
ACES JOURNAL, Vol. 37, No. 2, February 2022 168

A Difference Subgridding Method for Solving Multiscale Electro-Thermal
Problems

Xiaoyan Zhang, Ruilong Chen, and Aiyun Zhan

School of Information Engineering
East China Jiaotong University, Nanchang 330013, China

xy zhang3129@ecjtu.edu.cn, 2465246593@qq.com, 707290432@qq.com

Abstract – Because of less memory costs and time con-
sumption, a finite difference subgrid technique can effec-
tively deal with multiscale problems in electromagnetic
fields. When used in Maxwell equation, symmetric ele-
ments of the matrix are required; otherwise, the algo-
rithm will be unstable. Usually, the electro-thermal
problem also contains multiscale structures. However,
the coefficient matrix of the heat transfer equation is
asymmetric because the parameters of the equation vary
with temperature and the Robbin boundary condition is
used as well. In this paper, a three-dimensional (3D)
finite difference subgridding method is proposed to sim-
ulate the electro-thermal coupling process of the multi-
scale circuits. The stability condition of the algorithm is
deduced with a matrix method. And the efficiency and
the effectiveness of the proposed subgridding approach
are verified through square- and n-shaped resistances.
Compared with the results of the COMSOL software and
the traditional finite difference method (FDM), the pro-
posed subgridding method has less unknowns and faster
speed.

Index Terms – Electro-thermal problems, finite-
difference method (FDM), multiscale, subgridding
method.

I. INTRODUCTION
With the increase of the integration of the electronic

components, Joule heat of the circuits becomes a severe
problem; sometimes, it will lead to the decline of the reli-
ability of the circuit [1, 2]. In order to solve this problem,
the variation of the electromagnetic component parame-
ters with the temperature [1–4], the distribution of the
temperature in the circuit [5–7], and the influence of the
high temperature on circuit performance [1, 2, 8] arouse
the researchers’ study interests to guide circuit design
and improve its stability. The difficulty of this study is
that the electricity is the cause of the Joule heat, and the
heat will affect the electrical parameters in return. They
are coupled with each other.

Using the commercial software COMSOL to estab-
lish an electro-thermal model is one of the effective
methods to solve this issue [9, 10]. However, the COM-
SOL is based on a finite-element method (FEM); so it
has the shortcomings of low efficiency and heavy calcu-
lation burden in commutating the transient temperature
field [11].

In the last decades, some algorithms have been fur-
ther developed and used to study the variation of the
circuit’s temperature and its effects on the device per-
formance. In 2005, the heat transfer equation was ana-
lytically solved to evaluate the changes of temperature
and thermal resistance of a microwave power field effect
transistor (FET) unit [3]. However, the analytical method
is only suitable for solving the electro-thermal problems
of some specific structures. In 2008, a semi-analytical
method was proposed based on the assumption that the
substrate is half infinite. The method was applied to
observe the nonlinear characteristics of an integrated
resistance by considering the changes of the electrical
conductivity (σ ) and the thermal conductivity (K) with
temperature [4]. Due to the limitation of the analyt-
ical method, this approach is not suitable for model-
ing a model of finite substrate. In 2011, a numerical
method of a finite-volume method (FVM) was presented
and applied to estimate the temperature distribution pro-
file of a three-dimensional (3D) power delivery net-
work (PDN) package [1]. Only the variation of σ with
temperature is considered. In 2016, our group devel-
oped a two-dimensional (2D) radial point interpolation
method (RPIM) for electro-thermal coupling modeling.
Although the temperature variation of the σ and K were
taken into account, the instability of the 3D meshless
method of the RPIM still needs to be solved [5]. In
2018, a finite difference time domain method (FDTD)
and a volume-element method (VEM) were combined
for the transient analysis of gas-insulated transmission
lines’ (GILs) electro-thermal performance [6]. Simi-
larly, the change of resistance with temperature is intro-
duced into the modeling process. In 2019, a 3D RPIM
was presented to study the temperature response from
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a through-silicon via (TSV). And the effects of the σ ,
K, and the specific heat C were taken into account [7].
Whereas, the problem of meshless algorithm, which we
mentioned earlier, still needs to be faced. In 2020, the
finite difference method (FDM) was introduced into a
SPICE simulation tool for observing the characteristics
of an insulated gate bipolar transistor (IGBT) at different
temperatures. The charge motion of the semiconductor
materials was introduced into the voltage equations [8].

