
ACES JOURNAL, Vol. 37, No. 2, February 2022 156

Scalable and Fast Characteristic Mode Analysis using GPUs

Khulud Alsultan1,2, Mohamed Z. M. Hamdalla1, Sumitra Dey1, Praveen Rao3,
and Ahmed M. Hassan1

1Department of Computer Science Electrical Engineering, University of Missouri-Kansas City,
Kansas City, MO 64110, USA

2Department of Computer Science and Engineering, King Saud University, Riyadh 11451, Saudi Arabia

3University of Missouri-Columbia, Columbia, MO 65211, USA

Abstract – Characteristic mode analysis (CMA) is used
in the design and analysis of a wide range of electro-
magnetic devices such as antennas and nanostructures.
The implementation of CMA involves the evaluation of
a large method of moments (MoM) complex impedance
matrix at every frequency. In this work, we use differ-
ent open-source software for the GPU acceleration of
the CMA. This open-source software comprises a wide
range of computer science numerical and machine learn-
ing libraries not typically used for electromagnetic appli-
cations. Specifically, this paper shows how these dif-
ferent Python-based libraries can optimize the compu-
tational time of the matrix operations that compose the
CMA algorithm. Based on our computational experi-
ments and optimizations, we propose an approach using
a GPU platform that is able to achieve up to 16× and
26× speedup for the CMA processing of a single 15k
× 15k MoM matrix of a perfect electric conductor scat-
terer and a single 30k × 30k MoM matrix of a dielec-
tric scatterer, respectively. In addition to improving the
processing speed of CMA, our approach provided the
same accuracy as independent CMA simulations. The
speedup, efficiency, and accuracy of our CMA imple-
mentation will enable the analysis of electromagnetic
systems much larger than what was previously possible
at a fraction of the computational time.

Index Terms – Big data applications, characteristic mode
analysis, graphics processing unit, method of moments,
scalability.

I. INTRODUCTION
The theory of characteristic modes (TCM), also

termed characteristic mode analysis (CMA), is a com-
putational technique that is used in a wide range of elec-
tromagnetic applications such as antenna design [1–7],
electromagnetic compatibility [8–13], and nano-antenna
analysis and design [14–17]. The numerical recipe of

the CMA implementation involves the numerical analy-
sis of the method of moments (MoM) impedance matrix
using operations such as the singular value decomposi-
tion (SVD), multiplication, inverse, slicing, and matrix
transpose [18]. CMA of electrically large scatterers
or multi-scale scatterers with fine details is challenging
since it can generate large MoM impedance matrices that
can cause out-of-memory issues, limited resource errors,
or longer time to execute [19]. Moreover, if an appli-
cation requires the CMA of hundreds of frequencies to
accurately quantify the electromagnetic response over a
wide frequency range, terabytes (TBs) of RAM and stor-
age and high-speed processors are needed since CMA
typically involves the processing of one dense matrix per
frequency. Therefore, CMA creates a classical big data
problem that needs advanced computer science and Big
Data tools to address efficiently.

A wide range of Big Data tools has recently been
developed to accelerate matrix operations in different
applications. For example, Lee and Cichocki [20] pro-
posed algorithms for calculating SVD on large-scale
matrices based on low-rank tensor train decomposi-
tion. Their approach outperformed MATLAB and
LOBPCG (locally optimal block preconditioned conju-
gate gradient). Gu et al. designed the Marlin library,
which includes three matrix multiplication algorithms
to improve the efficiency of large matrix computations
[21]. Liu and Ansari used Apache Spark for process-
ing matrix inversions to reduce the computation and
space complexity of large-scale matrices [22]. They
developed a scalable lower−upper decomposition-based
block-recursive algorithm called SparkInverse, which
outperformed MRInverse [23] and MPInverse [24] on
large matrices (e.g., 102,400 × 102,400 matrices). Yu
et al. developed MatFast, a scalable matrix process-
ing for in-memory distributed cluster on Apache Hadoop
[25] and Spark for large-scale matrices [26]. MatFast
supports matrix transpose and multiplication. Recently,

Submitted On: June 29, 2021
Accepted On: January 1, 2022

https://doi.org/10.13052/2022.ACES.J.370203
1054-4887 © ACES

https://doi.org/10.13052/2022.ACES.J.370203

157 ACES JOURNAL, Vol. 37, No. 2, February 2022

Misra et al. developed Stark, which is a distributed
matrix multiplication algorithm using Apache Spark for
large-scale matrices [27]. Stark is based on Strassen’s
matrix multiplication scheme, which is faster than the
standard one. It was tested on matrices of size up to
16,384 × 16,384. While Stark was faster than Marlin
and Spark MLlib [28], it has high space complexity.

In this work, motivated by the computational com-
plexity of CMA [41], we used some of the new open-
source software for GPU computing previously men-
tioned, as well as different Python-based numerical
libraries, to accelerate the CMA of large-scale matrices.
The performance of Python-based numerical libraries
was recently reported for simple matrix operations and in
an angle of arrival calculation example [42]. However, to
the best of our knowledge, these tools are not commonly
used in computational electromagnetic applications, and
the novelty in this work is to explore their efficacy in
accelerating the CMA implementation. We start our opti-
mization by decomposing the CMA algorithm into basic
matrix operations. We perform exhaustive computational
experiments to study the optimum numerical library to
execute each matrix operation and explore whether each
operation is better executed on multi-core CPUs or on
a GPU. By allocating the operations accordingly, the
acceleration of the CMA can be maximized.

It is important to emphasize that, in this work, we
do not use electromagnetic concepts such as the mul-
tilevel fast multi-pole approximation (MLFMA) [19]
or the symmetry and Toeplitz properties of the MoM
matrix for arrays [43] to accelerate the CMA implemen-
tation. Moreover, there are alternative electromagnetic
decompositions that reduce the computational time and
improve the accuracy of the CMA [44]. However, in this
work, we develop an alternative approach to accelerate
the CMA that is based on brute force computer science
techniques. To the best of our knowledge, this work is
the first time that the acceleration of the CMA imple-
mentation was performed using open-source software
for GPU computing. Related work had been recently
reported for the acceleration of other electromagnetic
techniques such as the MoM and the MLFMA. Yang
et al. accelerated the MLFMA for more than 10 bil-
lion unknowns using 2560 processors and more than
30 TB of RAM [45]. However, in this work, we limit
our focus to GPU-based acceleration techniques. To
put our CMA acceleration work into context, Table 1
summarizes some of this recent work classified by the
electromagnetic method that is accelerated, the max-
imum size of the impedance matrix considered, the
acceleration technique, and the speedup achieved. It is
important to emphasize that, for conciseness, we limit
Table 1 to the studies that used GPUs to accelerate the
frequency-domain MoM and other closely related tech-

niques. Therefore, Table 1 does not include acceleration
studies that did not report the use of GPUs or studies that
used GPUs to accelerate computational electromagnetic
techniques that are not related to the MoM. GPU accel-
eration of the MoM implementation is also available in
commercial solvers such as WIPL-D [46].

The rest of this paper is organized as follows. We
begin with an overview of CMA in Section II. In Sec-
tion III, we present our GPU implementation for CMA
using different Python numerical libraries. We present
the results, including the computational time and valida-
tion of the numerical results, followed by a discussion in
Section IV. Section V concludes the paper.

