   

the proposed algorithm in the full frequency band are 

verified through a comparison with the MC method.  

DA-SRSM is also used to solve the problem of failure 

probability analysis of the EMC performance of an MTLs 

system. The failure probability of the EMC performance 

of the MTLs system is obtained quickly and accurately. 

The effects of random input variables at different 

frequencies on the variations of the far-end crosstalk 

voltage are also calculated by combining DA-SRSM 

with global sensitivity analysis of the Sobol method. 

This analysis is verified through the MC method. The 

proposed method is more accurate and efficient than the 

MC method in calculating the Sobol sensitivity indices. 

In conclusion, DA-SRSM can analyze the uncertainty of 

crosstalk in MTLs efficiently and accurately. Moreover, 

the proposed method can provide a theoretical basis and 

fast analysis for EMC problems, such as wire harness 

and cable crosstalk in electronic and electrical systems, 

which will have increasingly higher frequency and 

complexity in the future. 
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