Among the above algorithms, the FDM has the
advantages of numerical stability and relatively simple
implementation; so it is widely used in temperature field
modeling [6, 8, 12]. One of the disadvantages of the
FDM is difficulty in dealing with multiscale problems.
Because the uniformly fine mesh of the FDM will result
in a very large memory cost and the extension of the
iterations. To solve this issue, some subgridding algo-
rithms, such as a variable step size method (VSSM) [13],
a spatial subgridding algorithm with separated tempo-
ral and spatial interfaces [14], a hybrid implicit–explicit
FDTD method (HIE-FDTD) [15], and a Huygens sub-
gridding FDTD method [16] were proposed and success-
fully applied in solving Maxwell equations. Since at
least two sizes of grids are applied to the subgridding
algorithm and the time steps of the domains with dif-
ferent grid sizes can be different, the simulations of the
coarse grid and the fine grid can be carried out sepa-
rately. In this way, the subgridding method can reduce
the number of the unknowns and shorten the simula-
tion time. Unfortunately, the data on the grids’ bound-
ary needs to be obtained by the interpolation approach,
which will destroy the symmetry of the algorithm. In
order to ensure the stability of the subgridding approach,
an effective solution is to make the element distribution
of its coefficient matrix symmetrical [17], but it is dif-
ficult in mathematics; another simpler way is to derive
the stability conditions of the algorithm so that it can run
under certain conditions [18].

Usually, multiscale structures are often included
in a circuit. Especially, for solving such an electro-
thermal problem, electrical insulation and thermal radi-
ation boundary conditions exist. In addition, the values
of the electrical conductivity and the thermal conductiv-
ity of the circuit are related to the temperature. All these
lead to an asymmetric coefficient matrix of the subgrid-
ding algorithm.

In this paper, a finite difference subgridding method
for modeling the coupled electro-thermal equations is
presented. In the subgridding scheme, the iterations
in coarse grid and fine grid are performed respec-
tively; and the spatial and the temporal linear interpo-
lations are applied to obtain the values on the bound-
ary surface. A matrix method [18] is introduced to
derive the stability condition of the algorithm. In each

march-on-in-time process, the coefficient matrix of the
algorithm is updated as σ and K change. And the σ

and K will vary with the temperature T . To validate the
efficiency of the proposed method, the transient temper-
ature distributions of a square and an n-shaped copper
resistances are simulated and compared with the results
of the commercial software COMSOL and the traditional
FDM, which demonstrate its effectiveness and efficiency.

This paper is arranged in the following manner.
In Section II, theories and mathematics of the pro-
posed method for the 3D electro-thermal problems
as well as the stability condition are derived. In
Section III, the numerical results are compared with
those of the COMSOL software and the traditional FDM.
In Section IV, conclusion is drawn.

II. THEORIES AND NUMERICAL
METHODS

A. The coupled electro-thermal equations
A multiscale structure as shown in Figure 1 is con-

sidered in this research. In this model, a copper resistor
with a smaller size of Lcu×Wcu× d is integrated on a
cuboid silicon substrate (Ls×Ws×Ds). This device is
assumed to be physically small. And because the speed
of thermal change is far less than the speed of the elec-
tromagnetic field transmission, the electromagnetic field
on the resistance is regarded as a static field. Therefore,
the problem of the electro-thermal mutual coupling can
be regarded as an electrostatic field producing Joule heat
losses of P, and then the P becomes the thermal source
and leads to heat conduction. In turn, the spatial distribu-
tions of the temperature will change the parameters of the
device.