II. OVERVIEW OF CMA
CMA decomposes the total surface current gener-

ated on a scatterer into a set of fundamental real and
orthogonal modes and calculates the relative importance
of each mode at each frequency [47]. The modes
can be calculated by solving the eigenvalue problem
given by

XJn = λ nRJn, (1)
where X and R are the imaginary and real components
of the impedance operator Z [18]. The vectors Jn are
the eigenvectors or the eigen-currents, and λn are the
eigenvalues. The resulting eigenvalues and eigenvec-
tors are independent of the excitation. By applying the
MoM [48], eqn (1) can be converted into the matrix
equation:

[X] [Jn] = λ n [R] [Jn]. (2)
Two approaches have been reported to obtain the

impedance matrix Z, namely, the volume integral equa-
tion (VIE) formulation [18] and the surface integral
equation (SIE) formulation [47]. In this work, we adopt
the SIE formulation that requires the surface discretiza-
tion of the scatterer.

CMA is applied extensively for conducting bodies
[47, 49]. However, applying CMA for complex shapes,
composed of one or more dielectric materials, is still
under development [50]. The CMA analysis of dielec-
tric materials requires post-processing of the impedance
matrix because the solution includes both electric and
magnetic induced currents (J and M). Applying the
Galerkin methods to the integral equation of SIE, it can
be expressed into the following equivalent system of
matrix equations [51]:[

ZEJ ZEM

ZHJ ZHM

][
J
M

]
=

[
VE

VH

]
(3)

To solve the equation for only the electric currents,
the system of the matrix in eqn (3) can be modified by
replacing the magnetic currents in this equation as fol-
lows [51]:

M =
(
ZHM)−1 (VH− ZHJJ

)
. (4)

ALSULTAN, HAMDALLA, DEY, RAO, HASSAN: SCALABLE AND FAST CHARACTERISTIC MODE ANALYSIS USING GPUS 158

Table 1: Review of recent research on the acceleration of various electromagnetic techniques

dielectric materials requires post-processing of the

impedance matrix because the solution includes both
Table 1: Review of recent research on the acceleration of various electromagnetic techniques

Ref.

Electromagnetic technique/comments Maximum

size of the

impedance

matrix

Acceleration

technique

Speedup ratio (with

respect to single CPU)

Impedance

matrix

assembly

Solution

of linear

system

Total

[29] Conventional MoM/
Single precision

NVIDIA GeForce 7600GT (675 MHz) GPU with 256 MB video memory

and an AMD Athlon 64 3000+ (1.81 GHz) CPU with 1 GB memory

∼ 9.9k GPU acceleration on

Brook platform

17.33 NA NA

[30] Conventional MoM/
Complex double-precision

A CUDA-capable device, GeForce GTX 280 built on the GT200

architecture was used

∼ 7.7k GPU CUDA

acceleration

∼ 140 ∼ 13 ∼ 45

[31] Conventional MoM/
Complex double-precision

Intel Core i7, GeForce GTX 275 and the CUDA API, PGI

Fortran+CULA, Intel Fortran + MKL were used

∼ 7k GPU CUDA

acceleration

∼ 9 ∼ 5 ∼ 6

[32] Conventional MoM/
Complex double-precision

NVIDIA GT200 (GeForce GTX 275) CUDA-capable device was used as

an external math coprocessor to the host CPU (2.66-GHz Intel Core i7)

∼ 7k GPU CUDA

acceleration

∼ 13 ∼ 5 ∼ 8.5

[33] Conventional MoM/
Single precision

Intel Core i7 CPU 930 @2.8GHz, 24 GB of RAM, Windows 7

Professional 64-bit. Up to three identical GPUs GeForce GTX 480, 1536

MB of VRAM (each), VRAM access speed 177 GB/s. Four hard-disk

drives (HDD) with I/O speed 100 MB/s (per HDD, without buffering).

∼ 152k Out-of-core solver

accelerated with

multiple GPUs

NA NA 20

[34] Single-level fast multi-pole method (FMM)
Complex double-precision

Multi-node GPU cluster of 13 nodes, and Nvidia Tesla M2090 GPU per

node. An MVAPICH2 implementation of MPI was used for cluster

parallel programming.

∼ 245k 13 nodes GPU cluster NA NA ∼ 700

[35] MLFMA
Single precision

The CPU-MLFMA is parallelized and executed by eight threads on a

workstation with a four-core Intel Xeon processor W3550 (with a clock

speed of 3.06 GHz). The OpenMP-CUDA-MLFMA is executed on four

Nvidia Tesla C2050 GPUs.

∼ 342k OpenMP-CUDA on

multiple GPUs

124 NA 21

[36] Higher-order MoM (HMoM)/
Complex double-precision

A Dell Precision 5400 equipped with two Intel Xeon quad-core CPUs (2.5

GHz clock speed), 16 GB RAM, and one NVIDIA GTX 660 GPU card

was used. GPU’s architecture is Kepler GK104 with a core frequency of

1015 MHz, 960 Stream Processors (SPs). CUDA version 4.2 was used.

∼ 70k Optimized parallel out-

of-core LU solver on

hybrid GPU/CPU

platform

6 9.78 NA

[37] FMM-FFT/
Dual Xeon system with four R9 280X cards

∼ 1100k GPU/CPU hybrid

platform

NA NA ∼ 30

[38] MLFMA/
Single precision

 Intel i7 processor with 8 GB RAM, a TESLA C2075 GPU with 6 GB of

RAM, a Windows 7 64-bit license, and the 3.1 CUDA toolkit were used.

∼ 694k Parallelization using

CUDA

189 – 84

[39] Load-balanced out-of-GPU memory

implementation of MoM/
Double-precision

Intel quad-core i7 3820 CPU running at 3.6 GHz with64 GB RAM, and a

GeForce GTX 680 GPU with 4 GB of on-board memory running at 1006

MHz were used

– GPU CUDA

acceleration

2.21

(when

compared to

four-core CPU)

NA NA

[40] MoM
Intel Xeon E5-2698 v3 processor with 16 cores and 25 GB of RAM

and an NVIDIA Tesla K40 GPU were used

∼ 1M FMM/GPU NA 2.5 NA

159 ACES JOURNAL, Vol. 37, No. 2, February 2022

Substituting eqn (4) back into eqn (3), it can be
expressed as [51][

ZEJ−ZEM(ZHM)−1ZHJ
]

J = VE−ZEM(ZHM)−1VH.

(5)
From eqn (5), a new effective impedance matrix can

be expressed as

ZE=ZEJ−ZEM(ZHM)−1ZHJ. (6)
It is worth noting that the previous equation involves

the processing of complex matrices. Most of the conven-
tional Big Data tools can only handle pure-real matrices,
especially on GPUs. However, recently, Big Data tools
were developed to handle complex matrices on GPU
[52]. Therefore, one of the main contributions of this
work is to identify, in the following sections, the Big
Data tools compatible with complex matrices necessary
for the CMA of dielectric scatterers, as shown in eqn (6)
[51]. Using the new equivalent impedance matrix shown
in eqn (6), a new generalized eigenvalue equation can be
formulated by [51]

[XE][Jn] = λ n[RE][Jn] , (7)
where λn and Jn are the eigenvalues and eigenvectors
calculated using RE and XE , which are the real and imag-
inary parts, respectively, of the equivalent impedance
matrix ZE . The eigenvalues λn can be used to calculate
the modal significance MSn of each mode as

MSn = 1/ |1 + jλn| . (8)
The modal significance is independent of the exci-

tation, and it identifies the relative weight of each mode
at any given frequency. The modal significance varies
between 0 and 1, reaching 1 typically at the resonance
frequency of the mode [14]. It is important to empha-
size that there are alternative implementations for per-
forming the CMA of dielectric scatterers. Huang et al.
performed an excellent review and comparison in [53].
However, the goal of this work is to explore GPU-based
acceleration, and the techniques developed herein have
the potential to yield similar acceleration levels in alter-
native dielectric CMA implementations.

A scatterer that is highly complex in shape or elec-
trically large needs a detailed mesh that yields a large
MoM impedance matrix containing thousands of rows
and columns. These matrices consume gigabytes of disk
space and RAM for storage during analysis. Computing
CMA for hundreds of frequencies needs the analysis of
hundreds of large MoM impedance matrices, which also
pose a Big Data challenge.

With the availability of high-end CPUs and hard-
ware accelerators such as GPUs, one can cope with the
Big Data challenge in CMA. CPU cores and GPUs pro-
vide internal parallelism inside their architecture [54].
This can speed up the matrix computations in CMA.
A GPU computing platform provides promising sup-
port toward improving resource utilization [54]. Today,

open-source software such as TensorFlow [55], designed
originally for large-scale machine learning, and Python
libraries such as NumPy [52] and CuPy [56] can be
exploited for CMA.

Thus, a hybrid CPU/GPU platform provides ample
opportunities to test different techniques for accelerating
different matrix operations using open-source software
that can handle large datasets.

III. ACCELERATION OF THE CMA
IMPLEMENTATION ON A GPU PLATFORM

In this section, we develop multiple different CMA
implementations using different hardware setups and dif-
ferent numerical libraries. We then perform extensive
experiments to identify the optimum implementation for
each matrix size and for each hardware setup. We used
three different hardware setups for our CMA implemen-
tation: (1) a multi-core CPU, (2) a GPU platform, and
(3) a hybrid CPU/GPU platform. We used the following
numerical libraries: (1) TensorFlow2.0 (TF), (2) Numpy
Python library, and (3) CuPy Python library. TF is an
open-source platform for machine learning, and it can
be executed on both CPUs and GPUs. On a hybrid
CPU/GPU platform, TF will assign all operations to the
GPU by default. To instruct TF to execute a certain
operation on a CPU, the following statement needs to
be added before the operation:

with tf.device (device name):

ALSULTAN, HAMDALLA, DEY, RAO, HASSAN: SCALABLE AND FAST CHARACTERISTIC MODE ANALYSIS USING GPUS 160

TF has application programming interfaces (APIs) in
several languages such as C++, Python, and Java. In
this work, we used Python to implement CMA with TF.
The NumPy python library can run on a multi-core CPU,
whereas the CuPy python library can only run on GPUs.
Therefore, we developed five different CMA evaluations
as follows: (1) TF where all matrix operations are exe-
cuted only on CPUs, (2) TF where all matrix operations
are executed only on GPUs, (3) hybrid TF implementa-
tion where some matrix operations are executed on CPUs
and some matrix operations are executed on GPUs, (4)
NumPy where all matrix operations are executed only on
CPUs, and (5) CuPy where all matrix operations are exe-
cuted only on GPUs. The goal is to identify the fastest
implementation out of the five for different matrix sizes.
Moreover, the five implementations will guide future
CMA users who have access to only CPUs or GPUs and
will also guide users who prefer to use one of the previ-
ously described Python libraries.

Our CMA implementation is based on the method
described in Algorithm 1 [18]. We chose this particular
implementation since it is capable of accurately handling
a wide range of scatterers, including wires and wire-like
nanostructures [14]. First, we read the real and imagi-
nary parts of the input MoM matrix using TensorFlow
(Lines 3−4). Next, we construct the complex matrix
Z followed by slicing it into four equal parts and then
computing ZZ (Lines 5−10). This step is only per-
formed for dielectric targets following the approach in
[51]. For PEC scatterers, this step is skipped, and ZZ is
set equal to Z. The SVD process is then performed (Lines
10 and 11). After that, matrices A and B are computed
as detailed in Lines 13−16. The remaining steps are to
compute the eigenvalues λn as shown in Lines 17−22.

The modes and eigenvalues generated by the CMA
(Algorithm 1) are not ordered in the same way over
the entire frequency range [57–59]. Mode tracking is,
therefore, performed to find the correct mode ordering
throughout the frequency range of interest. Our imple-
mentation of mode tracking, which can be run on a CPU
or a GPU, is based on calculating the correlation between
the modes of the current frequency and the modes of the
previous frequency [57] (see Algorithm 2).

IV. EXPERIMENTAL SETUP, RESULTS,
AND DISCUSSION

In this section, we report the performance of the five
CMA implementations previously described. We ran all
experiments on CloudLab [60], an experimental testbed
for cloud computing. We used a machine in CloudLab’s
Wisconsin data center with two Intel Xeon E5-2667 8-
core CPUs (3.20 GHz) and an NVIDIA Tesla V100
SMX2 GPU (16 GB). All the algorithms were imple-
mented and evaluated using the following software and
tools: Linux Ubuntu 16.04, TensorFlow 2.0.0, CUDA
10.0.130, Python 3.7.10., NumPy1.20.1, CuPy 8.3.0, and
Pandas 1.2.3.

Table 2 breaks down the computational time for
the different CMA matrix operations for a 14k ×
14k matrix using the five implementations previously
described: TF on CPU, TF on GPU, TF on hybrid
CPU/GPU, NumPy on CPU, and CuPy on GPU. All
CPU computational experiments in Table 2 used 32
cores. Comparing the computational time for the TF
on CPU and TF on GPU in Table 2, we see that TF on
GPU is faster than TF on CPU for all matrix operations
except for the SVD and the writing of the eigenvector
operation. Therefore, to optimize the TF on a hybrid
CPU/GPU platform, we assigned all CMA matrix oper-
ations to GPU except the SVD and the writing of the
eigenvectors operation, which were assigned to the CPU.
Table 2 shows that the TF on hybrid CPU/GPU is faster
than the TF on CPU or TF on GPU.