This physical mechanism can be described by the
following mathematical equation:

ρC
∂T
∂ t

= ∇ · (K(x,y,z,T )∇T )+P(x,y,z,T ), (1)

where the constants ρ and C represent a density and
a specific heat capacity of a material, respectively,
K stands for the material’s thermal conductivity, T is the
temperature, and t represents the time. The power den-
sity P is calculated by

P = σ(x,y,T ) |∇φ |2 d. (2)

Fig. 1. Electro-thermal model of a resistor.
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Here, φ represents the copper’s electric potential, and it
is estimated by

∇ · (σ∇φ) = 0. (3)
d is the height of the copper. Its conductivity is defined
as

σ (x,y,T ) = 1/ρ0 (1+αT (x,y)) , (4)
where ρ0 is an electrical resistivity and α represents a
temperature coefficient.

As Figure 1 shows, the positive electrode (Γe+) of
the copper is impinged on an Us voltage and its negative
electrode (Γe−) is grounded (i.e., Dirichlet boundary or
first-type boundary). In addition, the electrical insulation
(Neumann boundary or second-type boundary) at Γ#2,
the thermal radiation (the third-type boundary or Rob-
bin boundary) at boundary Γ#3, and the other edges of
the circuit that are cooled to T0 are supposed. These con-
ditions are expressed as

φ |Γe+ =Us,φ |Γe− = 0, and
∂φ

∂ n̂
|Γ#2 = 0, (5a)

and

T |
Γ#1

= T0,K
∂T
∂ n̂

∣∣
Γ#3 = h(T∞−T ), (5b)

where n̂ is the norm of the boundary, h is the convective
heat transfer coefficient, and T∞ is the ambient tempera-
ture. The empirical formula for K(x,y,z,T ) can be found
in [4].

B. Application of the finite difference subgridding
method to the coupled electro-thermal equations

In this electro-thermal model, only copper is parti-
tioned with a uniform fine grid of ∆l f , while the substrate
is divided by a uniform coarse grid of ∆lc. Therefore,
when calculating φ , there is only one kind of grid in the
computational domain. After using the central difference
method to eqn (3) to estimate its derivatives, φ at the fine
cell (i, j) can be estimated by

φi, j =
(
ce

1,i,c
e
2,i,c

e
1, j,c

e
2, j
)(

φi−1, j,φi+1, j,φi, j−1,φi, j+1
)T

,
(6)

where ce
p,q =(4+(−1)p∆σq)

/
16, (p=1, 2. q=i, j), ∆σq=(

σq+1−σq−1
)
/σq..

On Neumann boundary of eqn (5a), eqn (6) becomes

φi, j|Γ#2 =

(
1
2
+

∆σ j

8

)
φi, j+1 +

(
1
2
−

∆σ j

8

)
φi, j−1. (7)

Then, the Joule heat losses of P is

P =
d

∆l2
f
·
[(

φi+1, j−φi−1, j
)2

+
(
φi, j+1−φi, j−1

)2
]
. (8)

Whereas, there are two grid sizes on the Si substrate.
To describe the subgridding algorithm clearly, the FDM
of the temperature field on an upper left corner of the top
surface in Figure 1 is cut out to be discussed in detail.
This is typical because the grids on the top surface are
constrained by the third-type boundary condition.

Fig. 2. An interface of the coarse grids and subgrids on
an upper left corner of the top surface.

The key of a subgridding method is the field cou-
pling between the coarse mesh and the fine mesh. In this
paper, the coupling is realized by linear interpolation.
For simplicity and illustration purpose, the 2:1 ratio of
the coarse cell and the fine cell is used as Figure 2. The
coarse grid borders the fine grid. There are three types of
grids: coarse grid, fine grid, and interpolation grid.

The cells “1, 2, 4, 6, 7” in Figure 2(a) and “11” in
Figure 2(b) are coarse grids, where “6, 7” on the sub-
gridding interface; the “5, 8, 9” are fine grids, where “5”
on the interface, and the point “3, 10” is extra added to
estimate its value. All the unknown temperature fields
in Figure 2(a) are constrained by the Robbin boundary
conditions of eqn (5b). Besides, the temperature fields
of the other grids in the substrate, such as “11,” have no
constraints.