The fourth implementation, NumPy on CPU, is
faster than the three TF implementations in Table 2. The
main advantage of the NumPy on CPU is its acceleration
of the matrix multiplications and the SVD, even though
it is slower than TF in terms of the matrix inverse oper-
ation and writing the eigenvectors. Finally, the CuPy
on GPU is the fastest implementation with a signifi-
cant acceleration in the matrix multiplication and the
SVD compared to the other four implementations. The
CuPy on GPU can provide a speedup of 80× compared
to other implementations in Table 2, highlighting the
importance of selecting the optimum numerical library
for the CMA implementation. The analysis in Table 2
shows that different numerical libraries generate drastic
differences in the computation time of different matrix

161 ACES JOURNAL, Vol. 37, No. 2, February 2022

Table 2: Time distribution (minutes) for 14k × 14k
dielectric object over TF CPU, TF-GPU, hybrid TF,
NumPy with multi-core CPU, and CuPy with GPU
implementation

Matrix
operation

TF
CPU

TF
GPU

TF
Hybrid

NumPy with
multi-core CPU

CuPy
with
GPU

Reading the
matrix

0.33 0.25 0.28 0.20 0.22

Assembling real
and imaginary

parts

0.25 0.03 0.03 0.10 0.08

Multiplications 151.07 6.33 6.38 1.22 0.25
Inverse 3 0.03 0.02 0.17 0.05
SVDs 9.78 28.23 9.75 0.92 0.35

Writing
eigenvectors

0.27 0.92 0.23 0.93 0.90

Total time 164.83 38.7 16.79 3.45 1.91

Table 3: MOM matrix memory requirements for differ-
ent formats

Matrix
type

Matrix size CSV file size Binary
file size

4k × 4k 4776 × 4776 1.5 GB 350 MB
14k × 14k 14,183 × 14,183 27 GB 3.0 GB
15k × 15k 15,279 × 15,279 32.4 GB 3.6 GB
16k × 16k 16,608 × 16,608 36 GB 4.2 GB
30k × 30k 33,024 × 33,024 138 GB 16.2 GB

operations, which, to the best of our knowledge, was
not documented for large dense MoM matrices processed
by CMA. If GPUs are not available, the NumPy imple-
mentation provides the fastest implementation of CMA,
whereas if GPUs are available, the CuPy implementation
is the fastest. Therefore, Table 2 can be used as a guide
for choosing the optimum numerical library for any com-
putational electromagnetic technique based on the dom-
inant matrix operations of its algorithm.

To quantify the scalability of the CMA implemen-
tation, we tested MoM impedance matrices, of differ-
ent sizes, generated by the commercial electromagnetic
solver FEKO [61]. Matrices of both dielectric and PEC
matrices were tested. Details of these matrices, including
the matrix size, the size of the CSV file, and the binary
file size, are shown in Table 3. We used the binary files
storing the MoM matrices for these experiments. The
advantage of the binary format is that it requires approx-
imately 10%−20% of the storage hard drive memory
required by the ASCII and CSV file formats, as shown
in Table 3. This reduction in storage memory is partic-
ularly important for the CMA of large MoM matrices
and/or for the simulation of many matrices to cover mul-
tiple frequencies.

Tables 4 and 5 show the computational time required
by our implementation for dielectric and PEC scatterers,
respectively. We tested the computational time of the

Table 4: Time taken by our CMA implementations on a
multi-core CPU and GPU (minutes) for dielectric

Matrix
type

No. of cores used on the
multi-core CPU (NumPy)

GPU
(CuPy)

1 4 8 16 32
4k × 4k 0.88 0.44 0.36 0.34 0.34 0.29

14k × 14k 20.44 6.74 4.38 3.48 3.48 1.90
16k × 16k 33.69 10.81 6.86 5.23 5.26 2.83
30k × 30k 257.13 79.43 47.14 45.11 32.29 15.60

Table 5: Time taken by our CMA implementations on a
multi-core CPU and GPU (minutes) for PEC

Matrix
type

No. of cores used on the
multi-core CPU (NumPy)

GPU
(CuPy)

1 4 8 16 32
15k × 15k 128.98 38.25 23.82 17.92 18.12 12.38

CMA NumPy implementation using 1, 2, 4, 8, 16, and 32
cores without GPU, and we also added the computational
time required when only a GPU and the CuPy implemen-
tation were employed. As we increased the number of
cores, the computational time decreased. For instance, it
took 257 minutes to process the 30k × 30k matrix on 1
core but only 32 minutes on 32 cores. For a PEC scat-
terer, represented by a 15k × 15k matrix, it took 130
minutes to process the matrix on 1 core but only 18 min-
utes on 16 cores. Tables 4 and 5 show that moving from
16 cores to 32 cores showed no decrease in the compu-
tational time for matrix sizes of 16k × 16k and smaller.
Therefore, for matrices that are 16k × 16k and smaller,
the maximum speedup is achieved at 16 cores. However,
Table 4 shows that, for the 30k × 30k matrix, increasing
the number of cores from 16 to 32 lowered the compu-
tational time and enhanced the speedup, indicating the
potential of our implementation to scale for matrices 30k
× 30k and larger.

In Tables 4 and 5, we also report the computational
time required by our CMA CuPy implementation on a
GPU. While our implementation required around 32.29
minutes to process a 30k × 30k matrix of a dielectric
scatterer using a 32-CPU cores, it took only 15.6 min-
utes on the GPU platform. We also tested our CMA
implementation for a PEC scatterer represented by a 15k
× 15k matrix. Again, the CMA implementation on a
GPU platform was the fastest, as shown in Table 5.
Using a GPU achieved a speedup of 16× and 10× for
the dielectric and the PEC object, respectively, in com-
parison to a single CPU core. The computational time
and speedup are shown in Figure 1. Moreover, if we do
not consider the time needed to write the eigenvectors in
the speedup calculations, the speedup will be 26× and
16× for the dielectric and the PEC object, as shown in
Figure 2.

ALSULTAN, HAMDALLA, DEY, RAO, HASSAN: SCALABLE AND FAST CHARACTERISTIC MODE ANALYSIS USING GPUS 162

 4k × 4k 0.88 0.44 0.36 0.34 0.34 0.29

 14k ×
14k

 20.44 6.74 4.38 3.48 3.48 1.90

 16k ×
16k

 33.69 10.81 6.86 5.23 5.26 2.83

 30k ×
30k

 257.13 79.43 47.14 45.11 32.29 15.60

Table 5: Time taken by our CMA implementations on

a multi-core CPU and GPU (minutes) for PEC
Matrix

type
No. of cores used on the multi-core CPU

(NumPy)
GPU

(CuPy)
1 4 8 16 32

15k ×
15k

128.98 38.25 23.82 17.92 18.12 12.38

In Tables 4 and 5, we also report the computational

time required by our CMA CuPy implementation on a

GPU. While our implementation required around

32.29 minutes to process a 30k 30k matrix of a

dielectric scatterer using a 32-CPU cores, it took only

15.6 minutes on the GPU platform. We also tested our

CMA implementation for a PEC scatterer represented

by a 15k 15k matrix. Again, the CMA

implementation on a GPU platform was the fastest, as

shown in Table 5. Using a GPU achieved a speedup of

16 and 10 for the dielectric and the PEC object,

respectively, in comparison to a single CPU core. The

computational time and speedup are shown in Figure

1. Moreover, if we do not consider the time needed to

write the eigenvectors in the speedup calculations, the

speedup will be 26 and 16 for the dielectric and the

PEC object, as shown in Figure 2.

(a)

(b)

Fig. 1. Speedup and time taken for CMA with writing

the eigenvalues and eigenvectors vs. different number

of cores for (a) PEC (15k 15k) and (b) dielectric

object (30k 30k).

(a)

(b)

Fig. 2. Speedup and time taken for CMA without

writing the eigenvalues and eigenvectors vs. different

number of cores for (a) PEC (15k 15k) and (b)

dielectric object (30k 30k).