Similarly, the T of these grids, except for “3, 10,”
can be obtained by applying the FDM approach. After
some manipulations, their formulas can be written as

T n+1/m
i, j,k = Rxy

T Tn
xy +Rz

T Tn
z +P, (9)

where P = 0. But for the grids in the copper area, P is
calculated by eqn (8); n is the iteration time step, and
the time step ratio m is also the ratio of the spatial step,
which is defined by

m = ∆tc
/

∆t f = ∆lc
/

∆l f . (10)
The Rxy

T = (cT
0 , cT

1,i, cT
2,i, cT

1, j, cT
2, j), Tn

xy =(T n
i, j,k, T n

i−1, j,k,
T n

i+1, j,k, T n
i, j−1,k, T n

i, j+1,k)T , where{
cT

0 = 1−4Kqaς

cT
p,q = aς (Kq +(−1)p∆Kq)

(11)

Here, aς = ∆tς
/

ρC∆l2
ς , ς=c or f ; p=1, 2, q=i, j, k;

∆Kq =(Kq+1−Kq−1)/4.
For the grids in different regions, m, Rz

T , and Tn
z are

different.
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For the grid “1, 2, 4, 6, 7,” m=1, ς = c,
Rz

T =(−(cT
1b,k + cT

2b,k), cT
1b,k,cT

2b,k), where cT
1b,k = 2Kqaς ,

cT
2b,k = haς ∆lς (3−Kk−1

/
Kk); Tn

z =(T n
i, j,k,T n

i, j,k−1,T∞)T .
For the grid “5, 8, 9,” m is defined by eqn (10), and

ς = f, Rz
T , and Tn

z are the same as above; in particular, T3
is interpolated by

T3 =
T1 +T2 +T4 +T6

4
, (12)

and is introduced to estimate T5. T10 is also introduced
to estimate T5, which is interpolated by the two adjacent
coarse grids along x-axis.

For the grid “11,” m = 1, ς = c, Rz
T =(cT

1,k,cT
2,k),

Tn
z =(T n

i, j,k−1, T n
i, j,k+1) T .

Since “6” is located on the boundary of the grid,
when calculating T6, T9 should be known at the same
time. However, “9” is located on a fine cell. Due to the
different time steps between the fine grid and the coarse
grid, T9 needs to be iterated m times to reach the same
time as T6. Therefore, the two grids are coupled with
each other.

To facilitate understanding, suppose that the current
time step is n and all the fields are known. We summarize
the update process of the proposed subgridding scheme
into the following steps.

Step #1: Compute the electric potential equations of eqn
(6)–(8) to obtain the Joule heat losses of P.

Step #2: Compute eqn (9) with ∆t=∆tc to update T n
1 , T n

2 ,
and T n

11 of the coarse grid and T n
4 , T n

6 , and T n
7 of the inter-

face grid to be T n+1
1 , T n+1

2 , T n+1
11 , T n+1

4 , T n+1
6 , and T n+1

7 .
Then, compute eqn (12) to obtain T n

3 and T n+1
3 , T n

10, and
T n+1

10 . Similarly, eqn (9) with ∆t=∆t f is executed to cal-
culate T n+1/m

5 , T n+1/m
8 , and T n+1/m

9 of the fine grid. Take
T6 as an example:

T n+1
6 = (1−6K6ac +hac∆lc(3−K11/K6))T n

6

+ac(K6− (K7−K4)/4)T n
4

+ac(K6− (K7−K4)/4)T n
7 (13)

+ac(K6− (K2−K9)/4)T n
9

+ac(K6− (K2−K9)/4)T n
2

+2K6acT n
11 +hac∆lc(3−K11/K6)T∞ +ac∆l2

c P6

Step #3: Update the temperature fields of the fine grids
from the time step n+1/m to n+2/m. It should be noted
that in order to obtain T n+2/m

5 , T n+1/m
3 , and T n+1/m

10 needs
to be interpolated in advance through T n

3 and T n+1
3 , T n

10
and T n+1

10 . This process will be repeated until the time
step increases to n+1. Take T5 as an example:

T
n+ i+1

m
5 =

(
1−6K5a f +ha f ∆l f (3−K10/K5)

)
T

n+ i
m

5

+a f (K5− (K6−K4)/4)T
n+ 1

m
4

+a f (K5− (K6−K4)/4)T
n+ 1

m
6

+a f (K5− (K3−K8)/4)T
n+ 1

m
8

+a f (K6− (K3−K8)/4)T
n+ 1

m
3 (14)

+2K5a f T
n+ 1

m
10 +ha f ∆l f (3−K10/K5)T∞

+a f ∆l2
f P5,

where 1≤ i≤ m−1.