Lastly, we validated the numerical results

produced by our CMA implementation to demonstrate

that it does not compromise accuracy. We tested our

implementation for two different cases. For PEC

scatterers, we used the horn antenna in [see Figure

3(a)]. The eigenvalues λ𝑛 of the horn antenna

calculated using our implementation perfectly match

the eigenvalues calculated using FEKO, as shown in

Figure 4. We also used a lossless dielectric cylinder of

radius 5.25 mm, height 4.6 mm, 𝜀𝑟 = 38, and 𝜇𝑟 = 1

[see Figure 3(b)]. The frequency range was chosen

from 4.5 to 7.5 GHz with a 50-MHz interval. This case

is often used to verify the results of CMA formulations

for real materials [53]. Figure 5 presents the modal

significance of the dielectric cylinder, which matches

with the results reported by Chen et al. [62]. The

previous two cases demonstrate the validity of our

accelerated CMA implementation.

In this work, we limited our computational

experiments to common Big Data tools such as

TensorFlow, Python-based CuPy, and Python-based

Fig. 1. Speedup and time taken for CMA with writing
the eigenvalues and eigenvectors vs. different number of
cores for (a) PEC (15k × 15k) and (b) dielectric object
(30k × 30k).

Lastly, we validated the numerical results produced
by our CMA implementation to demonstrate that it does
not compromise accuracy. We tested our implementa-
tion for two different cases. For PEC scatterers, we used
the horn antenna in [see Figure 3(a)]. The eigenvalues
λn of the horn antenna calculated using our implemen-
tation perfectly match the eigenvalues calculated using
FEKO, as shown in Figure 4. We also used a lossless
dielectric cylinder of radius 5.25 mm, height 4.6 mm, εr
= 38, and µr = 1 [see Figure 3(b)]. The frequency range
was chosen from 4.5 to 7.5 GHz with a 50-MHz inter-
val. This case is often used to verify the results of CMA
formulations for real materials [53]. Figure 5 presents
the modal significance of the dielectric cylinder, which
matches with the results reported by Chen et al. [62].
The previous two cases demonstrate the validity of our
accelerated CMA implementation.

 4k × 4k 0.88 0.44 0.36 0.34 0.34 0.29

 14k ×
14k

 20.44 6.74 4.38 3.48 3.48 1.90

 16k ×
16k

 33.69 10.81 6.86 5.23 5.26 2.83

 30k ×
30k

 257.13 79.43 47.14 45.11 32.29 15.60

Table 5: Time taken by our CMA implementations on

a multi-core CPU and GPU (minutes) for PEC
Matrix

type
No. of cores used on the multi-core CPU

(NumPy)
GPU

(CuPy)
1 4 8 16 32

15k ×
15k

128.98 38.25 23.82 17.92 18.12 12.38

In Tables 4 and 5, we also report the computational

time required by our CMA CuPy implementation on a

GPU. While our implementation required around

32.29 minutes to process a 30k 30k matrix of a

dielectric scatterer using a 32-CPU cores, it took only

15.6 minutes on the GPU platform. We also tested our

CMA implementation for a PEC scatterer represented

by a 15k 15k matrix. Again, the CMA

implementation on a GPU platform was the fastest, as

shown in Table 5. Using a GPU achieved a speedup of

16 and 10 for the dielectric and the PEC object,

respectively, in comparison to a single CPU core. The

computational time and speedup are shown in Figure

1. Moreover, if we do not consider the time needed to

write the eigenvectors in the speedup calculations, the

speedup will be 26 and 16 for the dielectric and the

PEC object, as shown in Figure 2.

(a)

(b)

Fig. 1. Speedup and time taken for CMA with writing

the eigenvalues and eigenvectors vs. different number

of cores for (a) PEC (15k 15k) and (b) dielectric

object (30k 30k).

(a)

(b)

Fig. 2. Speedup and time taken for CMA without

writing the eigenvalues and eigenvectors vs. different

number of cores for (a) PEC (15k 15k) and (b)

dielectric object (30k 30k).

Lastly, we validated the numerical results

produced by our CMA implementation to demonstrate

that it does not compromise accuracy. We tested our

implementation for two different cases. For PEC

scatterers, we used the horn antenna in [see Figure

3(a)]. The eigenvalues λ𝑛 of the horn antenna

calculated using our implementation perfectly match

the eigenvalues calculated using FEKO, as shown in

Figure 4. We also used a lossless dielectric cylinder of

radius 5.25 mm, height 4.6 mm, 𝜀𝑟 = 38, and 𝜇𝑟 = 1

[see Figure 3(b)]. The frequency range was chosen

from 4.5 to 7.5 GHz with a 50-MHz interval. This case

is often used to verify the results of CMA formulations

for real materials [53]. Figure 5 presents the modal

significance of the dielectric cylinder, which matches

with the results reported by Chen et al. [62]. The

previous two cases demonstrate the validity of our

accelerated CMA implementation.

In this work, we limited our computational

experiments to common Big Data tools such as

TensorFlow, Python-based CuPy, and Python-based

Fig. 2. Speedup and time taken for CMA without writing
the eigenvalues and eigenvectors vs. different number of
cores for (a) PEC (15k × 15k) and (b) dielectric object
(30k × 30k).

In this work, we limited our computational exper-
iments to common Big Data tools such as TensorFlow,
Python-based CuPy, and Python-based NumPy. Many
additional algorithms have been previously reported
for speeding matrix operations [63, 64]. In future
work, we plan to investigate these implementations and

Fig. 3. Different scatterers used to validate the accuracy
of our accelerated CMA implementation. (a) PEC horn
antenna. (b) Dielectric cylinder.

163 ACES JOURNAL, Vol. 37, No. 2, February 2022

Fig. 4. Eigenvalues for a horn-shaped PEC.

Fig. 5. Modal significance for a cylinder-shaped dielec-
tric.

other alternatives, for further acceleration of the CMA
implementation.

V. CONCLUSION
In this paper, we tested different numerical imple-

mentations of the CMA algorithm using open-source
software for GPU computing. We showed that differ-
ent numerical implementations can have drastically dif-
ferent computational times for the different matrix oper-
ations that make up the CMA algorithm. Therefore,
it is important to select the optimum numerical library
since the computational time can vary for large matri-
ces by up to approximately two orders of magnitude.
From our computational experiments, we showed that
the CuPy implementation on GPU delivered the largest
speedup. In comparison to the execution on a single CPU
core, the CuPy implementation on GPU was capable of
achieving 26× and 16× speedup for processing a single
MoM matrix of a dielectric and a PEC object, respec-
tively. In addition to faster execution, our implementa-
tion provided the same accuracy as theoretical solutions
and independent commercial CMA simulations.

ACKNOWLEDGMENT
Khulud Alsultan would like to acknowledge the

support of the Saudi Arabian Cultural Mission. This
work was supported in part by Office of Naval Research
(ONR) grants: #N00014-17-1-2932 and #N00014-17-1-
3016. “Distribution Statement A. – Approved for public
release. Distribution is unlimited.”

REFERENCES
[1] M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-

Nogueira, and M. F. Bataller, “The theory of char-
acteristic modes revisited: A contribution to the
design of antennas for modern applications,” IEEE
Antennas and Propagation Magazine, vol. 49, no.
5, pp. 52–68, 2007.

[2] M. Vogel, G. Gampala, D. Ludick, U. Jakobus, and
C. Reddy, “Characteristic mode analysis: Putting
physics back into simulation,” IEEE Antennas and
Propagation Magazine, vol. 57, no. 2, pp. 307–317,
2015.

[3] G. Angiulli, G. Amendola, and G. Di Massa,
“Application of characteristic modes to the analysis
of scattering from microstrip antennas,” Journal of
Electromagnetic Waves and Applications, vol. 14,
no. 8, pp. 1063–1081, 2000.