Step #4: Renew both σ and K with the temperatures cal-
culated in Step #2 and Step #3. Go to Step #1.

C. Stability analysis
The explicit equation of (9) is conditionally stable.

In this paper, the fine cell’s time step is first derived to be
∆t1

f by using the matrix method, and then ∆tc is deter-
mined by using the same method and considering the
relationship with ∆t1

f at the same time. Finally, ∆t f is
updated to 1/m times of ∆tc as eqn (10).

Specifically, the source-free form of eqn (9) is
arranged into the following equation:

Tn+1 =
(

Mc M f
)

N×N Tn, (15)

where T = (T1, T2, . . . , TN)T , N is the total number of
the grids, and Mc and M f denote the coefficient matrix
of the coarse grids and fine grids, respectively. It can be
obtained by

Mς = I +∆t1
f Dς , (ς = c, f), (16)

where I is an identity matrix, and D represents the oper-
ator (ρC)−1∇ ·K∇. It is a sparse matrix.

A necessary condition for Tn+1 is that when n→ ∞,
the spectral radius of the coefficient matrix must satisfy∣∣λ M

i
∣∣≤ 1, (17)

where λ M
i = 1+∆t1

f λ D
i , and λ M

i and λ D
i represent the

eigenvalue element of M and D, respectively. Due to the
Robbin boundary condition, M is unsymmetric but full
rank. λ D

i is negative real or complex whose imaginary
part is small enough to be ignored.

From eqn (17), we have
∆t1

f ≤ 2/(max |λ D
i |). (18)

By applying the same method, ∆t1
c can be prelimi-

narily determined. In this case, only Mc is considered in
eqn (15). Besides, the time step of the coarse grid has m
times of that of the fine grid as well. So, we take

∆tc = min(∆t1
c ,m∆t1

f ). (19)
Therefore,∆t f can be updated to

∆t f = min(∆t1
f ,∆tc/m), (20)

in turn.
Theoretically, ∆t will change with T, but this change

is negligible and can be ignored. To reduce the time loss,
a fixed time step is used in the program execution.
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Table 1: Parameters of Figure 1
Parameter Value Parameter Value
Lcu,Wcu,d 20,20,0.01 mm T0 = T∞ 20 ◦C
Ls,Ws,Ds 40,40,20 mm h 24 W/m2·K
ρ 2.329 g/cm3 C 700 J/kg·K
∆lc 2.5 mm Ui 5 V
∆tc 0.004 s m 4

III. NUMERICAL EXPERIMENTS
A. Cuboid resistor integrated on a Si substrate

The main parameters of Figure 1 are listed in
Table 1. The parameters of σ and K can be found in [4].
A square wave signal with a voltage of 5 V is impinged
on the resistor. The voltage period is 0.08 s. m sets to 4
in this experiment.

Figure 3(a) shows the element distribution charac-
teristics of M. The data shows that M is an asymmet-
ric matrix with dominant main diagonal elements. The
eigenvalues of the matrix, which equal λ M , are given in
Figure 3(b).

The resistor’s σ and K on the top surface at t = 5 s is
simulated and given in Figure 4(a) and (b), respectively.
Obviously, they are spatially distributed, which is caused
by the temperature change in space.

The transient temperatures at (20, 20, and 20 mm)
are observed and illustrated in Figure 5. These results are
compared with those of the conventional FDM, which
adopts a uniform fine grid with ∆ls = 0.625 mm and its
time step is 0.001 s. From the figure, we can see that
their numerical results agree well.