[4] L. Guan, Z. He, D. Ding, and R. Chen, “Efficient
characteristic mode analysis for radiation problems
of antenna arrays,” IEEE Transactions on Antennas
and Propagation, vol. 67, no. 1, pp. 199–206, 2019.

[5] N. Michishita and H. Morishita, “Helmet antenna
design using characteristic mode analysis,” Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 35, no. 2, p. 6, 2020.

[6] M. M. Elsewe and D. Chatterjee, “Ultra-wide
bandwidth enhancement of single-layer single-feed
patch antenna using the theory of characteristic
modes,” Applied Computational Electromagnetics
Society (ACES) Journal, vol. 33, no. 3, p. 4, 2018.

[7] A. Araghi and G. Dadashzadeh, “Detail-oriented
design of a dual-mode antenna with orthogonal
radiation patterns utilizing theory of characteristic
modes,” Applied Computational Electromagnetics
Society (ACES) Journal, vol. 28, no. 10, p. 8, 2013.

[8] Q. Wu, H.-D. Bruns, and C. Schuster, “Character-
istic mode analysis of radiating structures in digi-
tal systems,” IEEE Electromagnetic Compatibility
Magazine, vol. 5, no. 4, pp. 56–63, 2016.

[9] X. Yang, Y. S. Cao, X. Wang, L. Zhang, S. He, H.
Zhao, J. Hu, L. Jiang, A. Ruehli, J. Fan, and J. L.
Drewniak, “EMI radiation mitigation for heatsinks
using characteristic mode analysis,” in 2018 IEEE
Symposium on Electromagnetic Compatibility, Sig-
nal Integrity and Power Integrity (EMC, SI & PI).
IEEE, pp. 374–378, 2018.

ALSULTAN, HAMDALLA, DEY, RAO, HASSAN: SCALABLE AND FAST CHARACTERISTIC MODE ANALYSIS USING GPUS 164

[10] S. H. Yeung and C.-F. Wang, “Exploration of char-
acteristic mode theory for electromagnetic com-
patibility modeling,” in 2018 IEEE International
Symposium on Electromagnetic Compatibility and
2018 IEEE Asia-Pacific Symposium on Electro-
magnetic Compatibility (EMC/APEMC). IEEE, pp.
1278–1282, 2018.

[11] M. Z. Hamdalla, B. Bissen, A. N. Caruso,
and A. M. Hassan, “Experimental validations
of characteristic mode analysis predictions using
GTEM measurements,” in 2020 IEEE Interna-
tional Symposium on Antennas and Propagation
and USNC-URSI Radio Science Meeting. IEEE,
2020.

[12] M. Z. Hamdalla, A. M. Hassan, and A. N. Caruso,
“Characteristic mode analysis of the effect of the
UAV frame material on coupling and interference,”
in 2019 IEEE International Symposium on Anten-
nas and Propagation and USNC-URSI Radio Sci-
ence Meeting. IEEE, pp. 1497–1498, 2019.

[13] M. Z. Hamdalla, A. M. Hassan, A. Caruso, J. D.
Hunter, Y. Liu, V. Khilkevich, and D. G. Beetner,
“Electromagnetic interference of unmanned aerial
vehicles: A characteristic mode analysis approach,”
in 2019 IEEE International Symposium on Anten-
nas and Propagation and USNC-URSI Radio Sci-
ence Meeting. IEEE, pp. 553–554, 2019.

[14] A. M. Hassan, F. Vargas-Lara, J. F. Douglas, and E.
J. Garboczi, “Electromagnetic resonances of indi-
vidual single-walled carbon nanotubes with realis-
tic shapes: A characteristic modes approach,” IEEE
Transactions on Antennas and Propagation, vol.
64, no. 7, pp. 2743–2757, 2016.

[15] P. Ylä-Oijala, D. C. Tzarouchis, E. Raninen,
and A. Sihvola, “Characteristic mode analysis of
plasmonic nanoantennas,” IEEE Transactions on
Antennas and Propagation, vol. 65, no. 5, pp.
2165–2172, 2017.

[16] K. C. Durbhakula, A. M. Hassan, F. Vargas-Lara,
D. Chatterjee, M. Gaffar, J. F. Douglas, and E. J.
Garboczi, “Electromagnetic scattering from indi-
vidual crumpled graphene flakes: a characteristic
modes approach,” IEEE Transactions on Antennas
and Propagation, vol. 65, no. 11, pp. 6035–6047,
2017.

[17] S. Dey, D. Chatterjee, E. J. Garboczi, and A.
M. Hassan, “Plasmonic nanoantenna optimization
using characteristic mode analysis,” IEEE Transac-
tions on Antennas and Propagation, vol. 68, no. 1,
pp. 43–53, 2019.

[18] R. Harrington and J. Mautz, “Computation of
characteristic modes for conducting bodies,” IEEE
Transactions on Antennas and Propagation, vol.
19, no. 5, pp. 629–639, 1971.

[19] Q. I. Dai, J. Wu, H. Gan, Q. S. Liu, W. C. Chew, and
E. Wei, “Large-scale characteristic mode analysis
with fast multipole algorithms,” IEEE Transactions
on Antennas and Propagation, vol. 64, no. 7, pp.
2608–2616, 2016.

[20] N. Lee and A. Cichocki, “Big data matrix singu-
lar value decomposition based on low-rank ten-
sor train decomposition,” in International Sympo-
sium on Neural Networks. Springer, pp. 121–130,
2014.

[21] R. Gu, Y. Tang, Z. Wang, S. Wang, X. Yin, C.
Yuan, and Y. Huang, “Efficient large scale dis-
tributed matrix computation with Spark,” in 2015
IEEE International Conference on Big Data (Big
Data). IEEE, pp. 2327–2336, 2015.

[22] J. Liu, Y. Liang, and N. Ansari, “Spark-based large-
scale matrix inversion for big data processing,”
IEEE Access, vol. 4, pp. 2166– 2176, 2016.

[23] J. Xiang, H. Meng, and A. Aboulnaga, “Scalable
matrix inversion using mapreduce,” in Proceed-
ings of the 23rd International Symposium on High-
Performance Parallel and Distributed Computing,
pp. 177–190, 2014.

[24] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo,
J. Demmel, I. Dhillon, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, R. C. Whaley, and
J. J. Dongarra, ScaLAPACK User’s Guide. USA:
Society for Industrial and Applied Mathematics,
1997.

[25] T. White, Hadoop: The Definitive Guide, 1st ed.
O’Reilly Media, Inc., 2009.

[26] Y. Yu, M. Tang, W. G. Aref, Q. M. Malluhi, M. M.
Abbas, and M. Ouzzani, “In-memory distributed
matrix computation processing and optimization,”
in 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, pp. 1047–1058,
2017.

[27] C. Misra, S. Bhattacharya, and S. K. Ghosh, “Stark:
Fast and scalable Strassen’s matrix multiplication
using Apache Spark,” IEEE Transactions on Big
Data, 2020.

[28] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S.
Venkataraman, D. Liu, J. Freeman, D. Tsai, M.
Amde, S. Owen, D. Xin, X. Reynold, M. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib:
machine learning in apache spark,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp.
1235–1241, 2016.

[29] S. Peng and Z. Nie, “Acceleration of the method of
moments calculations by using graphics processing
units,” IEEE Transactions on Antennas and Propa-
gation, vol. 56, no. 7, pp. 2130–2133, 2008.

[30] E. Lezar and D. B. Davidson, “GPU-accelerated
method of moments by example: Monostatic

165 ACES JOURNAL, Vol. 37, No. 2, February 2022

scattering,” IEEE Antennas and Propagation Mag-
azine, vol. 52, no. 6, pp. 120–135, 2010.

[31] T. Topa, A. Karwowski, and A. Noga, “Using GPU
with CUDA to accelerate MoM-based electromag-
netic simulation of wiregrid models,” IEEE Anten-
nas and Wireless Propagation Letters, vol. 10, pp.
342–345, 2011.

[32] T. Topa, A. Noga, and A. Karwowski, “Adapt-
ing MoM with RWG basis functions to GPU tech-
nology using CUDA,” IEEE Antennas and Wire-
less Propagation Letters, vol. 10, pp. 480–483,
2011.

[33] D. P. Zoric, D. I. Olcan, and B. M. Kolundz-
ija, “Solving electrically large EM problems by
using out-of-core solver accelerated with multiple
graphical processing units,” in 2011 IEEE Inter-
national Symposium on Antennas and Propagation
(APSURSI). IEEE, pp. 1–4, 2011.

[34] Q. M. Nguyen, V. Dang, O. Kilic, and E. El-
Araby, “Parallelizing fast multipole method for
large-scale electromagnetic problems using GPU
clusters,” IEEE Antennas and Wireless Propagation
Letters, vol. 12, pp. 868–871, 2013.

[35] J. Guan, S. Yan, and J.-M. Jin, “An openMP-CUDA
implementation of multilevel fast multipole algo-
rithm for electromagnetic simulation on multi-GPU
computing systems,” IEEE Transactions on Anten-
nas and Propagation, vol. 61, no. 7, pp. 3607–
3616, 2013.

[36] X. Mu, H.-X. Zhou, K. Chen, and W. Hong,
“Higher order method of moments with a paral-
lel out-of-core LU solver on GPU/CPU platform,”
IEEE Transactions on Antennas and Propagation,
vol. 62, no. 11, pp. 5634–5646, 2014.

[37] M. J. Miranda, T. Ö zdemir, and R. J. Burkholder,
“Hardware acceleration of an FMM-FFT solver
using consumer-grade GPUs,” in 2016 United
States National Committee of URSI National Radio
Science Meeting (USNC-URSI NRSM). IEEE, pp.
1–2, 2016.

[38] E. Garćıa, C. Delgado, L. Lozano, and F. Ćatedra,
“Efficient strategy for parallelisation of multi-
level fast multipole algorithm using CUDA,” IET
Microwaves, Antennas & Propagation, vol. 13, no.
10, pp. 1554–1563, 2019.

[39] T. Topa, “Load-balanced fortran-based out-of-
GPU memory implementation of the method of
moments,” IEEE Antennas and Wireless Propaga-
tion Letters, vol. 16, pp. 813–816, 2017.

[40] R. Adelman, N. A. Gumerov, and R. Duraiswami,
“FMM/GPUaccelerated boundary element method
for computational magnetics and electrostatics,”
IEEE Transactions on Magnetics, vol. 53, no. 12,
pp. 1–11, 2017.

[41] K. Alsultan, P. Rao, A. Caruso, and A. Hassan,
“Scalable Characteristic Mode Analysis: Require-
ments and Challenges,” in Large Scale Networking
(LSN) Workshop on Huge Data: A Computing, Net-
working and Distributed Systems Perspective, pp.
1–2, 2020.

[42] A. Weiss and A. Elsherbeni, “Computational per-
formance of matlab and python for electromagnetic
applications.” Applied Computational Electromag-
netics Society (ACES) Journal, vol. 35, no. 11,
2020.

[43] S. Kaffash, R. Faraji-Dana, M. Shahabadi, and
S. Safavi-Naeini, “A fast computational method
for characteristic modes and eigenvalues of array
antennas,” IEEE Transactions on Antennas and
Propagation, 2020.

[44] D. Tayli, M. Capek, L. Akrou, V. Losenicky, L.
Jelinek, and M. Gustafsson, “Accurate and efficient
evaluation of characteristic modes,” IEEE Transac-
tions on Antennas and Propagation, vol. 66, no. 12,
pp. 7066–7075, 2018.

[45] M.-L. Yang, B.-Y. Wu, H.-W. Gao, and X.-
Q. Sheng, “A ternary parallelization approach of
mlfma for solving electromagnetic scattering prob-
lems with over 10 billion unknowns,” IEEE Trans-
actions on Antennas and Propagation, vol. 67, no.
11, pp. 6965– 6978, 2019.

[46] B. L. Mrdakovic, M. M. Kostic, D. I. Olcan,
and B. M. Kolundzija, “New generation of wipl-
d in-core multi-gpu solver,” in 2018 IEEE Inter-
national Symposium on Antennas and Propagation
& USNC/URSI National Radio Science Meeting.
IEEE, pp. 413–414, 2018.

[47] Y. Chang and R. Harrington, “A surface formula-
tion for characteristic modes of material bodies,”
IEEE Transactions on Antennas and Propagation,
vol. 25, no. 6, pp. 789–795, 1977.

[48] R. F. Harrington, “Matrix methods for field prob-
lems,” Proceedings of the IEEE, vol. 55, no. 2, pp.
136–149, 1967.

[49] M. Khan and D. Chatterjee, “Characteristic mode
analysis of a class of empirical design techniques
for probe-fed, U-slot microstrip patch antennas,”
IEEE Transactions on Antennas and Propagation,
vol. 64, no. 7, pp. 2758–2770, 2016.

[50] Q. Wu, “Characteristic mode assisted design of
dielectric resonator antennas with feedings,” IEEE
Transactions on Antennas and Propagation, vol.
67, no. 8, pp. 5294–5304, 2019.

[51] Y. Chen and C.-F. Wang, “Surface integral equa-
tion based characteristic mode formulation for
dielectric resonators,” in 2014 IEEE Antennas
and Propagation Society International Symposium
(APSURSI). IEEE, pp. 846–847, 2014.

ALSULTAN, HAMDALLA, DEY, RAO, HASSAN: SCALABLE AND FAST CHARACTERISTIC MODE ANALYSIS USING GPUS 166

[52] T. E. Oliphant, A guide to NumPy. Trelgol Publish-
ing USA, vol. 1, 2006.

[53] S. Huang, J. Pan, C.-F. Wang, Y. Luo, and D. Yang,
“Unified implementation and cross-validation of
the integral equationbased formulations for the
characteristic modes of dielectric bodies,” IEEE
Access, vol. 8, pp. 5655–5666, 2019.

[54] S. Mittal and J. S. Vetter, “A survey of CPU-GPU
heterogeneous computing techniques,” ACM Com-
puting Surveys (CSUR), vol. 47, no. 4, pp. 1–35,
2015.

[55] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z.
Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mane, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.
Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems,” arXiv
preprint arXiv:1603.04467, 2016.

[56] R. Nishino and S. H. C. Loomis, “Cupy: A numpy-
compatible library for NVIDIA GPU calculations,”
in Proceedings of Workshop on Machine Learning
Systems (LearningSys) in the Thirty first Annual
Conference on Neural Information Processing Sys-
tems (NIPS), 2017.