Figure 6 shows the temperature distributions on the
top surface of the substrate at t = 5 s. We can clearly
see that on the boundary of the coarse and fine grids, the
temperatures of the coarse grids naturally transit to the
fine grids.

In order to further verify the efficiency of the
proposed algorithm, the temperatures on the top sur-
face, whose grid numbers are 1576–1800, are also
compared with the results from COMSOL software
(t = 5 s). Figure 7 shows the numerical results of the

Fig. 3. The characteristics of M. (a) Its element distribu-
tion. (b) Its eigenvalues.

Fig. 4. Temperature-dependent parameters of the resis-
tor. (a) σ . (b) K.

Fig. 5. Comparison of the temperatures obtained with
the different methods at (20, 20, and 20 mm).

three methods. Obviously, they are in good agreement.
It verifies the effectiveness of the proposed subgridding
approach in modeling the multiscale electro-thermal
structure.
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Fig. 6. Temperature distribution on the top surface.

Fig. 7. Temperature distribution obtained by COMSOL,
conventional method, and the proposed method.

Table 2 lists the computational expenditures of three
methods. Based on the table, the following observations
are made.

• The proposed algorithm with subgrids reduces the
number of unknowns by about 91% and the compu-
tational time by about 49.6% compared to the tradi-
tional FDM with uniform fine mesh.

• The proposed finite difference subgridding method
reduces the number of unknowns by about 70% and
the computational time by about 10.7% compared
to the COMSOL software.

B. N-shaped resistor integrated on a Si substrate
To further study the adaptability of the proposed

algorithm, an n-shaped copper resistor (Lcu = Wcu = 20

Table 2: Computational expenditures of different
methods
Numerical
method

Total
number of
unknowns

Total
number of
iterations

CPU
time (s)

Conventional
FDM

31,752 5000 21.27

COMSOL 9391 N/A 12.00
Proposed
subgridding
method

2825 1250 10.72

mm, Larc = 5 mm, d = 0.1 mm) integrated on a square
silicon film substrate (Ls = Ws = 40 mm) is illustrated as
Figure 8 shows. This model has a multiscale structure.
In this case, the square wave voltage changes to be 5 V
and its period is 1 s. Other parameters are the same as
the square resistance above.

Figure 9 shows the temperature distributions of the
substrate at t = 20 s. Also, the obvious reflection of

Fig. 8. N-shaped resistor integrated on a Si substrate.

Fig. 9. Temperature distribution of the substrate at
t = 20 s.
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Fig. 10. Comparison of the temperatures obtained with
the different methods at (20 and 20 mm).

the temperature field on the boundary was not observed.
These results are compared with those of the conven-
tional FDM, which adopts a uniform fine grid with ∆ls =
0.625 mm and its time step is 0.001 s. Figure 10 gives the
comparison of the transient temperatures obtained with
the two different methods at the observed point (20 and
20 mm). From the figure, we can see that the three tem-
perature patterns tend to be in good agreement. It verifies
the effectiveness of the proposed subgridding approach
again.

IV. CONCLUSION
In this paper, a 3D explicit finite difference subgrid-

ding method is proposed and applied to study the electro-
thermal problems of electronic components and ICs with
multiscale structures. Square- and n-shaped resistances
are used as examples. In order to agree with the actual
problems, the temperature-dependent electrical conduc-
tivity and thermal conductivity are considered in this
research. In addition, the Robbin boundary condition
is used in the model. Therefore, the coefficient matrix
of the subgridding algorithm is asymmetric. Fortunately,
its main diagonal elements are dominant and symmetric;
the imaginary part of the other asymmetric elements is
close to 0. Based on these properties, the stability con-
dition of the algorithm is derived by matrix method. The
numerical results are compared with those of the tradi-
tional FDM with fine mesh and the COMSOL software
as well. They are in good agreement. In addition, the
proposed method can reduce the number of unknowns by
about 91% and 70% and the computational time by about
49.6% and 10.7%, compared to the traditional FDM and
the COMSOL software, respectively. All of the above
show the efficiency of the proposed method.
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