[57] M. Capek, P. Hazdra, P. Hamouz, and J. Eichler,
“A method for tracking characteristic numbers and
vectors,” Progress In Electromagnetics Research,
vol. 33, pp. 115–134, 2011.

[58] J. Zhu, W. Li, and L. Zhang, “Broadband Tracking
of Characteristic Modes,” Applied Computational
Electromagnetics Society (ACES) Journal, vol. 34,
no. 11, p. 6, 2019.

[59] Q. He, Z. Gong, H. Ke, and L. Guan, “A Double
Modal Parameter Tracking Method To Characteris-
tic Modes Analysis,” Applied Computational Elec-
tromagnetics Society (ACES) Journal, vol. 32, no.
12, p. 8, 2017.

[60] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J.
Duerig, E. Eide, L. Stoller, M. Hibler, D. John-
son, K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet,
S. Kar, and P. Mishra, “The design and oper-
ation of CloudLab,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19). Ren-
ton, WA: USENIX Association, pp. 1–14, Jul.
2019. [Online]. Available: https://www.usenix.org/
conference/atc19/presentation/duplyakin

[61] 2021. [Online]. Available: https://www.altair.com/
feko/

[62] Y. Chen, “Alternative surface integral equation-
based characteristic mode analysis of dielectric res-
onator antennas,” IET Microwaves, Antennas &
Propagation, vol. 10, no. 2, pp. 193– 201, 2016.

[63] R. Solca, A. Haidar, S. Tomov, T. C. Schulthess,
and J. Dongarra, “Poster: A novel hybrid cpu-
gpu generalized eigensolver for electronic struc-
ture calculations based on fine grained memory
aware tasks,” in 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analy-
sis. IEEE, pp. 1340–1340, 2012.

[64] D. Liu, R. Li, D. J. Lilja, and W. Xiao, “A divide-
and-conquer approach for solving singular value
decomposition on a heterogeneous system,” in Pro-
ceedings of the ACM International Conference on
Computing Frontiers, pp. 1–10, 2013.

Khulud Alsultan received the B.S.
degree in computer science from
King Saud University, Riyadh, Saudi
Arabia in 2006, the M.Sc. degree
in computer science from Kent State
University, Kent, OH, USA, in 2013,
and the Ph.D. degree in computer
science and telecommunication and

computer networking from the University of Missouri-
Kansas City, Kansas City, MO, USA, in 2021.

She is currently a Lecturer with the Department of
Computer Science, King Saud University (KSU). Her
research interest includes Big Data and data analysis, and
its applications in healthcare and electrical engineering.
She served as an external reviewer for several confer-
ences, such as BEXA 2019 and BDA 2019. While being
an active researcher, she obtained the Preparing Future
Faculty program (PFF) graduate certificate at UMKC.
Moreover, Dr. Alsultan received awards including the
Grace Hopper Celebration Student Scholarship in 2018,
and the Graduate Student Travel Grant, UMKC, Kansas
City, MO, USA, in 2019.

Mohamed Hamdalla received the
B.Sc. and M.Sc. degrees from
the Arab Academy for Science,
Technology and Maritime Transport,
Alexandria, Egypt, in 2012 and
2016, respectively, both in electron-
ics and communications engineer-
ing, and the Ph.D. degree in electri-

cal engineering from the University of Missouri-Kansas
City, Kansas City, MO, USA, in 2021.

His current research interests include antennas, meta-
materials, microwave filters, electromagnetic compati-
bility and interference, characteristic mode theory, and
applications.

https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.altair.com/feko/
https://www.altair.com/feko/

167 ACES JOURNAL, Vol. 37, No. 2, February 2022

Sumitra Dey received the B.Tech.
degree in radio physics and electron-
ics from the University of Calcutta,
Kolkata, India, in 2014, the M.Tech.
degree in RF and microwave com-
munication engineering from IIEST
Shibpur, West Bengal, India, in
2016, and the Ph.D. degree in elec-

trical engineering from the University of Missouri-
Kansas City, Kansas City, MO, USA, in 2021.

She is currently a Lead Product Engineer with Multi-
physics System Analysis Group, Cadence Design Sys-
tems, San Jose, CA, USA. Her research interests include
computational electromagnetics, signal/power integrity
in high frequency, nano-electromagnetics, nondestruc-
tive evaluation, experimental microwave and terahertz
imaging, AI/ML based optimization of electromagnetic
response, multilayer Green’s functions, characteristic
mode theory, and applications.

Dr. Dey was awarded the Honorable Mention in
Student paper competition in 2020 Applied Compu-
tational Electromagnetic Society (ACES) Conference,
Monterey, CA, USA, Honorable Mention in Student
paper competition in 2019 IEEE APS/USNC URSI Sym-
posium, Atlanta, GA, USA, Honorable Mention in
2018 Altair FEKO Student Design Competition, and the
Best Student Paper in IEEE CALCON 2015, Kolkata,
India.

Praveen Rao received the M.S. and
Ph.D. degrees in computer science
from the University of Arizona,
Tucson, AZ, USA, in 2007 and
2001, respectively.

He is currently a tenured Asso-
ciate Professor with joint appoint-
ment in the Department of Health

Management & Informatics and the Department of
Electrical Engineering & Computer Science at the
University of Missouri (MU), Columbia, MO, USA.

His research interests are in the areas of Big Data man-
agement, data science, health informatics, and cyberse-
curity. He directs the Scalable Data Science (SDS) Lab
at MU. His research, teaching, and outreach activities
have been supported by the National Science Foundation
(NSF), Air Force Research Lab (AFRL), the National
Endowment for the Humanities (NEH), the National
Institutes of Health (NIH), the University of Missouri
System (Tier 1 grant, Tier 3 grant), University of Mis-
souri Research Board, and companies. He is a Co-PI for
the NSF IUCRC Center for Big Learning. At MU, he
is a core faculty of the Center for Biomedical Informat-
ics (CBMI), the Cybersecurity Center, the MU Institute
for Data Science and Informatics, and the CERI Cen-
ter. He is a core scientist of the Washington Univer-
sity Center for Diabetes Translation Research funded by
NIH. He is a Senior Member of the ACM (2020) and
IEEE (2015).

Ahmed M. Hassan received the
B.Sc. (with highest honors) and
M.Sc. degrees from Cairo Univer-
sity, Giza, Egypt, in 2004 and 2006,
respectively, both in electronics and
communications engineering. He
received the Ph.D. degree in electri-
cal engineering from the University

of Arkansas, Fayetteville, AR, USA, in 2010.
From 2011 to 2012, he was a Postdoctoral Researcher

with the Department of Electrical Engineering, Univer-
sity of Arkansas. From 2012 to 2015, he was a Post-
doctoral Researcher with the National Institute of Stan-
dards and Technology, Gaithersburg, MD, USA. He
is currently an Assistant Professor with the Computer
Science Electrical Engineering Department, University
of Missouri-Kansas City. His current research inter-
ests include nanoelectromagnetics, bioelectromagnetics,
electromagnetic compatibility and interference, nonde-
structive evaluation, experimental microwave, and tera-
hertz imaging.

	INTRODUCTION
	OVERVIEW OF CMA
	ACCELERATION OF THE CMA IMPLEMENTATION ON A GPU PLATFORM
	EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION
	CONCLUSION

